ICTAMI 2005. 110KB Jun 04 2011 12:08:47 AM

ACTA UNIVERSITATIS APULENSIS

No 10/2005

Proceedings of the International Conference on Theory and Application of
Mathematics and Informatics ICTAMI 2005 - Alba Iulia, Romania

AN INTEGRAL UNIVALENT OPERATOR II
Daniel Breaz and Nicoleta Breaz
Abstract.In this paper we present the univalence conditions for the operator


Gα,n (z) = (n (α − 1) + 1)

in the unit disc.

Zz
0




1
n(α−1)+1

g1α−1 (t) . . . gnα−1 (t) dt

2000 Mathematics Subject Classification: 30C45
Keywords and phrases:Operator, unit disc, univalent functions, univalent
operator, holomorphic function.
Introduction
We consider U be the unit disc and denote by H (U ) the class of holomorphic functions in U . Let the set of analytic functions
n

An = f ∈ H (U ) : f (z) = z + an+1 z n+1 + . . .

o

(1)

For n = 1 obtain A1 = {f ∈ H (U ) : f (z) = z + a2 z 2 + . . .}, and denote
A1 = A. Let S the class of regular and univalent functions f (z) = z +a2 z 2 +. . .

in U, which satisfy the condition f (0) = f ′ (0) − 1 = 0.
Ozaki and Nunokawa proved in [3] the following results:
Theorem 1.If we assume that g ∈ A satisfies the condition



z 2 f ′ (z)

2
− 1 < 1, z ∈ U
f (z)


(2)

then f is univalent in U .
The Schwartz Lemma. Let the analytic function g be regular in the unit
disc U and g (0) = 0. If |g (z)| ≤ 1, ∀z ∈ U, then
|g (z)| ≤ |z| , ∀z ∈ U
and equality holds only if g (z) = εz, where |ε| = 1.

117

(3)

D. Breaz and N. Breaz-An integral univalent operator II
Theorem 2.Let α be a complex number with Re α > 0, and let f = z +
a2 z 2 + . . . be a regular function on U .
If


1 − |z|2Re α zf ′′ (z)

≤ 1, ∀z ∈ U
(4)
f (z)
Re α

then for any complex number β with Re β ≥ Re α the function



Fβ (z) = β

is regular and univalent in U .

Zz
0

1

β

tβ−1 f ′ (t) dt = z + . . .

(5)

Theorem 3.Assume that g ∈ A satisfies condition (2), and let α be a
complex number with
Re α
|α − 1| ≤
.

(6)
3
If
|g (z)| ≤ 1, ∀z ∈ U
(7)
then the function


Gα (z) = α

is of class S.

Zz
0

1

α

g (α−1) (t) dt


(8)

Main results
Theorem 4.Let gi ∈ A, for all i = 1, n, n ∈ N ∗ , satisfy the properties

and α ∈ C, with




z 2 g ′ (z)

i
− 1 < 1, ∀z ∈ U, ∀i = 1, n
2

gi (z)

(9)


Re α
.
3n
If |gi (z)| ≤ 1, ∀z ∈ U, ∀i = 1, n, then the function

(10)

|α − 1| ≤



Gα,n (z) = (n (α − 1) + 1)

Zz
0



g1α−1 (t) . . . gnα−1 (t) dt


118

1
n(α−1)+1

(11)

D. Breaz and N. Breaz-An integral univalent operator II
is univalent.
Proof. From (11) Gα,n can be written:


Gα,n (z) = (n (α − 1) + 1)

Zz

tn(α−1)

0


g1 (t)
t

!α−1

...

gn (t)
t

!α−1



dt

1
n(α−1)+1


(12)

We consider the function
f (z) =

Zz
0

g1 (t)
t

!α−1

gn (t)
...
t

!α−1

dt.


(13)

The function f is regular in U , and from (13) we obtain


f (z) =

g1 (z)
z

!α−1

gn (z)
...
z

!α−1

(14)

and
f ′′ (z) = (α − 1)

n
X

Ak Bk

(15)

zgk′ (z) − gk (z)
z2

(16)

!α−1

(17)

k=1

where Ak and Bk has the next form:
Ak =

gk (z)
z

!α−2

and
z
Bk = f (z) ·
gk (z)


Next we calculate the expresion

.

zf ′′
.
f′

n
X
zgk′ (z) − 1
zf ′′ (z)
=


1)
·
f ′ (z)
gk (z)
k=1

The modulus



zf ′′



f

119

(18)

(19)

D. Breaz and N. Breaz-An integral univalent operator II
can then be evaluated as






n
n
zf ′′ (z)

X
zgk′ (z) − 1
zgk′ (z) − 1 X





(α − 1) ·
= (α − 1) ·

.

f (z)
gk (z) k=1
gk (z)
k=1

Multiplying the first and the last terms of (20) with
1 − |z|2Re α
Re α

1−|z|2Re α
Re α



n
zf ′′ (z)
X
1 − |z|2Re α


|α − 1|


f (z)
Re α

> 0, we obtain



!
zg ′ (z)

k
+1

gk (z)

k=1

(20)

(21)

Applying the Schwartz Lemma and using (21), we obtain
1 − |z|2Re α
Re α



n
zf ′′ (z)
1 − |z|2Re α X



≤ |α − 1|
f (z)
Re α

k=1



!

z 2 g ′ (z)


k
− 1 + 2
2
g (z)

(22)

k

Since gi satisfies the condition (2) ∀i = 1, n, then from (22) we obtain:
1 − |z|2Re α
Re α
But |α − 1| ≤



zf ′′ (z)
3n |α − 1|
1 − |z|2Re α



.

≤ 3n |α − 1|
f (z)
Re α
Re α

Re α
3n

(23)

so from (10) we obtain that
1 − |z|2Re α
Re α



zf ′′ (z)



≤ 1,
f (z)

(24)

for all z ∈ U and the Theorem 2 implies that the function Gα,n is in the class
S.
Corollary 5.Let g ∈ A satisfy (2) and α a complex number such that
|α − 1| ≤

Re α
, k ∈ N∗
3k

(25)

If |g (z)| ≤ 1, ∀z ∈ U, then the function


Gkα (z) = (k (α − 1) + 1)
is univalent.
Proof.
120

Zz
0



g k(α−1) (t) dt

1
k(α−1)+1

(26)

D. Breaz and N. Breaz-An integral univalent operator II
We consider the functions


Gkα (z) = (k (α − 1) + 1)
and
f (z) =

Zz

tk(α−1)

0

Zz
0

g (t)
t

g (t)
t

!k(α−1)

!k(α−1)



1
k(α−1)+1

dt

dt.

(27)

(28)

The function f is regular in U. From (28) we obtain


f (z) =

g (z)
z

and
g (z)
f (z) = k (α − 1)
z
′′

!k(α−1)

!k(α−1)−1

zg ′ (z) − g (z)
.
z2

Next we have
1 − |z|2Re α
Re α



zf ′′ (z)
1 − |z|2Re α




k |α − 1|
f (z)
Re α



!
zg ′ (z)



+ 1 , ∀z ∈ U.
g (z)

(29)

Applying the Schwartz Lemma and using (29) we obtain
1 − |z|2Re α
Re α



zf ′′ (z)
1 − |z|2Re α



≤ |α − 1|
f (z)
Re α



!
z 2 g ′ (z)



2
− 1 + 2 .
g (z)


(30)

Since g satisfies conditions (2) then from (30) and (25) we obtain
1 − |z|2Re α
Re α



zf ′′ (z)

3k |α − 1|
3k |α − 1| 


1 − |z|2Re α ≤


≤ 1.
f (z)
Re α
Re α

(31)

Now Theorem 2 and (31) imply that Gkα ∈ S.
Corollary 6.Let f, g ∈ A, satisfy (1) and α the complex number with the
property
Re α
|α − 1| ≤
.
(32)
6

121

D. Breaz and N. Breaz-An integral univalent operator II
If |f (z)| ≤ 1, ∀z ∈ U and |g (z)| ≤ 1, ∀z ∈ U , then the function


Gα (z) = (2α − 1)

Zz
0



1
2α−1

f (α−1) (t) g (α−1) (t) dt

(33)

is univalent.
Proof. In Theorem 4 we set n = 2, g1 = f , g2 = g.
Remark. Theorem 4 is a generalization of Theorem 3.
Remark. From Corollary 5, for k = 1, we obtain Theorem 3.
References
[1]Nehari, Z., Conformal Mapping, Mc Graw-Hill Book Comp., New York,
1952 Dover. Publ. Inc. 1975.
[2]Nunokava, M., On the theory of multivalent functions, Tsukuba J. Math.
11 (1987), no. 2, 273-286.
[3]Ozaki, S. Nunokawa, M., The Schwartzian derivative and univalent functions, Proc. Amer. Math. Soc. 33(2), (1972), 392-394.
[4]Pascu, N.N., On univalent criterion II, Itinerant seminar on functional
equations approximation and convexity, Cluj-Napoca, Preprint nr. 6, (1985),
153-154.
[5]Pascu, N.N., An improvement of Beker’s univelence criterion, Proceedings of the Commemorative Session Cimion Stoilow, Brasov, (1987), 43-48.
[6]Pescar, V., New criteria for univalence of certain integral operators,
Demonstratio Mathematica, XXXIII, (2000), 51-54.
D. Breaz and N. Breaz
Department of Mathematics
“1 Decembrie 1918” University
Alba Iulia, Romania
E-mail: dbreaz@uab.ro
E-mail: nbreaz@uab.ro

122

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52