Paper-19-Acta24.2010. 162KB Jun 04 2011 12:03:12 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 24/2010
pp. 211-229

DIFFERENTIAL SUBORDINATION AND SUPERORDINATION OF
ANALYTIC FUNCTIONS DEFINED BY CERTAIN INTEGRAL
OPERATOR

M. K. Aouf and T. M. Seoudy
Abstract. Differential subordination and superordination results are obtained
for analytic functions in the open unit disk which are associated with an intregral operator. These results are obtained by investigating appropriate classes of admissible
functions. Sandwich-type results are also obtained. Some of the results established
in this paper would provide extensions of those given in earlier works.
2000 Mathematics Subject Classification: 30C45.
1. Introduction
Let H(U ) be the class of functions analytic in U = {z ∈ C : |z| < 1} and H[a, n]
be the subclass of H(U ) consisting of functions of the form f (z) = a + an z n +
an+1 z n+1 + ..., with H0 = H[0, 1] and H = H[1, 1]. Let A (p) denote the class of all
analytic functions of the form

p

f (z) = z +


X

an z n

(p ∈ N = {1, 2, 3, ...} ; z ∈ U )

(1.1)

n=p+1

and let A (1) = A. Let f and F be members of H(U ). The function f (z) is said
to be subordinate to F (z), or F (z) is said to be superordinate to f (z), if there
exists a function ω(z) analytic in U with ω(0) = 0 and |ω(z)| < 1(z ∈ U ), such
that f (z) = F (ω(z)). In such a case we write f (z) ≺ F (z). If F is univalent, then
f (z) ≺ F (z) if and only if f (0) = F (0) and f (U ) ⊂ F (U ) ( see [8] and [9]).

For two functions f (z) given by (1.1) and
p

g(z) = z +


X

n=p+1

211

bn z n ,

M. K. Aouf, T. M. Seoudy - Differential subordination and superordination of...

the Hadamard product (or convolution) of f and g is defined by
(f ∗ g) (z) = z p +



X

an bn z n = (g ∗ f ) (z) .

n=p+1

Motivated essentially by Jung et al. [6] , Shams et al. [10] introduced the integral
operator Ipα : A (p) → A (p) as follows (see also Aouf et al. [4]):
Z
z α−1
(p + 1)α z 
α
log
f (t) dt,
(α > 0; p ∈ N) ,
(1.2)
Ip f (z) =
zΓ (α) 0
t
and

Ip0 f (z) = f (z),

(α = 0; p ∈ N) .

For f ∈ A (p) given by (1.1), then from (1.2) ,we deduce that

∞ 
X
p+1 α
an z n , (α ≥ 0; p ∈ N) .
Ipα f (z) = z p +
n+1
n=p+1

Using the above relation, it is easy to verify the identity:
′
z Ipα f (z) = (p + 1) Ipα−1 f (z) − Ipα f (z).

(1.3)


We note that the one-parameter family of integral operator I1α = I α was defined by
Jung et al. [6] .
To prove our results, we need the following definitions and lemmas.
Denote by Q the set of all functions q(z) that are analytic and injective on
¯ \E(q) where
U


E(q) =

ζ ∈ ∂U : lim q(z) = ∞ ,
z→ζ



and are such that q (ζ) 6= 0 for ζ ∈ ∂U \E(q). Further let the subclass of Q for which
q(0) = a be denoted by Q(a), Q(0) ≡ Q0 and Q(1) ≡ Q1 .
Definition 1 [ 8, Def inition 2.3a, p. 27]. Let Ω be a set in C, q ∈ Q and n
be a positive integer. The class of admissible functions Ψn [Ω, q], consists of those
functions ψ : C3 × U → C that satisfy the admissibility condition:

ψ(r, s, t; z) ∈
/Ω


whenever r = q(ζ), s = kζq (ζ),




)
(

′′
t
ζq (ζ)
,
+ 1 ≥ kℜ 1 + ′
s
q (ζ)
212


M. K. Aouf, T. M. Seoudy - Differential subordination and superordination of...

where z ∈ U, ζ ∈ ∂U \E(q) and k ≥ n. We write Ψ1 [Ω, q] as Ψ[Ω, q].
M z+a
In particular when q(z) = M M

az , with M > 0 and |a| < M , then q(U ) =
UM = {w : |w| < M }, q(0) = a, E(q) = ∅ and q ∈ Q. In this case, we set
Ψn [Ω, M, a] = Ψn [Ω, q], and in the special case when the set Ω = UM , the class is
simply denoted by Ψn [M, a].
Definition 2 [ 9, Def inition 3, p. 817]. Let Ω be a set in C, q(z) ∈ H[a, n] with


q (z) 6= 0. The class of admissible functions Ψn [Ω, q] consists of those functions
¯ → C that satisfy the admissibility condition
ψ : C3 × U
ψ(r, s, t; ζ) ∈ Ω



whenever r = q(z), s =

zq (z)
m ,





(
)

′′
1
zq (z)
t
+1 ≥ ℜ 1+ ′
,
s
m

q (z)




where z ∈ U, ζ ∈ ∂U and m ≥ n ≥ 1. In particular, we write Ψ1 [Ω, q] as Ψ [Ω, q].
Lemma 1 [ 8, T heorem 2.3b, p. 28]. Let ψ ∈ Ψn [Ω, q] with q(0) = a. If the
analytic function g(z) = a + an z n + an+1 z n+1 + ...satisfies


′′

ψ(g(z), zg (z), z 2 g (z); z) ∈ Ω,
then g(z) ≺ q(z).

Lemma 2 [ 9, T heorem 1, p. 818]. Let ψ ∈ Ψn [Ω, q] with q(0) = a. If g(z) ∈
Q(a) and

′′
ψ(g(z), zg (z), z 2 g (z); z)

is univalent in U , then


′′

Ω ⊂ {ψ(g(z), zg (z), z 2 g (z); z) : z ∈ U },
implies q(z) ≺ g(z).
In the present investigation, the differential subordination result of Miller and
Mocanu [ 8, T heorem 2.3b, p.28] is extended for functions associated with the integral operator Ipα , and we obtain certain other related results. A similar problem
for analytic functions was studied by Aghalary et al. [1], Ali et al. [2], Aouf [3],
Aouf et al. [5], and Kim and Srivastava [7]. Additionally, the corresponding differential superordination problem is investigated, and several sandwich-type results
are obtained.

213

M. K. Aouf, T. M. Seoudy - Differential subordination and superordination of...

2. Subordination Results involving the integral operator
Definition 3. Let Ω be a set in C and q(z) ∈ Q0 ∩ H[0, p]. The class of
admissible functions ΦI [Ω, q] consists of those functions φ : C3 × U → C that satisfy

the admissibility condition
φ (u, v, w; z) ∈
/Ω


,
whenever u = q (ζ) , v = kζq (ζ)+q(ζ)
p+1
(
)
(
)
′′
(p + 1)2 w − 2 (p + 1) v + u
ζq (ζ)

≥ kℜ 1 + ′
(p + 1) v − u
q (ζ)
where z ∈ U, ζ ∈ ∂U \E (q) and k ≥ p.
Theorem 1. Let φ ∈ ΦI [Ω, q]. If f (z) ∈ A (p) satisfies



φ Ipα f (z), Ipα−1 f (z), Ipα−2 f (z); z : z ∈ U ⊂ Ω (α > 2; p ∈ N) ,

(2.1)

then

Ipα f (z) ≺ q (z) .
Proof. Define the analytic function g(z) in U by
g(z) = Ipα f (z)

(α > 2; p ∈ N; z ∈ U ) .

(2.2)

Using the identity (1.3) in (2.2), we get


Ipα−1 f (z) =
and

zg (z) + g (z)
,
(p + 1)

′′

Ipα−2 f (z)

(2.3)



z 2 g (z) + 3zg (z) + g (z)
.
=
(p + 1)2

(2.4)

Define the transformations from C3 to C by
u = r, v =
Let

s+r
t + 3s + r
, w=
.
p+1
(p + 1)2


s + r t + 3s + r
;z .
ψ(r, s, t; z) = φ (u, v, w; z) = φ r,
,
p + 1 (p + 1)2


(2.5)

(2.6)

The proof shall make use of Lemma 1. Using equations (2.2) − (2.4), and from (2.6),
we obtain


′′
ψ(g(z), zg (z), z 2 g (z); z) = φ Ipα f (z), Ipα−1 f (z), Ipα−2 f (z); z (α > 2; p ∈ N; z ∈ U ) .
(2.7)
214

M. K. Aouf, T. M. Seoudy - Differential subordination and superordination of...

Hence (2.1) becomes


′′

ψ(g(z), zg (z), z 2 g (z); z) ∈ Ω.
The proof is completed if it can be shown that the admissibility condition for φ ∈
ΦI [Ω, q] is equivalent to the admissibility condition for ψ as given in Definition 1.
Note that
(p + 1)2 w − 2 (p + 1) v + u
t
+1=
,
s
(p + 1) v − u
and hence ψ ∈ Ψp [Ω, q]. By Lemma 1,
g(z) ≺ q(z)

or Ipα f (z) ≺ q (z) .

If Ω 6= C is a simply connected domain, then Ω = h (U ) for some conformal
mapping h(z) of U onto Ω. In this case the class ΦI [h(U ), q] is written as ΦI [h, q].
The following result is an immediate consequence of Theorem 1.
Theorem 2. Let φ ∈ ΦI [h, q]. If f (z) ∈ A (p) satisfies

φ Ipα f (z), Ipα−1 f (z), Ipα−2 f (z); z ≺ h (z) (α > 2; p ∈ N) ,
(2.8)
then

Ipα f (z) ≺ q (z) .
Our next result is an extension of Theorem 1 to the case where the behavior of
q(z) on ∂U is not known.
Corollary 1. Let Ω ⊂ C and let q(z) be univalent in U , q(0) = 0. Let
φ ∈ ΦI [Ω, qρ ] for some ρ ∈ (0, 1) where qρ (z) = q(ρz). If f (z) ∈ A (p) and

φ Ipα f (z), Ipα−1 f (z), Ipα−2 f (z); z ∈ Ω (α > 2; p ∈ N; z ∈ U ) ,
then

Ipα f (z) ≺ q (z) .
Proof. Theorem 1 yields Ipα f (z) ≺ qρ (z). The result is now deduced from
qρ (z) ≺ q(z).
Theorem 3. Let h(z) and q(z) be univalent in U , with q(0) = 0 and set
qρ (z) = q(ρz) and hρ (z) = h(ρz). Let φ : C3 × U → C satisfy one of the following
conditions:
(1) φ ∈ ΦI [h, qρ ], for some ρ ∈ (0, 1), or
(2) there exists ρ0 ∈ (0, 1) such that φ ∈ ΦI [hρ , qρ ] , for all ρ ∈ (ρ0 , 1).

215

M. K. Aouf, T. M. Seoudy - Differential subordination and superordination of...

If f (z) ∈ A (p) satisfies (2.8), then
Ipα f (z) ≺ q (z) .
Proof. The proof is similar to the proof of [ 8, T heorem 2.3d, p.30] and is
therefore omitted.
The next theorem yields the best dominant of the differential subordination (2.8).
Theorem 4. Let h(z) be univalent in U . Let φ : C3 × U → C. Suppose that
the differential equation


′′

φ(q(z), zq (z), z 2 q (z); z) = h (z)

(2.9)

has a solution q(z)with q(0) = 0 and satisfy one of the following conditions:
(1) q(z) ∈ Q0 and φ ∈ ΦI [h, q],
(2) q(z) is univalent in U and φ ∈ ΦI [h, qρ ], for some ρ ∈ (0, 1), or
(3) q(z) is univalent in U and there exists ρ0 ∈ (0, 1) such that φ ∈ ΦI [hρ , qρ ], for
all ρ ∈ (ρ0 , 1).
If f (z) ∈ A (p) satisfies (2.8), then
Ipα f (z) ≺ q (z) ,
and q(z) is the best dominant.
Proof. Following the same arguments in [ 8, T heorem 2.3e, p. 31], we deduce
that q(z) is a dominant from Theorems 2 and 3. Since q(z) satisfies (2.9) it is also a
solution of (2.8) and therefore q(z) will be dominated by all dominants. Hence q(z)
is the best dominant.
In the particular case q(z) = M z, M > 0, and in view of the Definition 1, the
class of admissible functions ΦI [Ω, q], denoted by ΦI [Ω, M ], is described below.
Definition 4. Let Ω be a set in C and M > 0 . The class of admissible
functions ΦI [Ω, M ] consists of those functions φ : C3 × U → C such that



iθ L + (3k + 1) M e
iθ k + 1
φ Me ,
;z ∈
/Ω
(2.10)
Me ,
p+1
(p + 1)2

whenever z ∈ U , θ ∈ R, ℜ Le−iθ ≥ (k − 1) kM for all real θ,p ∈ N and k ≥ p.
Corollary 2. Let φ ∈ ΦI [Ω, M ]. If f (z) ∈ A (p) satisfies

φ Ipα f (z), Ipα−1 f (z), Ipα−2 f (z); z ∈ Ω (α > 2; p ∈ N; z ∈ U ) ,
216

M. K. Aouf, T. M. Seoudy - Differential subordination and superordination of...

then

α
Ip f (z) < M

(z ∈ U ) .


α
Ip f (z) < M

(z ∈ U ) .


α
Ip f (z) < M

(z ∈ U ) .

In the special case Ω = q(U ) = {ω : |ω| < M }, the class ΦI [Ω, M ] is simply
denoted by ΦI [M ].
Corollary 3. Let φ ∈ ΦI [M ]. If f (z) ∈ A (p) satisfies


φ Ipα f (z), Ipα−1 f (z), Ipα−2 f (z); z < M (α > 2; p ∈ N; z ∈ U ) ,

then

Remark 1. Putting M = 1 in Corollary 3 we obtain the result obtained by
Aouf [3, Theorem 1].
Corollary 4. If k ≥ p and f (z) ∈ A (p) satisfies
α−1

Ip f (z) < M
(α > 1; p ∈ N; z ∈ U ) .

then


Proof. This follows from Corollary 3 by taking φ (u, v, w; z) = v = k+1
p+1 M e .
Remark 2. For M = 1, Corollary 4 yields the result obtained by Aouf [ 3,
Corollary 1].
Definition 5. Let Ω be a set in C and q(z) ∈ Q0 ∩ H0 . The class of admissible

functions ΦI,1 [Ω, q] consists of those functions φ : C3 × U → C that satisfy the
admissibility condition:
φ (u, v, w; z) ∈
/Ω


,
whenever u = q (ζ) , v = kζq (ζ)+pq(ζ)
p+1
)
(
)
(
′′
(p + 1)2 w − 2p (p + 1) v + p2 u
ζq (ζ)

≥ kℜ 1 + ′
,
(p + 1) v − pu
q (ζ)
where z ∈ U, ζ ∈ ∂U \E (q) and k ≥ 1.
Theorem 5. Let φ ∈ ΦI,1 [Ω, q]. If f (z) ∈ A (p) satisfies
(
!
)
Ipα f (z) Ipα−1 f (z) Ipα−2 f (z)
φ
,
,
; z : z ∈ U ⊂ Ω (α > 2; p ∈ N) ,
z p−1
z p−1
z p−1
then

Ipα f (z)
≺ q (z) .
z p−1
217

(2.11)

M. K. Aouf, T. M. Seoudy - Differential subordination and superordination of...

Proof. Define an analytic function g(z) in U by
g (z) =

Ipα f (z)
z p−1

(α > 2; p ∈ N; z ∈ U ) .

(2.12)

By making use of (1.3) and (2.12), we get
Ipα−1 f (z)
zg (z) + p g (z)
=
.
p−1
z
p+1


(2.13)

Further computations show that
′′

Ipα−2 f (z)
z 2 g (z) + (2p + 1) zg (z) + p2 g (z)
.
=
z p−1
(p + 1)2


(2.14)

Define the transformations from C3 to C by
u = r, v =

t + (2p + 1) s + p2 r
s + pr
, w=
.
p+1
(p + 1)2

(2.15)

Let

s + pr t + (2p + 1) s + p2 r
,
;z .
ψ (r, s, t; z) = φ (u, v, w; z) = φ r,
p+1
(p + 1)2


(2.16)

The proof shall make use of Lemma 1. Using equations (2.12) − (2.14), and from
(2.16), we obtain
!
α f (z) I α−1 f (z) I α−2 f (z)


I

′′
p
p
p
(2.17)
,
,
;z .
ψ g (z) , zg (z) , z 2 g (z) ; z = φ
z p−1
z p−1
z p−1
Hence (2.11) becomes



′′
ψ g (z) , zg (z) , z 2 g (z) ; z ∈ Ω.

The proof is completed if it can be shown that the admissibility condition for φ ∈
ΦI,1 [Ω, q] is equivalent to the admissibility condition for ψ as given in Definition 1.
Note that
t
(p + 1)2 w − 2p (p + 1) v + p2 u
+1=
,
s
(p + 1) v − pu
and hence ψ ∈ Ψ [Ω, q]. By Lemma 1,
g (z) ≺ q (z)

or
218

Ipα f (z)
≺ q (z) .
z p−1

M. K. Aouf, T. M. Seoudy - Differential subordination and superordination of...

If Ω 6= C is a simply connected domain, then Ω = h (U ), for some conformal mapping h (z) of U onto Ω. In this case the class ΦI,1 [h (U ) , q] is written as
ΦI,1 [h, q]. In the particular case q(z) = M z, M > 0, the class of admissible functions
ΦI,1 [Ω, q], denoted by ΦI,1 [Ω, M ].
Proceeding similary as in the previous section, the following result is an immediate consequence of Theorem 5.
Theorem 6. Let φ ∈ ΦI,1 [h, q]. If f (z) ∈ A (p) satisfies
!
Ipα f (z) Ipα−1 f (z) Ipα−2 f (z)
,
,
; z ≺ h (z) (α > 2; p ∈ N) ,
(2.18)
φ
z p−1
z p−1
z p−1
then

Ipα f (z)
≺ q (z) .
z p−1
Definition 6. Let Ω be a set in C and M > 0. The class of admissible functions
ΦI,1 [Ω, M ] consists of those functions φ : C3 × U → C such that
!


2 M eiθ
L
+
(2p
+
1)
k
+
p
k
+
p
;z ∈
/Ω
(2.19)
M eiθ ,
φ M eiθ ,
p+1
(p + 1)2


whenever z ∈ U , θ ∈ R, ℜ Le−iθ ≥ (k − 1) kM for all real θ, p ∈ N and k ≥ 1.
Corollary 5. Let φ ∈ ΦI,1 [Ω, M ]. If f (z) ∈ A (p) satisfies
!
Ipα f (z) Ipα−1 f (z) Ipα−2 f (z)
φ
,
,
; z ∈ Ω (α > 2; p ∈ N; z ∈ U ) ,
z p−1
z p−1
z p−1
then


α
Ip f (z)


z p−1 < M

(z ∈ U ) .

In the special case Ω = {ω : |ω| < M }, the class ΦI,1 [Ω, M ] is simply denoted by
ΦI,1 [M ].
Corollary 6. Let φ ∈ ΦI,1 [M ]. If f (z) ∈ A (p) satisfies

!


α f (z) I α−1 f (z) I α−2 f (z)
I


p
p
p
,
,
;
z
φ
< M (α > 2; p ∈ N; z ∈ U ) ,


z p−1
z p−1
z p−1

then


α
Ip f (z)


z p−1 < M

219

(z ∈ U ) .

M. K. Aouf, T. M. Seoudy - Differential subordination and superordination of...

Corollary 7. If k ≥ 1 and f (z) ∈ A (p) satisfies


I α−1 f (z)

p
< M (α > 1; p ∈ N; z ∈ U ) .

p−1

z

then


α
Ip f (z)


z p−1 < M

(z ∈ U ) .


Proof. This follows from Corollary 6 by taking φ(u, v, w; z) = v = k+p
p+1 M e .
Definition 7. Let Ω be a set in C and q(z) ∈ Q1 ∩ H. The class of admissible
functions ΦI,2 [Ω, q] consists of those functions φ : C3 × U → C that satisfy the
admissibility condition
φ (u, v, w; z) ∈
/Ω



kζq (ζ)
1
whenever u = q (ζ) , v = p+1 (p + 1) q (ζ) + q(ζ)
,



(

(p + 1) vw − 3uv + 2u2
v−u

)

(

′′

ζq (ζ)
≥ kℜ 1 + ′
q (ζ)

)

,

where z ∈ U, ζ ∈ ∂U \E (q) , p ∈ N and k ≥ 1.
Theorem 7. Let φ ∈ ΦI,2 [Ω, q] and Ipα f (z) 6= 0. If f (z) ∈ A (p) satisfies
(

φ

Ipα−1 f (z) Ipα−2 f (z) Ipα−3 f (z)
,
;z
,
Ipα f (z) Ipα−1 f (z) Ipα−2 f (z)

then

!

:z∈U

)

⊂Ω

(α > 3; p ∈ N) ,

(2.20)

Ipα−1 f (z)
≺ q (z) .
Ipα f (z)

Proof. Define an analytic function g(z) in U by
g (z) =

Ipα−1 f (z)
Ipα f (z)

(α > 3; p ∈ N; z ∈ U ) .

(2.21)

Using (2.21), we get
′
′

z Ipα f (z)
z Ipα−1 f (z)
zg (z)

=
.
g (z)
Ipα f (z)
Ipα−1 f (z)

220

(2.22)

M. K. Aouf, T. M. Seoudy - Differential subordination and superordination of...

By making use of the identity (1.3) in (2.22), we get
(
)

Ipα−2 f (z)
1
zg (z)
=
(p + 1) g (z) +
.
p+1
g (z)
Ipα−1 f (z)

(2.23)

Further computations show that

 ′ 2 
′′




z 2 g (z)
(z)
zg (z)




(p + 1) zg (z) + g(z) + g(z) − zgg(z)



α−3
Ip f (z)
zg (z)
1
(p
+
1)
g
(z)
+
=
+
.

zg (z)

p+1
g (z)
Ipα−2 f (z)


(p
+
1)
g
(z)
+


g(z)


(2.24)

Define the transformations from C3 to C by
1 n
so
1
u = r, v =
(p + 1) r +
,w =
p+1
r
p+1

(

s (p + 1) s + rs + rt − rs
(p + 1) r + +
r
(p + 1) r + rs
(2.25)

Let
ψ (r, s, t; z) = φ (u, v, w; z)

so
1 n
s
1 n
(p + 1) r +
,
(p + 1) r +
= φ r,
p+1
r
p+1
r
2 ) !
(p + 1) s + rs + rt − rs
+
;z .
(p + 1) r + rs
(2.26)
The proof shall make use of Lemma 1. Using equations (2.21) , (2.23) and (2.24),
from (2.26), we obtain
!
Ipα−1 f (z) Ipα−2 f (z) Ipα−3 f (z)

2 ′′
ψ(g(z), zg (z), z g (z); z) = φ
,
;z .
(2.27)
,
Ipα f (z) Ipα−1 f (z) Ipα−2 f (z)
Hence (2.20) becomes


′′

ψ(g(z), zg (z), z 2 g (z); z) ∈ Ω.
The proof is completed if it can be shown that the admissibility condition for φ ∈
ΦI,2 [Ω, q] is equivalent to the admissibility condition for ψ as given in Definition 1.
Note that

(p + 1) vw − 3uv + 2u2
t
+1=
,
s
v−u
221

2 )

.

M. K. Aouf, T. M. Seoudy - Differential subordination and superordination of...

and hence ψ ∈ Ψ [Ω, q]. By Lemma 1,
g(z) ≺ q(z)

Ipα−1 f (z)
≺ q(z).
Ipα f (z)

or

If Ω 6= C is a simply connected domain, then Ω = h (U ), for some conformal
mapping h(z) of U onto Ω. In this case the class ΦI,2 [h (U ) , q] is written as ΦI,2 [h, q].
In the particular case q(z) = M z, M > 0, the class of admissible functions ΦI,2 [Ω, q]
becomes the class ΦI,2 [Ω, M ].
Proceeding similarly as in the previous section, the following result is an immediate consequence of Theorem 7.
Theorem 8. Let φ ∈ ΦI,2 [h, q]. If f (z) ∈ A (p) satisfies
!
Ipα−1 f (z) Ipα−2 f (z) Ipα−3 f (z)
,
; z ≺ h (z) (α > 3; p ∈ N) ,
(2.28)
φ
,
Ipα f (z) Ipα−1 f (z) Ipα−2 f (z)
then

Ipα−1 f (z)
≺ q (z) .
Ipα f (z)

Definition 8. Let Ω be a set in C and M > 0. The class of admissible functions
ΦI,2 [Ω, M ] consists of those functions φ : C3 × U → C such that
n
o 

2 iθ
−iθ −k 2 M
eiθ
1
iθ + k + (p+1)kM e +kM +Le
,
(p
+
1)
M
e
;z
φ M eiθ , k+(p+1)M
p+1
p+1
(p+1)M 2 eiθ +kM

/ Ω,

(2.29)

whenever z ∈ U, θ ∈ R, p ∈ N, ℜ Le−iθ ≥ (k − 1) kM for all real θ, p ∈ N and
k ≥ 1.
Corollary 8. Let φ ∈ ΦI,2 [Ω, M ]. If f (z) ∈ A (p) satisfies
!
Ipα−1 f (z) Ipα−2 f (z) Ipα−3 f (z)
,
; z ∈ Ω (α > 3; p ∈ N; z ∈ U ) ,
φ
,
Ipα f (z) Ipα−1 f (z) Ipα−2 f (z)
then



I α−1 f (z)

p
0; z ∈ U ) .

In the special case Ω = q (U ) = {ω : |ω| < M }, the class ΦI,2 [Ω, M ] is denoted
by ΦI,2 [M ].
Corollary 9. Let φ ∈ ΦI,2 [M ]. If f (z) ∈ A (p) satisfies

!


Ipα−1 f (z) Ipα−2 f (z) Ipα−3 f (z)


φ
,
;
z
,

< M (α > 3; p ∈ N; M > 0; z ∈ U ) ,


Ipα f (z) Ipα−1 f (z) Ipα−2 f (z)
222

M. K. Aouf, T. M. Seoudy - Differential subordination and superordination of...

then



I α−1 f (z)

p
2; p ∈ N) ,

(3.1)

implies

q (z) ≺ Ipα f (z).
Proof. From (2.7) and (3.1), we have
n
o

′′
Ω ⊂ ψ(g(z), zg (z), z 2 g (z); z) : z ∈ U .


From (2.5), we see that the admissibility condition for φ ∈ ΦI [Ω, q] is equivalent to

the admissibility condition for ψ as given in Definition 2. Hence ψ ∈ Ψp [Ω, q], and
by Lemma 2,
q(z) ≺ g(z) or q (z) ≺ Ipα f (z).
223

M. K. Aouf, T. M. Seoudy - Differential subordination and superordination of...

If Ω 6= C is a simply connected domain, then Ω = h(U ) for some conformal


mapping h(z) of U onto Ω. In this case the class ΦI [h (U ) , q] is written as ΦI [h, q].
Proceeding similarly as in the previous section, the following result is an immediate consequence of Theorem 9.

Theorem 10. Let h(z) is analytic on U and φ ∈ ΦI [h, q]. If f (z) ∈ A (p),
Ipα f (z) ∈ Q0 and

φ Ipα f (z), Ipα−1 f (z), Ipα−2 f (z); z
is univalent in U , then

h (z) ≺ φ Ipα f (z), Ipα−1 f (z), Ipα−2 f (z); z
implies



(α > 2; p ∈ N) ,

(3.2)

q (z) ≺ Ipα f (z).
Theorems 9 and 10 can only be used to obtain subordinants of differential superordination of the form (3.1) or (3.2). The following theorem proves the existence
of the best subordinant of (3.2) for certain φ.
¯ → C. Suppose that the
Theorem 11. Let h(z) be analytic in U and φ : C3 × U
differential equation



′′
φ q(z), zq (z), z 2 q (z); z = h (z)


has a solution q(z) ∈ Q0 . If φ ∈ ΦI [h, q], f (z) ∈ A (p), Ipα f (z) ∈ Q0 and
φ Ipα f (z), Ipα−1 f (z), Ipα−2 f (z); z
is univalent in U , then
h (z) ≺ φ Ipα f (z), Ipα−1 f (z), Ipα−2 f (z); z
implies





(α > 2; p ∈ N; z ∈ U )

q (z) ≺ Ipα f (z)
and q(z) is the best subordinant.
Proof. The proof is similar to the proof of Theorem 4 and is therefore omitted.
Combining Theorems 2 and 10, we obtain the following sandwich-type theorem.
Corollary 10. Let h1 (z) and q1 (z) be analytic functions in U , h2 (z) be univalent function in U , q2 (z) ∈ Q0 with q1 (0) = q2 (0) = 0 and φ ∈ ΦI [h2 , q2 ] ∩

ΦI [h1 , q1 ]. If f (z) ∈ A (p), Ipα f (z) ∈ H[0, p] ∩ Q0 and
φ Ipα f (z), Ipα−1 f (z), Ipα−2 f (z); z
224



(α > 2; p ∈ N; z ∈ U )

M. K. Aouf, T. M. Seoudy - Differential subordination and superordination of...

is univalent in U , then

implies


h1 (z) ≺ φ Ipα f (z), Ipα−1 f (z), Ipα−2 f (z); z ≺ h2 (z)

(α > 2; p ∈ N)

q1 (z) ≺ Ipα f (z) ≺ q2 (z).


Definition 10. Let Ω be a set in C and q(z) ∈ H0 with zq (z) 6= 0. The class

¯ → C that
of admissible functions ΦI,1 [Ω, q] consists of those functions φ : C3 × U
satisfy the admissibility condition:
φ (u, v, w; ζ) ∈ Ω

(3.3)



whenever u = q (z) , v =


(

zq (z)+mpq(z)
,
m(p+1)

(p + 1)2 w − 2p (p + 1) v + p2 u
(p + 1) v − pu

)

(
)
′′
1
zq (z)
≤ ℜ 1+ ′
,
m
q (z)

where z ∈ U, ζ ∈ ∂U and m ≥ 1.
Now we will give the dual result of Theorem 5 for differential superordination.

I α f (z)
Theorem 12. Let φ ∈ ΦI,1 [Ω, q]. If f (z) ∈ A (p) , pz p−1 ∈ Q0 and
!
Ipα f (z) Ipα−1 f (z) Ipα−2 f (z)
,
,
;z
φ
z p−1
z p−1
z p−1
is univalent in U , then
(
!
)
Ipα f (z) Ipα−1 f (z) Ipα−2 f (z)
Ω⊂ φ
,
,
;z : z ∈ U
z p−1
z p−1
z p−1
implies
q (z) ≺

(α > 2; p ∈ N)

(3.4)

Ipα f (z)
.
z p−1

Proof From (2.17) and (3.4), we have
n 

o

′′
Ω ⊂ ψ g (z) , zg (z) , z 2 g (z) ; z : z ∈ U

(α > 2; p ∈ N) .


From (2.15), we see that the admissibility condition for φ ∈ ΦI,1 [Ω, q] is equivalent

to the admissibility condition for ψ as given in Definition 2. Hence ψ ∈ Ψ [Ω, q],
and by Lemma 2,
Ipα f (z)
q(z) ≺ g(z) or q(z) ≺ p−1 .
z
225

M. K. Aouf, T. M. Seoudy - Differential subordination and superordination of...

If Ω 6= C is a simply connected domain, and Ω = h(U ) for some conformal


mapping h(z) of U onto Ω and the class ΦI,1 [h (U ) , q] is written as ΦI,1 [h, q].
Proceeding similarly as in the previous section, the following result is an immediate consequence of Theorem 12.

Theorem 13. Let q(z) ∈ H0 , h(z) is analytic on U and φ ∈ ΦI,1 [h, q]. If
f (z) ∈ A (p),

Ipα f (z)
z p−1

∈ Q0 and
φ

Ipα f (z) Ipα−1 f (z) Ipα−2 f (z)
,
,
;z
z p−1
z p−1
z p−1

!

is univalent in U , then
h (z) ≺ φ

Ipα f (z) Ipα−1 f (z) Ipα−2 f (z)
,
,
;z
z p−1
z p−1
z p−1

implies
q(z) ≺

!

(α > 2; p ∈ N) ,

(3.5)

Ipα f (z)
.
z p−1

Combining Theorems 6 and 13, we obtain the following sandwich-type theorem.
Corollary 11. Let h1 (z) and q1 (z) be analytic functions in U , h2 (z)be univalent

function in U , q2 (z) ∈ Q0 with q1 (0) = q2 (0) = 0 and φ ∈ ΦI,1 [h2 , q2 ] ∩ ΦI,1 [h1 , q1 ].
If f (z) ∈ A (p),

Ipα f (z)
z p−1

∈ H0 ∩ Q0 and
φ

Ipα f (z) Ipα−1 f (z) Ipα−2 f (z)
,
,
;z
z p−1
z p−1
z p−1

!

is univalent in U, then
h1 (z) ≺ φ

Ipα f (z) Ipα−1 f (z) Ipα−2 f (z)
,
,
;z
z p−1
z p−1
z p−1

implies
q1 (z) ≺

!

≺ h2 (z)

(α > 2; p ∈ N)

Ipα f (z)
≺ q2 (z) .
z p−1


Definition 11. Let Ω be a set in C, q(z) 6= 0, zq (z) 6= 0 and q(z) ∈ H. The

¯→
class of admissible functions φ ∈ ΦI,2 [Ω, q] consists of those functions φ : C3 × U
C that satisfy the admissibility condition:
φ (u, v, w; ζ) ∈ Ω
226

M. K. Aouf, T. M. Seoudy - Differential subordination and superordination of...

whenever u = q (z) , v =



(

1
p+1





(p + 1) q (z) +

(p + 1) vw − 3uv + 2u2
v−u

)

zq (z)
mq(z)



,

)
(
′′
zq (z)
1
,
≤ ℜ 1+ ′
m
q (z)

where z ∈ U, ζ ∈ ∂U, p ∈ N and m ≥ 1.
Now we will give the dual result of Theorem 7 for the differential superordination.

I α−1 f (z)
Theorem 14. Let φ ∈ ΦI,2 [Ω, q]. If f (z) ∈ A (p), pI α f (z) ∈ Q1 and
p

φ

Ipα−1 f (z) Ipα−2 f (z) Ipα−3 f (z)
,
;z
,
Ipα f (z) Ipα−1 f (z) Ipα−2 f (z)

is univalent in U , then
(
!
)
Ipα−1 f (z) Ipα−2 f (z) Ipα−3 f (z)
Ω⊂ φ
,
;z : z ∈ U
,
Ipα f (z) Ipα−1 f (z) Ipα−2 f (z)

!

(α > 3; p ∈ N)

(3.6)

implies
q (z) ≺

Ipα−1 f (z)
.
Ipα f (z)

Proof From (2.27) and (3.6), we have
n 

o

′′
Ω ⊂ ψ g (z) , zg (z) , z 2 g (z) ; z : z ∈ U .


In view of (2.25), the admissibility condition for φ ∈ ΦI,2 [Ω, q] is equivalent to the

admissibility condition for ψ as given in Definition 2. Hence ψ ∈ Ψ [Ω, q], and by
Lemma 2,
Ipα−1 f (z)
q(z) ≺ g(z) or q(z) ≺ α
.
Ip f (z)
If Ω 6= C is a simply connected domain, then Ω = h(U ) for some conformal


mapping h(z) of U onto Ω. In this case the class ΦI,2 [h (U ) , q] is written as ΦI,2 [h, q].
Proceeding similarly as in the previous section, The following result is an immediate consequence of Theorem 14.

Theorem 15. Let q (z) ∈ H, h(z) be analytic in U and φ ∈ ΦI,2 [h, q]. If
f (z) ∈ A (p),

Ipα−1 f (z)
Ipα f (z)

∈ Q1 and
φ

Ipα−1 f (z) Ipα−2 f (z) Ipα−3 f (z)
,
;z
,
Ipα f (z) Ipα−1 f (z) Ipα−2 f (z)
227

!

M. K. Aouf, T. M. Seoudy - Differential subordination and superordination of...

is univalent in U , then
h (z) ≺ φ

Ipα−1 f (z) Ipα−2 f (z) Ipα−3 f (z)
,
;z
,
Ipα f (z) Ipα−1 f (z) Ipα−2 f (z)

!

(α > 3; p ∈ N) ,

(3.7)

implies
q (z) ≺

Ipα−1 f (z)
.
Ipα f (z)

Combining Theorems 8 and 15, we obtain the following sandwich-type theorem.
Corollary 12. Let h1 (z) and q1 (z) be analytic functions in U , h2 (z)be univalent

function in U , q2 (z) ∈ Q1 with q1 (0) = q2 (0) = 1 and φ ∈ ΦI,2 [h2 , q2 ] ∩ ΦI,2 [h1 , q1 ].
If f (z) ∈ A (p),

Ipα−1 f (z)
Ipα f (z)

φ

∈ H ∩ Q1 and
Ipα−1 f (z) Ipα−2 f (z) Ipα−3 f (z)
,
;z
,
Ipα f (z) Ipα−1 f (z) Ipα−2 f (z)

!

is univalent in U , then
h1 (z) ≺ φ

Ipα−1 f (z) Ipα−2 f (z) Ipα−3 f (z)
,
;z
,
Ipα f (z) Ipα−1 f (z) Ipα−2 f (z)

!

≺ h2 (z)

(α > 3; p ∈ N)

implies
q1 (z) ≺

Ipα−1 f (z)
≺ q2 (z) .
Ipα f (z)

References
[1] R. Aghalary, R. M. Ali, S. B. Joshi and V. Ravichandran, Inequalities for
analytic functions defined by certain linear operator, Internat. J. Math. Sci.
4(2005), no.2, 267–274.
[2] R. M. Ali, V. Ravichandran and N. Seenivasagan, Differential subordination
and superodination of analytic functions defined by the multiplier transformation, Math. Inequal. Appl.12(2009), no.1,123-139.
[3] M. K. Aouf, Inequalities involving certain integral operator, J. Math. Inequal.
2(2008), no.2, 537-547.
[4] M. K. Aouf, T.Bulboac˘a and A. O. Mostafa, Subordination properties of subclasses of p−valent functions involving certain integral operator, Publ. Math.
Debrecer 37/3-4(2008),401-416.
228

M. K. Aouf, T. M. Seoudy - Differential subordination and superordination of...

[5] M. K. Aouf, H.M. Hossen and A. Y. Lashin, An application of certain integral
operators, J. Math. Anal. Appl. 248(2000), no.2, 475–481.
[6] T. B. Jung, Y. C. Kim and H. M. Srivastava,The Hardy space of analytic
functions associated with certain one-parameter families of integral operators,
J. Math. Anal. Appl. 176(1993), 138-147.
[7] Y. C. Kim and H. M. Srivastava, Inequalities involving certain families of
integral and convolution operators, Math. Inequal. Appl. 7(2004), no.2, 227–
234.
[8] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York and Basel, 2000.
[9] S. Miller and P. T. Mocanu, Subordinants of differential superordinations,
Complex Variables Theory Appl. 48(2003), no. 10, 815–826.
[10] S. Shams, S. R. Kulkarni and Jay M. Jahangir, Subordination properties for
p−valent functions defined by integral operators, Internat. J. Math. Math.
Sci. Vol. 2006, Article ID 94572, 1-3.
M. K. Aouf
Department of Mathematics,
Faculty of Science,
Mansoura University,
Mansoura 35516, Egypt
Email: [email protected].
T. M. Seoudy
Department of Mathematics,
Faculty of Science,
Fayoum University,
Fayoum 63514, Egypt
Email: tmseoudy@gmail.

229

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52