DobritoiuM. 84KB Jun 04 2011 12:08:37 AM

ACTA UNIVERSITATIS APULENSIS

No 11/2006

Proceedings of the International Conference on Theory and Application of
Mathematics and Informatics ICTAMI 2005 - Alba Iulia, Romania

ON AN INTEGRAL EQUATION WITH MODIFIED
ARGUMENT
Maria Dobrit
¸ oiu
Abstract.Existence and uniqueness of the solution for a class of integral
equations with modified argument is proved, using the Contractions Principle.
2000 Mathematics Subject Classification: 45G10, 47H10.
Key words and phrases: integral equation with modified argument, existence and uniqueness of the solution.
1.Introduction
In the paper [4] have been studied for the integral equation
x(t) =

Z


t

K(t, s, x(s))ds + f (t), t ∈ [−T, T ], T > 0

(1)

−t

the existence and uniqueness of the solution in C[−T, T ] .
We shall study the integral equation with modified argument
x(t) =

Z

t

K(t, s, x(s), x(g(s)))ds + f (t), t ∈ [−T, T ], T > 0

(2)


−t

and we shall establish two results concerning the existence and uniqueness of
the solution of this equation in C[−T, T ] and in the B(f ; R) sphere, using
Contractions Principle (see [2]).
2.Existence of the solution
The results from this section have been established by consulting the papers
[1], [2], [3], [4].
A. Existence of the solution in C[−T, T ]
Let now the integral equation with modified argument (2) and assume that
the following conditions are satisfied:
387

M. Dobrit¸oiu - On an integral equation with modified argument
(v1 ) K ∈ C([−T, T ] × [−T, T ] × R2 );
(v2 ) f ∈ C[−T, T ] ;
(v3 ) g ∈ C ([−T, T ], [−T, T ]).
In addition we suppose that
(v4 ) There exists a function L : R → R∗+ such that
|K(t, s, u1 , v1 ) − K(t, s, u2 , v2 )| ≤ L(s) (|u1 − u2 | + |v1 − v2 |) ,

for all t, sR∈ [−T, T ], u1 , u2 , v1 , v2 ∈ R, and
T
(v5 ) q := −T
L(s)ds < 21 .
In these conditions we have the following result concerning the existence
and uniqueness of the solution of the integral equation (2) in C[−T, T ]:
Theorem 2.1. Suppose (v1 )-(v5 ) are satisfied. Then
(a) the integral equation (2) has a unique solution x∗ ∈ C[−T, T ] ;
(b) for all x0 ∈ C[−T, T ], the sequence (xn )n∈N defined by the relation
Z

xn+1 (t) =

t

K(t, s, xn (s), xn (g(s)))ds + f (t) , n ∈ N

(3)

−t


converges uniformly to the solution x∗ .
Proof. We attach to the integral equation (2) the operator A : C[−T, T ] →
C[−T, T ], defined by
A(x)(t) :=

Z

t

K(t, s, x(s), x(g(s)))ds + f (t), t ∈ [−T, T ] .

(4)

−t

The set of the solutions of the integral equation (2) coincide with the set
of fixed points of the operator A.
We assure the conditions of the Contractions Principle and therefore, the
operator A must be a contraction. By (v4 ) we have

|A(x1 )(t) − A(x2 )(t)| ≤

Z

t

|K(t, s, x1 (s), x1 (g(s))) − K(t, s, x2 (s), x2 (g(s)))| ds ≤

−t



Z

t

L(s) (|x1 (s) − x2 (s)| + |x1 (g(s)) − x2 (g(s))|) ds

−t


for all x1 , x2 ∈ C[−T, T ] and t ∈ [−T, T ] .
388

M. Dobrit¸oiu - On an integral equation with modified argument
Now using the Chebyshev norm, we have
kA(x1 ) − A(x2 )kC[−T,T ] ≤ 2q kx1 − x2 kC[−T,T ] ,

(5)

where
q :=

Z

T

L(s)ds .

−T


Therefore, by (v5 ) it results that the operator A is an α-contraction with
the coefficient α = 2q. The proof result from the Contractions Principle.
B. Existence of the solution in the B(f ; R) sphere
We suppose the following conditions are satisfied:
(v1′ ) K ∈ C([−T, T ] × [−T, T ] × J 2 ), J ⊂ R closed interval;
(v4′ ) There exists a function L : R → R∗+ such that
|K(t, s, u1 , v1 ) − K(t, s, u2 , v2 )| ≤ L(s) (|u1 − u2 | + |v1 − v2 |) ,
for all t, s ∈ [−T, T ], u1 , u2 , v1 , v2 ∈ J and also the conditions (v2 ), (v3 ), (v5 )
are satisfied.
We denote MK a positive constant such that, for the restriction K|[−T,T ]×[−T,T ]×J 2 ,
J ⊂ R compact, we have
|K(t, s, u, v)| ≤ MK , f or all t, s ∈ [−T, T ], u, v ∈ J

(6)

and we suppose that the following condition is satisfied:
(v6 ) 2T MK ≤ R (the invariability condition of the B(f ; R) sphere).
In these conditions we have the following result of the existence and uniqueness of the solution of the integral equation (2) in the B(f ; R) sphere:
Theorem 2.2. Suppose (v1′ ), (v2 ), (v3 ), (v4′ ), (v5 ) and (v6 ) are satisfied.
Then

(a) the integral equation (2) has a unique solution x∗ ∈ B(f ; R) ⊂ C[−T, T ];
(b) for all x0 ∈ B(f ; R) ⊂ C[−T, T ], the sequence (xn )n∈N defined by the
relation (3) converges uniformly to the solution x∗ .
Proof. We attach to the integral equation (2) the operator A : B(f ; R) →
C[−T, T ], defined by the relation (4), where R is a real positive number which
satisfies the condition below:
389

M. Dobrit¸oiu - On an integral equation with modified argument

h

i

x ∈ B(f ; R) =⇒ [x(t) ∈ J ⊂ R]

and we suppose that there exists at least one number R with this property.
We establish under what conditions, the B (f ; R) sphere is an invariant set
for the operator A . We have
Z


|A(x)(t) − f (t)| =

t

−t

and by (6) we have


Z


K(t, s, x(s), x(g(s)))ds ≤

t

|K(t, s, x(s), x(g(s)))| ds

−t


|A(x)(t) − f (t)| ≤ 2T MK , f or all t ∈ [−T, T ]
and then by (v6 ) it results that the B(f ; R) sphere is an invariant set for the
operator A. Now we have the operator A : B(f ; R) → B(f ; R), also noted with
A, defined by same relation, where B(f ; R) is a closed subset of the Banach
space C[−T, T ].
The set of the solutions of the integral equation (2) coincide with the set
of fixed points of the operator A .
By a similar reasoning as in the proof of theorem 2.1 and using the condi′
tions (v4 ) and (v5 ) it results that the operator A is an α-contraction with the
coefficient α = 2q . Therefore the conditions of the Contractions Principle are
hold, it results that the operator A has a unique fixed point, x∗ ∈ B(f ; R) and
consequently, the integral equation (2) has a unique solution x∗ ∈ B(f ; R) ⊂
C[−T, T ]. The proof is complete.
References
[1] M. Dobrit¸oiu, An integral equation with modified argument, Studia Univ.
Babe¸s-Bolyai, Cluj-Napoca, Mathematica, vol. XLIX, nr. 3/2004, 27-33.
[2] I. A. Rus, Metrical fixed point theorems, Cluj-Napoca, 1979.
[3] I. A. Rus, An abstract point of view for some integral equations from
applied mathematics, Proceedings of the International Conference, University

of the West, Timi¸soara, 1997, 256-270.
[4] G. Szep, On an integral equation with deviating argument, Seminar on
fixed point theory, Babe¸s-Bolyai Univ. of Cluj-Napoca, Volume 1, 2000, 103107.
390

M. Dobrit¸oiu - On an integral equation with modified argument
Maria Dobrit¸oiu
Faculty of Science
University of Petro¸sani, Romania
e-mail: [email protected]

391

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52