vol18_pp58-63. 96KB Jun 04 2011 12:06:04 AM

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 58-63, January 2009

ELA

http://math.technion.ac.il/iic/ela

THE NUMERICAL RADIUS OF A WEIGHTED SHIFT
OPERATOR WITH GEOMETRIC WEIGHTS∗
MAO-TING CHIEN† AND HIROSHI NAKAZATO‡

Abstract. Let T be a weighted shift operator T on the Hilbert space ℓ2 (N) with geometric
weights. Then the numerical range of T is a closed disk about the origin, and its numerical radius
is determined in terms of the reciprocal of the minimum positive root of a hypergeometric function.
This function is related to two Rogers-Ramanujan identities.

Key words. Numerical radius, Weighted shift operator, Rogers-Ramanujan identities.

AMS subject classifications. 47A12, 47B37, 33D15.


1. Introduction. Let T be an operator on a separable Hilbert space. The
numerical range of T is defined to be the set
W (T ) = {< T x, x >: x = 1}.
The numerical range is always nonempty, bounded and convex. The numerical radius
w(T ) is the supremum of the modulus of W (T ). We consider a weighted shift operator
T on the Hilbert space ℓ2 (N) defined by
0
 a1


T = 0
 0

..
.


(1.1)

0

0
a2
0
..
.

0
0
0
a3
..
.

0
0
0
0
..
.



...
...

...
,
...

..
.

where {an } is a bounded sequence. It is known (cf. [1]) that W (T ) is a circular disk
about the origin. Stout [3] shows that W (T ) is an open disk if the weights are periodic
and nonzero. For example, when an = 1 for all n, W (T ) is the open unit disk. Clearly,
w(T ) is the maximal eigenvalue of the selfadjoint operator (T + T ∗ )/2. Stout [3] gives
a formula for the numerical radius of a weighted shift operator T , by introducing an
∗ Received

by the editors August 10, 2008. Accepted for publication January 3, 2009. Handling
Editor: Shmuel Friedland.

† Department of Mathematics, Soochow University, Taipei, 11102, Taiwan ([email protected]).
Supported in part by Taiwan National Science Council.
‡ Department of Mathematical Sciences, Faculty of Science and Technology, Hirosaki University,
Hirosaki 036-8561, Japan ([email protected]).
58

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 58-63, January 2009

ELA

http://math.technion.ac.il/iic/ela

The Numerical Radius of a Weighted Shift Operator

59

object which is the determinant of the operator I − z (T + T ∗ )/2 in the sense of limit
process of the determinants of finite-dimensional weighted shift matrices.

Let T be the weighted shift operator defined in (1.1) with square summable
weights. Denote by FT (z) the determinant of I − z(T + T ∗ ). It is given by
(1.2)

FT (z) = 1 +




(−1)n cn z 2n ,

n=1

where
(1.3)

cn =




a2i1 a2i2 · · · a2in ,

the sum is taken over
1 ≤ i1 < i2 < · · · < in < ∞, i2 − i1 ≥ 2, i3 − i2 ≥ 2, . . . , in − in−1 ≥ 2.
Stout [3] proves that w(T + T ∗ ) = 1/λ, where λ is the minimum positive root of
FT (z).
In this paper, we follow the method of Stout [3] to compute the numerical radius
of a geometrically weighted shift operator in terms of the minimum positive root
of a hypergeometric function. This function is related to two Rogers-Ramanujan
identities.
2. Geometric weights. Let T be an operator on a Hilbert space, and let T =
U P be the polar decomposition of T . The Aluthge transformation ∆(T ) of T is
defined by
1

1

∆(T ) = P 2 U P 2 .
In [4], the numerical range of the Aluthge transformation of an operator is treated.
The authors have learned from T. Yamazaki that an upper and a lower bounds for

the numerical radius of a geometrically weighted shift operator can be obtained from
the numerical range of the Aluthge transformation in the following way:
Theorem 2.1. Let T be a weighted shift operator with geometric weights {q n−1 ,
n ∈ N}, 0 < q < 1. Then W (T ) is a closed disk about the origin, and


1

2 − 2 (1 − q)(9 − q)3 ≤ w(T ) ≤ 1/(2 −
54

36q

2q
q).
3/2
4q


Proof. Since n=1 a2n = 1/(1−q 2) < ∞, T is Hilbert-Schmidt, and thus compact.

Then by [3, Corollary 8], W (T ) is closed.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 58-63, January 2009

ELA

http://math.technion.ac.il/iic/ela

60

M.T. Chien and H. Nakazato

Let T be the geometrically weighted shift with weights {q n−1 }. Then the positive
semidefinite part P of the polar decomposition of T is


P = diag 1, q, q 2 , q 3 , . . . , q n−1 , . . . ,


and we obtain that

∆(T ) =


q T.

By [5], the inequality
w(T ) ≤ ||T ||/2 + w(∆(T ))/2
holds. Thus, we have
w(T ) ≤ ||T ||/2 +


q w(T )/2.

Since the operator norm ||T || = 1, it follows that

w(T ) ≤ 1/(2 − q).
For the lower bound, we consider the unit vector x ∈ ℓ2 (N) with coordinates
xn = (1 − α)1/2 α(n−1)/2 , where 0 < α < 1. Then


α(1 − α)
n−1
.
< T x, x >= x1 x2 + qx2 x3 + · · · + q
xn xn+1 + · · · =
1 − qα
Hence,



1
α(1 − α)
= 3/2 54 − 36q − 2q 2 − 2 (1 − q)(9 − q)3 ,
1 − qα
4q
0

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52