Breaz Daniel. 147KB Jun 04 2011 12:08:27 AM
Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics - ICTAMI 2004, Thessaloniki, Greece
INTEGRAL OPERATORS ON THE TUCD( α )-CLASS
by
Daniel Breaz
Abstract. In this paper we present a few univalency conditions for various integral operators
on class TUCD (α ) . At first, we make a brief presentation of class TUCD (α ) and of some of
its properties, as well as a number of matters connected to some integral operators studied on
this class.
Introduction.
Let U = {z : z < 1} be the unit disk, respectively the class of olomorphic
functions
on
the
unit
disk,
denoted
by
2
H (U ) , A = f ∈ H (U ) : f ( z ) = z + a 2 z + ... the class of the analytical
functions
in
the
unit
disk
and
the
set
D = {φ : φ is analytic in U , φ ( z ) ≠ 0, ∀z ∈ U , φ (0 ) = 1}.
We consider the class of starlike functions of the order α on the unit
zf ′(z )
disk, the univalent functions with the property Re
> α , respectively, the
f (z )
class of the convex functions on the order α in unit disk, the univalent
zf ′′( z )
+ 1 > α . We denote these with S ∗ (α )
functions with the property Re
f ′( z )
and K (α ) , and for α = 0 we obtain the class of the starlike funcions S ∗ ,
respectively the class of convex functions K .
We say that the function f with the form f ( z ) = z + a 2 z 2 + ... belongs
to the class UCD(α ) , α ≥ 0 , if
Re f ′( z ) ≥ α zf ′′( z ) , z ∈ U .
(1)
{
}
If f ∈ UCD(α ) , then the following relation is true
f ′( z ) ≥ α zf ′′( z ) , z ∈ U
which can also be written as
40
(2)
Daniel Breaz - Integral operators on the TUCD( α )-class
zf ′′( z ) 1
≤ .
(3)
f ′( z ) α
In [3] we studied the class of univalent functions of the form
f (z ) = z − ∑ ak z k , ak ≥ 0 .
∞
(4)
We denote TUCD (α ) , the functions from UCD(α ) of the form (4). Next we
consider all the functions from this paper of the form (4).
Theorem 1.1. [3] A function of the form (1) belongs to the class TUCD (α ) if
and only if
k =2
∑ k [1 + α (k − 1)]⋅ a
∞
k =2
k
≤ 1.
Remark 1.2. [3]
a) A function of the form (4) is starlike if and only if f ∈ TUCD (0) .
b) A function of the form (4) is convex if and only if f ∈ TUCD (1) .
c) A function of the form (4) is convex by the order 1/2 if and only if
f ∈ TUCD (2) .
d) A function of the form (4) is uniform convex if and only if
f ∈ TUCD (2) .
e) A function f ∈ TUCD (α ) if and only if f can be written as
f (z ) = ∑ λ k f k (z ) ,
∞
k =1
where λ k ≥ 0, ∑ λ k = 1 , f 1 ( z ) = z and f k ( z ) = z −
∞
k =1
(5)
k [1 + α (k − 1)]
zk
, k = 2,3,...
Theorem 1.3. [2] Let α , β , γ , δ be real constants that satisfy the conditions
Re γ
α ≥ 0, β > 0 (α + δ ) = (β + γ ) > 0 . Let ρ 0 be so that −
≡ ρ0 < ρ < 1
Re β
and we suppose that ρ ∈ [ρ 0 ,1] exists, so that 0 ≤ w( ρ ) , where
1
inf {H ( z ) : z < 1} and H ( z ) =
w( ρ ) =
Re β
∫t
1
0
41
(1 − z )2( ρ −1) Re β
β +γ −1
(1 + tz )
2 ( ρ −1) Re β
.
dt
Daniel Breaz - Integral operators on the TUCD( α )-class
Let ϕ and φ ∈ D satisfy the conditions:
δ + Re
and
Re
zϕ ′(z )
≥ βρ + γ
ϕ (z )
(6)
zφ ′( z )
≤ βw( ρ )
φ (z )
(7)
( )
β
β +γ z α
δ −1
If I ( f )( z ) = γ
f
t
t
t
dt
, then I S ∗ ⊂ S ∗ .
(
)
(
)
ϕ
∫
z φ ( z) 0
1
Theorem 1.4. [1] If 0 ≤ α ≤ 1, α ≤ β and if f ∈ S ∗ , then the function
β −1 z f ( z ) α β
F (z ) = z ∫
dt = z + ...
t
0
1
(8)
is also an element of S*.
Theorem 1.5. [1] If α > 0,η ≥ 0, γ + η ≥ 0 and if f ∈ S ∗ , then the function
α + γ + η
F (z ) =
f α (t )t γ +η −1 dt
γ
∫
0
z
z
α +η
1
= z + ...
(9)
is starlike in U.
Theorem 1.6. [2]
Let α , β , γ , δ and σ real number which satisfy
0 ≤ α ,0 < β ,0 ≤ σ and β + γ = α + δ > 0 . Let ρ 0 defined in the theorem 1.3.
and we suppose that exists ρ ∈ [ρ 0 ,1] so that δ −
where w( ρ ) Re β ≡ Inf {Re H ( z ) : z < 1}.
42
Let
σ
≥ β + γ and w( ρ ) > 0
2
φ ∈D
which
satisfies
Daniel Breaz - Integral operators on the TUCD( α )-class
zφ ′( z )
≤ βw( ρ ) . If
φ ( z)
defined
Re
f ∈ S ∗ , g ∈ K then I ( f , g ) ∈ S ∗ , where I ( f , g ) is
β
β +γ z α
σ
δ −σ −1
(
)
(
)
I ( f , g )( z ) = γ
f
t
g
t
t
dt
. (10)
∫
z φ ( z) 0
Corollary 1.7. [1] Let 0 ≤ α ,0 < β ,0 ≤ σ , γ > − β , β + γ = α + δ , and
α σ
zφ ′( z )
δ + − ≥ γ . Let φ ∈ D which satisfies Re
≤ βw(0) . If f , g ∈ K then
2 2
φ ( z)
I ( f , g ) ∈ S ∗ , where I ( f , g ) is defined in (10).
1
Main results
Theorem 2.1. Let ξ and δ complex number, ξ + δ > 0, φ ∈ D .
If f ∈ A is of the form (4) and
ξzf ' ( z ) zφ ' ( z )
+
+ δ p Qξ +δ ,
(11)
f (z )
φ (z )
while
z
ξ +δ
F1 ( f ) = (ξ + δ )∫ f ξ (t ) ⋅ t δ −1 ⋅ φ (t )dt .
0
Then F1 ( f ) ∈ TUCD (0) .
Theorem 2.2. Let
1
(12)
β
β +γ z ξ
δ −1
(
)
φ
(
)
F2 ( f )( z ) = γ
f
t
t
t
dt
⋅
⋅
. (13)
∫
φ
(
)
z
z
⋅
0
If ξ , β , γ , δ ∈ R , ξ ≥ 0 , β > 0 , β + γ = ξ + δ şi ρ 0 verifies the relation
Re γ
−
≡ ρ0 ≤ ρ < 1
(14)
Re β
and we suppose that exists ρ ∈ [ρ 0 ,1] so that 0 ≤ w( ρ ) , where w verifies the
relation
zG ' ( z )
Re β
≥ w( ρ ) ⋅ Re β = Inf {Re H ( z ) z < 1},
(15)
G (z )
where
1
43
Daniel Breaz - Integral operators on the TUCD( α )-class
z
G ( z ) = I β ,γ ( g )( z ) = (β + γ )z −γ ∫ g β (t ) ⋅ t γ −1 dt
0
1
2 ( ρ −1) Re β
1 − z)
(
H (z ) = 1
−γ
2 ( ρ −1) Re β
β +γ −1
(
)
t
1
tz
dt
+
∫0
and
β
, g∈A
,
(16)
(17)
ϕ and φ ∈ D satisfy the relations
δ + Re
and
Re
then F2 ( f ) ∈ TUCD (0 ) .
zφ' ( z )
≥ βρ + γ
φ( z )
zφ ' ( z )
≤ β ⋅ w( ρ )
φ (z )
(18)
(19)
Theorem 2.3. Let f ( z ) = z − ∑ a k z k , a k ≥ 0
∞
a)If f ∈ S ⇒ F3 ( f ) ∈ TUCD (1) , where
k =2
*
F3 ( f )( z ) = ∫
z
0
f (t )
dt
t
(20)
is the Alexander operator.
Proof.
We know that if f ∈ S * ⇒ F3 ( f ) ∈ K . Considering the remark 1.2. b), we
obtain F3 ( f ) ∈ K ⇔ F3 ( f ) ∈ TUCD (1) .
b) f ∈ S * ⇒ F4 ( f ) ∈ TUCD (0 ) , where
2 z
F4 ( f )( z ) = ∫ f (t )dt
z 0
is the Libera operator.
(21)
Proof.
We know that if f ∈ S * ⇒ F4 ( f ) ∈ S ∗ . Considering the remark 1.2. a), we
obtain F4 ( f ) ∈ S ∗ ⇔ F4 ( f ) ∈ TUCD (0) .
44
Daniel Breaz - Integral operators on the TUCD( α )-class
c) f ∈ S * ⇒ F5 ( f ) ∈ TUCD (0 ) , where
1+ γ
zγ
γ ≥ −1 is the Bernardi operator.
F5 ( f )( z ) =
∫ f (t ) ⋅ t
z
γ −1
dt
(22)
0
Proof.
We know that if f ∈ S * ⇒ F5 ( f ) ∈ S ∗ . Considering the remark 1.2. a), we
obtain F5 ( f ) ∈ S ∗ ⇔ F5 ( f ) ∈ TUCD (0 ) .
Theorem 2.4. Let
f (t )
dt
F6 ( f )( z ) = ∫
t
0
z
β
(23)
and 0 ≤ β ≤ 1 .
If f ∈ S * then F6 ( f ) ∈ TUCD (0) .
Proof.
Considering the theorem 1.4, for β = 1, α ≡ β we obtain f ∈ S * ⇒ F6 ( f ) ∈ S * .
According to the remark 1.2. a) we obtain F6 ( f ) ∈ TUCD (0) .
Theorem 2.5. Let
z
β
(24)
F7 ( f )( z ) = β ∫ f β (t ) ⋅ t −1 dt , β > 0 .
0
*
If f ∈ S then F7 ( f ) ∈ TUCD (0) .
Proof.
Applying the theorem 1.5 for this integral operator for γ = 0,η = 0, β = α we
obtain f ∈ S * ⇒ F7 ( f ) ∈ S * . But the remark 1.2, a) we obtain
F7 ( f ) ∈ TUCD (0) .
1
Theorem 2.6. Let
β + γ z β
F8 ( f )( z ) = γ ∫ f (t ) ⋅ t −1 dt
z 0
*
If f ∈ S then F8 ( f ) ∈ TUCD(0) .
45
1
β
, γ , β = 1,2,3K . (25)
Daniel Breaz - Integral operators on the TUCD( α )-class
Proof.
We have f ∈ S * ⇒ F8 ( f ) ∈ S * , according to the theorem 1.5. Applying the
remark 1.2, a), we obtain F8 ( f ) ∈ TUCD(0) .
Theorem 2.7. Let
β + γ z f (t ) ξ g (t ) δ ξ +δ −1
dt
F9 ( f , g )( z ) = γ ∫
⋅t
z 0 t t
1
β
. (26)
If f ∈ S * , g ∈ K , then F9 ( f , g ) ∈ TUCD(0) .
Proof.
In [2] we proved that if f ∈ S * , g ∈ K ⇒ F9 ( f , g ) ∈ S ∗ . Applying the remark
1.2 a) we obtain F9 ( f , g ) ∈ TUCD(0) .
Theorem 2.8. Let
β
β +γ z ξ
δ −1
(
)
ϕ
(
)
⋅
⋅
F10 ( f )( z ) = γ
f
t
t
t
dt
, f ∈A
∫
z ⋅ φ (z ) 0
and the following conditions are satisfied:
φ, φ ∈ D, ξ, β, γ, δ the complex numbers with the properties,
1
(27)
zφ' ( z )
β > 0, ξ + δ = β + γ , Re(ξ + δ ) > 0 , Re
+ γ ≤ 0 .
(28)
φ( z )
Then F10 ( f ) ∈ TUCD (0) .
Proof.
If f ∈ A satisfies the conditions of this theorem then F10 ( f ) ∈ S * , the result
proved in [2].
Applying the remark 1.2, a) we obtain F10 ( f ) ∈ TUCD (0) .
Theorem 2.9. Let ξ şi δ complex number, ξ + δ > 0, φ ∈ D .
If f ∈ A is the form (4) and
ξzf ' ( z ) zφ ' ( z )
+
+ δ p Qξ +δ ,
(29)
φ (z )
f (z )
and
z
ξ +δ
F11 ( f ) = (ξ + δ )∫ f ξ (t ) ⋅ t δ −1 ⋅ φ (t )dt .
0
1
46
(30)
Daniel Breaz - Integral operators on the TUCD( α )-class
Then F11 ( f ) ∈ TUCD (0) .
Proof.
If f ∈ A are the form (4) and verifies the conditions of the theorem 2.1, we
obtain F11 ( f ) ∈ S * ⇔ F11 ( f ) ∈ TUCD (0) , also considering the remark 1.2, a).
Theorem 2.10. Let
β
β +γ z ξ
δ −1
(
)
φ
(
)
F12 ( f )( z ) = γ
f
t
t
t
dt
(31)
⋅
⋅
.
∫
z ⋅ φ (z ) 0
If ξ , β , γ , δ ∈ R , ξ ≥ 0 , β > 0 , β + γ = ξ + δ and ρ 0 verifies the relation
(14) and suppose that exists ρ ∈ [ρ 0 ,1] so that 0 ≤ w( ρ ) , where w verifies the
relation
zG ' ( z )
Re β
≥ w( ρ ) ⋅ Re β = Inf {Re H ( z ) z < 1},
(32)
G (z )
where
1
z
G ( z ) = I β ,γ ( g )( z ) = (β + γ )z −γ ∫ g β (t ) ⋅ t γ −1 dt
0
and
H (z ) =
1
(1 − z )2( ρ −1) Re β
−γ
1
2 ( ρ −1) Re β
β +γ −1
dt
∫0 t (1 + tz )
β
,
, g∈A
(33)
(34)
ϕ şi φ ∈ D and satisfy the relations
δ + Re
and
Re
zφ' ( z )
≥ βρ + γ
φ( z )
zφ ' ( z )
≤ β ⋅ w( ρ )
φ (z )
(35)
(36)
then F12 ( f ) ∈ TUCD (0) .
Proof.
Let f ∈ A and satisfies the above conditions according to theorem 1.3 and the
remark 1.2, a) we obtain F12 ( f ) ∈ S * ⇔ F12 ( f ) ∈ TUCD (0) .
47
Daniel Breaz - Integral operators on the TUCD( α )-class
Theorem 2.11. Let the integral operator F12 ( f ) defined in the theorem 2.10,
which verifies the conditions of the theorem 2.10, and the condition (35) from
theorem 2.10 becomes the folloving:
zφ' ( z )
ξ
+ δ + Re
≥ βρ + γ ,
(37)
φ( z )
2
then if f ∈ K ⇒ F12 ( f ) ∈ TUCD(0) .
Proof.
If f ∈ K , has the form (4) and verifies the conditions of this theorem we
obtain F12 ( f ) ∈ S * . Applying the remark 1.2, a) we obtain F12 ( f ) ∈ TUCD (0) .
Theorem 2.12. Let
β
β +γ z ξ
σ
δ −σ −1
F13 ( f , g ) = γ
∫ f (t ) ⋅ g (t ) ⋅ t dt , (38)
z φ (z ) 0
ξ , β , γ , δ and σ ∈ R , ξ ≥ 0 , β > 0 , σ ≥ 0 , β + γ = ξ + δ > 0 . Let ρ 0 from
the theorem 2.10 and suppose that ρ ∈ [ρ 0 ,1] so that
1
σ
≥ β + γ , w( ρ ) > 0 ,
(39)
2
w given in the treorem 2.10.
Let φ ∈ D , so that
zφ' ( z )
Re
(40)
≤ β ⋅ w( ρ ) .
φ( z )
If f ∈ S * , g ∈ K , then F13 ( f , g ) ∈ TUCD (0) .
Proof.
We consider f ∈ S * , g ∈ K of the form (4). According to the theorem 1.7,
δ−
proved in [2] we obtain F13 ( f , g ) ∈ S * . Applying the remark 1.2, a) we obtain
F13 ( f , g ) ∈ TUCD (0) .
Theorem 2.13. Let
β
β +γ z ξ
σ
δ −σ −1
⋅
⋅
F14 ( f , g )( z ) = γ
f
t
g
t
t
dt
(41)
(
)
(
)
,
∫
φ
(
)
z
z
0
ξ , β , γ , δ and σ ∈ R , α ≥ 0 , β > 0 , σ ≥ 0 , β + γ = ξ + δ > 0 , ρ 0 , w( ρ ) as in
the theorem 2.10 and exists ρ ∈ [ρ 0 ,1] so that
1
48
Daniel Breaz - Integral operators on the TUCD( α )-class
Let φ ∈ D so that
ρ+
ξ
2
−
σ
2
≥ βρ + γ , w( ρ ) ≥ 0 .
(42)
zφ ' ( z )
(43)
≤ βw( ρ ) .
φ (z )
If f , g ∈ K of the form (4) then F14 ( f , g ) ∈ TUCD (0) .
Proof.
If f , g ∈ K according to the corrolary 1.6, the result proved in [1] we obatin
F14 ( f , g ) ∈ S ∗ . Applying the remark 1.2, a) we obatin F14 ( f , g ) ∈ TUCD (0) .
Re
References
1.Miller S.S., Mocanu P.T.- Differential Subordinations. Theory and
Applications, Marcel Dekker, Inc., New York.Basel, 2000.
2.Miller S.S., Mocanu P.T.- Classes of univalent integral operators, Journal of
Math. Analysis and Applications, vol. 157, No. 1, May 1, 1991, Printed in
Belgium, 147-165.
3.Rosy T., Stephen A.B., Subramanian K.G., Silverman H.- Classes of convex
functions, Internat. J. Math.& Math. Sci., vol 23, No. 12(2000), 819-825.
4.Silverman H.- Univalent functions with negative coefficients, Proc. Amer.
Math. Soc. 51(1975), 109-116.
Author:
Daniel Breaz – “1 Decembrie 1918” University of Alba Iulia, E-mail address:
[email protected]
49
Mathematics and Informatics - ICTAMI 2004, Thessaloniki, Greece
INTEGRAL OPERATORS ON THE TUCD( α )-CLASS
by
Daniel Breaz
Abstract. In this paper we present a few univalency conditions for various integral operators
on class TUCD (α ) . At first, we make a brief presentation of class TUCD (α ) and of some of
its properties, as well as a number of matters connected to some integral operators studied on
this class.
Introduction.
Let U = {z : z < 1} be the unit disk, respectively the class of olomorphic
functions
on
the
unit
disk,
denoted
by
2
H (U ) , A = f ∈ H (U ) : f ( z ) = z + a 2 z + ... the class of the analytical
functions
in
the
unit
disk
and
the
set
D = {φ : φ is analytic in U , φ ( z ) ≠ 0, ∀z ∈ U , φ (0 ) = 1}.
We consider the class of starlike functions of the order α on the unit
zf ′(z )
disk, the univalent functions with the property Re
> α , respectively, the
f (z )
class of the convex functions on the order α in unit disk, the univalent
zf ′′( z )
+ 1 > α . We denote these with S ∗ (α )
functions with the property Re
f ′( z )
and K (α ) , and for α = 0 we obtain the class of the starlike funcions S ∗ ,
respectively the class of convex functions K .
We say that the function f with the form f ( z ) = z + a 2 z 2 + ... belongs
to the class UCD(α ) , α ≥ 0 , if
Re f ′( z ) ≥ α zf ′′( z ) , z ∈ U .
(1)
{
}
If f ∈ UCD(α ) , then the following relation is true
f ′( z ) ≥ α zf ′′( z ) , z ∈ U
which can also be written as
40
(2)
Daniel Breaz - Integral operators on the TUCD( α )-class
zf ′′( z ) 1
≤ .
(3)
f ′( z ) α
In [3] we studied the class of univalent functions of the form
f (z ) = z − ∑ ak z k , ak ≥ 0 .
∞
(4)
We denote TUCD (α ) , the functions from UCD(α ) of the form (4). Next we
consider all the functions from this paper of the form (4).
Theorem 1.1. [3] A function of the form (1) belongs to the class TUCD (α ) if
and only if
k =2
∑ k [1 + α (k − 1)]⋅ a
∞
k =2
k
≤ 1.
Remark 1.2. [3]
a) A function of the form (4) is starlike if and only if f ∈ TUCD (0) .
b) A function of the form (4) is convex if and only if f ∈ TUCD (1) .
c) A function of the form (4) is convex by the order 1/2 if and only if
f ∈ TUCD (2) .
d) A function of the form (4) is uniform convex if and only if
f ∈ TUCD (2) .
e) A function f ∈ TUCD (α ) if and only if f can be written as
f (z ) = ∑ λ k f k (z ) ,
∞
k =1
where λ k ≥ 0, ∑ λ k = 1 , f 1 ( z ) = z and f k ( z ) = z −
∞
k =1
(5)
k [1 + α (k − 1)]
zk
, k = 2,3,...
Theorem 1.3. [2] Let α , β , γ , δ be real constants that satisfy the conditions
Re γ
α ≥ 0, β > 0 (α + δ ) = (β + γ ) > 0 . Let ρ 0 be so that −
≡ ρ0 < ρ < 1
Re β
and we suppose that ρ ∈ [ρ 0 ,1] exists, so that 0 ≤ w( ρ ) , where
1
inf {H ( z ) : z < 1} and H ( z ) =
w( ρ ) =
Re β
∫t
1
0
41
(1 − z )2( ρ −1) Re β
β +γ −1
(1 + tz )
2 ( ρ −1) Re β
.
dt
Daniel Breaz - Integral operators on the TUCD( α )-class
Let ϕ and φ ∈ D satisfy the conditions:
δ + Re
and
Re
zϕ ′(z )
≥ βρ + γ
ϕ (z )
(6)
zφ ′( z )
≤ βw( ρ )
φ (z )
(7)
( )
β
β +γ z α
δ −1
If I ( f )( z ) = γ
f
t
t
t
dt
, then I S ∗ ⊂ S ∗ .
(
)
(
)
ϕ
∫
z φ ( z) 0
1
Theorem 1.4. [1] If 0 ≤ α ≤ 1, α ≤ β and if f ∈ S ∗ , then the function
β −1 z f ( z ) α β
F (z ) = z ∫
dt = z + ...
t
0
1
(8)
is also an element of S*.
Theorem 1.5. [1] If α > 0,η ≥ 0, γ + η ≥ 0 and if f ∈ S ∗ , then the function
α + γ + η
F (z ) =
f α (t )t γ +η −1 dt
γ
∫
0
z
z
α +η
1
= z + ...
(9)
is starlike in U.
Theorem 1.6. [2]
Let α , β , γ , δ and σ real number which satisfy
0 ≤ α ,0 < β ,0 ≤ σ and β + γ = α + δ > 0 . Let ρ 0 defined in the theorem 1.3.
and we suppose that exists ρ ∈ [ρ 0 ,1] so that δ −
where w( ρ ) Re β ≡ Inf {Re H ( z ) : z < 1}.
42
Let
σ
≥ β + γ and w( ρ ) > 0
2
φ ∈D
which
satisfies
Daniel Breaz - Integral operators on the TUCD( α )-class
zφ ′( z )
≤ βw( ρ ) . If
φ ( z)
defined
Re
f ∈ S ∗ , g ∈ K then I ( f , g ) ∈ S ∗ , where I ( f , g ) is
β
β +γ z α
σ
δ −σ −1
(
)
(
)
I ( f , g )( z ) = γ
f
t
g
t
t
dt
. (10)
∫
z φ ( z) 0
Corollary 1.7. [1] Let 0 ≤ α ,0 < β ,0 ≤ σ , γ > − β , β + γ = α + δ , and
α σ
zφ ′( z )
δ + − ≥ γ . Let φ ∈ D which satisfies Re
≤ βw(0) . If f , g ∈ K then
2 2
φ ( z)
I ( f , g ) ∈ S ∗ , where I ( f , g ) is defined in (10).
1
Main results
Theorem 2.1. Let ξ and δ complex number, ξ + δ > 0, φ ∈ D .
If f ∈ A is of the form (4) and
ξzf ' ( z ) zφ ' ( z )
+
+ δ p Qξ +δ ,
(11)
f (z )
φ (z )
while
z
ξ +δ
F1 ( f ) = (ξ + δ )∫ f ξ (t ) ⋅ t δ −1 ⋅ φ (t )dt .
0
Then F1 ( f ) ∈ TUCD (0) .
Theorem 2.2. Let
1
(12)
β
β +γ z ξ
δ −1
(
)
φ
(
)
F2 ( f )( z ) = γ
f
t
t
t
dt
⋅
⋅
. (13)
∫
φ
(
)
z
z
⋅
0
If ξ , β , γ , δ ∈ R , ξ ≥ 0 , β > 0 , β + γ = ξ + δ şi ρ 0 verifies the relation
Re γ
−
≡ ρ0 ≤ ρ < 1
(14)
Re β
and we suppose that exists ρ ∈ [ρ 0 ,1] so that 0 ≤ w( ρ ) , where w verifies the
relation
zG ' ( z )
Re β
≥ w( ρ ) ⋅ Re β = Inf {Re H ( z ) z < 1},
(15)
G (z )
where
1
43
Daniel Breaz - Integral operators on the TUCD( α )-class
z
G ( z ) = I β ,γ ( g )( z ) = (β + γ )z −γ ∫ g β (t ) ⋅ t γ −1 dt
0
1
2 ( ρ −1) Re β
1 − z)
(
H (z ) = 1
−γ
2 ( ρ −1) Re β
β +γ −1
(
)
t
1
tz
dt
+
∫0
and
β
, g∈A
,
(16)
(17)
ϕ and φ ∈ D satisfy the relations
δ + Re
and
Re
then F2 ( f ) ∈ TUCD (0 ) .
zφ' ( z )
≥ βρ + γ
φ( z )
zφ ' ( z )
≤ β ⋅ w( ρ )
φ (z )
(18)
(19)
Theorem 2.3. Let f ( z ) = z − ∑ a k z k , a k ≥ 0
∞
a)If f ∈ S ⇒ F3 ( f ) ∈ TUCD (1) , where
k =2
*
F3 ( f )( z ) = ∫
z
0
f (t )
dt
t
(20)
is the Alexander operator.
Proof.
We know that if f ∈ S * ⇒ F3 ( f ) ∈ K . Considering the remark 1.2. b), we
obtain F3 ( f ) ∈ K ⇔ F3 ( f ) ∈ TUCD (1) .
b) f ∈ S * ⇒ F4 ( f ) ∈ TUCD (0 ) , where
2 z
F4 ( f )( z ) = ∫ f (t )dt
z 0
is the Libera operator.
(21)
Proof.
We know that if f ∈ S * ⇒ F4 ( f ) ∈ S ∗ . Considering the remark 1.2. a), we
obtain F4 ( f ) ∈ S ∗ ⇔ F4 ( f ) ∈ TUCD (0) .
44
Daniel Breaz - Integral operators on the TUCD( α )-class
c) f ∈ S * ⇒ F5 ( f ) ∈ TUCD (0 ) , where
1+ γ
zγ
γ ≥ −1 is the Bernardi operator.
F5 ( f )( z ) =
∫ f (t ) ⋅ t
z
γ −1
dt
(22)
0
Proof.
We know that if f ∈ S * ⇒ F5 ( f ) ∈ S ∗ . Considering the remark 1.2. a), we
obtain F5 ( f ) ∈ S ∗ ⇔ F5 ( f ) ∈ TUCD (0 ) .
Theorem 2.4. Let
f (t )
dt
F6 ( f )( z ) = ∫
t
0
z
β
(23)
and 0 ≤ β ≤ 1 .
If f ∈ S * then F6 ( f ) ∈ TUCD (0) .
Proof.
Considering the theorem 1.4, for β = 1, α ≡ β we obtain f ∈ S * ⇒ F6 ( f ) ∈ S * .
According to the remark 1.2. a) we obtain F6 ( f ) ∈ TUCD (0) .
Theorem 2.5. Let
z
β
(24)
F7 ( f )( z ) = β ∫ f β (t ) ⋅ t −1 dt , β > 0 .
0
*
If f ∈ S then F7 ( f ) ∈ TUCD (0) .
Proof.
Applying the theorem 1.5 for this integral operator for γ = 0,η = 0, β = α we
obtain f ∈ S * ⇒ F7 ( f ) ∈ S * . But the remark 1.2, a) we obtain
F7 ( f ) ∈ TUCD (0) .
1
Theorem 2.6. Let
β + γ z β
F8 ( f )( z ) = γ ∫ f (t ) ⋅ t −1 dt
z 0
*
If f ∈ S then F8 ( f ) ∈ TUCD(0) .
45
1
β
, γ , β = 1,2,3K . (25)
Daniel Breaz - Integral operators on the TUCD( α )-class
Proof.
We have f ∈ S * ⇒ F8 ( f ) ∈ S * , according to the theorem 1.5. Applying the
remark 1.2, a), we obtain F8 ( f ) ∈ TUCD(0) .
Theorem 2.7. Let
β + γ z f (t ) ξ g (t ) δ ξ +δ −1
dt
F9 ( f , g )( z ) = γ ∫
⋅t
z 0 t t
1
β
. (26)
If f ∈ S * , g ∈ K , then F9 ( f , g ) ∈ TUCD(0) .
Proof.
In [2] we proved that if f ∈ S * , g ∈ K ⇒ F9 ( f , g ) ∈ S ∗ . Applying the remark
1.2 a) we obtain F9 ( f , g ) ∈ TUCD(0) .
Theorem 2.8. Let
β
β +γ z ξ
δ −1
(
)
ϕ
(
)
⋅
⋅
F10 ( f )( z ) = γ
f
t
t
t
dt
, f ∈A
∫
z ⋅ φ (z ) 0
and the following conditions are satisfied:
φ, φ ∈ D, ξ, β, γ, δ the complex numbers with the properties,
1
(27)
zφ' ( z )
β > 0, ξ + δ = β + γ , Re(ξ + δ ) > 0 , Re
+ γ ≤ 0 .
(28)
φ( z )
Then F10 ( f ) ∈ TUCD (0) .
Proof.
If f ∈ A satisfies the conditions of this theorem then F10 ( f ) ∈ S * , the result
proved in [2].
Applying the remark 1.2, a) we obtain F10 ( f ) ∈ TUCD (0) .
Theorem 2.9. Let ξ şi δ complex number, ξ + δ > 0, φ ∈ D .
If f ∈ A is the form (4) and
ξzf ' ( z ) zφ ' ( z )
+
+ δ p Qξ +δ ,
(29)
φ (z )
f (z )
and
z
ξ +δ
F11 ( f ) = (ξ + δ )∫ f ξ (t ) ⋅ t δ −1 ⋅ φ (t )dt .
0
1
46
(30)
Daniel Breaz - Integral operators on the TUCD( α )-class
Then F11 ( f ) ∈ TUCD (0) .
Proof.
If f ∈ A are the form (4) and verifies the conditions of the theorem 2.1, we
obtain F11 ( f ) ∈ S * ⇔ F11 ( f ) ∈ TUCD (0) , also considering the remark 1.2, a).
Theorem 2.10. Let
β
β +γ z ξ
δ −1
(
)
φ
(
)
F12 ( f )( z ) = γ
f
t
t
t
dt
(31)
⋅
⋅
.
∫
z ⋅ φ (z ) 0
If ξ , β , γ , δ ∈ R , ξ ≥ 0 , β > 0 , β + γ = ξ + δ and ρ 0 verifies the relation
(14) and suppose that exists ρ ∈ [ρ 0 ,1] so that 0 ≤ w( ρ ) , where w verifies the
relation
zG ' ( z )
Re β
≥ w( ρ ) ⋅ Re β = Inf {Re H ( z ) z < 1},
(32)
G (z )
where
1
z
G ( z ) = I β ,γ ( g )( z ) = (β + γ )z −γ ∫ g β (t ) ⋅ t γ −1 dt
0
and
H (z ) =
1
(1 − z )2( ρ −1) Re β
−γ
1
2 ( ρ −1) Re β
β +γ −1
dt
∫0 t (1 + tz )
β
,
, g∈A
(33)
(34)
ϕ şi φ ∈ D and satisfy the relations
δ + Re
and
Re
zφ' ( z )
≥ βρ + γ
φ( z )
zφ ' ( z )
≤ β ⋅ w( ρ )
φ (z )
(35)
(36)
then F12 ( f ) ∈ TUCD (0) .
Proof.
Let f ∈ A and satisfies the above conditions according to theorem 1.3 and the
remark 1.2, a) we obtain F12 ( f ) ∈ S * ⇔ F12 ( f ) ∈ TUCD (0) .
47
Daniel Breaz - Integral operators on the TUCD( α )-class
Theorem 2.11. Let the integral operator F12 ( f ) defined in the theorem 2.10,
which verifies the conditions of the theorem 2.10, and the condition (35) from
theorem 2.10 becomes the folloving:
zφ' ( z )
ξ
+ δ + Re
≥ βρ + γ ,
(37)
φ( z )
2
then if f ∈ K ⇒ F12 ( f ) ∈ TUCD(0) .
Proof.
If f ∈ K , has the form (4) and verifies the conditions of this theorem we
obtain F12 ( f ) ∈ S * . Applying the remark 1.2, a) we obtain F12 ( f ) ∈ TUCD (0) .
Theorem 2.12. Let
β
β +γ z ξ
σ
δ −σ −1
F13 ( f , g ) = γ
∫ f (t ) ⋅ g (t ) ⋅ t dt , (38)
z φ (z ) 0
ξ , β , γ , δ and σ ∈ R , ξ ≥ 0 , β > 0 , σ ≥ 0 , β + γ = ξ + δ > 0 . Let ρ 0 from
the theorem 2.10 and suppose that ρ ∈ [ρ 0 ,1] so that
1
σ
≥ β + γ , w( ρ ) > 0 ,
(39)
2
w given in the treorem 2.10.
Let φ ∈ D , so that
zφ' ( z )
Re
(40)
≤ β ⋅ w( ρ ) .
φ( z )
If f ∈ S * , g ∈ K , then F13 ( f , g ) ∈ TUCD (0) .
Proof.
We consider f ∈ S * , g ∈ K of the form (4). According to the theorem 1.7,
δ−
proved in [2] we obtain F13 ( f , g ) ∈ S * . Applying the remark 1.2, a) we obtain
F13 ( f , g ) ∈ TUCD (0) .
Theorem 2.13. Let
β
β +γ z ξ
σ
δ −σ −1
⋅
⋅
F14 ( f , g )( z ) = γ
f
t
g
t
t
dt
(41)
(
)
(
)
,
∫
φ
(
)
z
z
0
ξ , β , γ , δ and σ ∈ R , α ≥ 0 , β > 0 , σ ≥ 0 , β + γ = ξ + δ > 0 , ρ 0 , w( ρ ) as in
the theorem 2.10 and exists ρ ∈ [ρ 0 ,1] so that
1
48
Daniel Breaz - Integral operators on the TUCD( α )-class
Let φ ∈ D so that
ρ+
ξ
2
−
σ
2
≥ βρ + γ , w( ρ ) ≥ 0 .
(42)
zφ ' ( z )
(43)
≤ βw( ρ ) .
φ (z )
If f , g ∈ K of the form (4) then F14 ( f , g ) ∈ TUCD (0) .
Proof.
If f , g ∈ K according to the corrolary 1.6, the result proved in [1] we obatin
F14 ( f , g ) ∈ S ∗ . Applying the remark 1.2, a) we obatin F14 ( f , g ) ∈ TUCD (0) .
Re
References
1.Miller S.S., Mocanu P.T.- Differential Subordinations. Theory and
Applications, Marcel Dekker, Inc., New York.Basel, 2000.
2.Miller S.S., Mocanu P.T.- Classes of univalent integral operators, Journal of
Math. Analysis and Applications, vol. 157, No. 1, May 1, 1991, Printed in
Belgium, 147-165.
3.Rosy T., Stephen A.B., Subramanian K.G., Silverman H.- Classes of convex
functions, Internat. J. Math.& Math. Sci., vol 23, No. 12(2000), 819-825.
4.Silverman H.- Univalent functions with negative coefficients, Proc. Amer.
Math. Soc. 51(1975), 109-116.
Author:
Daniel Breaz – “1 Decembrie 1918” University of Alba Iulia, E-mail address:
[email protected]
49