Breaz Daniel. 147KB Jun 04 2011 12:08:27 AM

Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics - ICTAMI 2004, Thessaloniki, Greece

INTEGRAL OPERATORS ON THE TUCD( α )-CLASS
by
Daniel Breaz
Abstract. In this paper we present a few univalency conditions for various integral operators
on class TUCD (α ) . At first, we make a brief presentation of class TUCD (α ) and of some of
its properties, as well as a number of matters connected to some integral operators studied on
this class.

Introduction.
Let U = {z : z < 1} be the unit disk, respectively the class of olomorphic
functions
on
the
unit
disk,
denoted
by
2

H (U ) , A = f ∈ H (U ) : f ( z ) = z + a 2 z + ... the class of the analytical
functions
in
the
unit
disk
and
the
set
D = {φ : φ is analytic in U , φ ( z ) ≠ 0, ∀z ∈ U , φ (0 ) = 1}.
We consider the class of starlike functions of the order α on the unit
zf ′(z )
disk, the univalent functions with the property Re
> α , respectively, the
f (z )
class of the convex functions on the order α in unit disk, the univalent
zf ′′( z )
+ 1 > α . We denote these with S ∗ (α )
functions with the property Re
f ′( z )

and K (α ) , and for α = 0 we obtain the class of the starlike funcions S ∗ ,
respectively the class of convex functions K .
We say that the function f with the form f ( z ) = z + a 2 z 2 + ... belongs
to the class UCD(α ) , α ≥ 0 , if
Re f ′( z ) ≥ α zf ′′( z ) , z ∈ U .
(1)

{

}

If f ∈ UCD(α ) , then the following relation is true
f ′( z ) ≥ α zf ′′( z ) , z ∈ U
which can also be written as

40

(2)

Daniel Breaz - Integral operators on the TUCD( α )-class

zf ′′( z ) 1
≤ .
(3)
f ′( z ) α
In [3] we studied the class of univalent functions of the form
f (z ) = z − ∑ ak z k , ak ≥ 0 .


(4)

We denote TUCD (α ) , the functions from UCD(α ) of the form (4). Next we
consider all the functions from this paper of the form (4).
Theorem 1.1. [3] A function of the form (1) belongs to the class TUCD (α ) if
and only if
k =2

∑ k [1 + α (k − 1)]⋅ a


k =2


k

≤ 1.

Remark 1.2. [3]
a) A function of the form (4) is starlike if and only if f ∈ TUCD (0) .
b) A function of the form (4) is convex if and only if f ∈ TUCD (1) .
c) A function of the form (4) is convex by the order 1/2 if and only if
f ∈ TUCD (2) .
d) A function of the form (4) is uniform convex if and only if
f ∈ TUCD (2) .
e) A function f ∈ TUCD (α ) if and only if f can be written as
f (z ) = ∑ λ k f k (z ) ,


k =1

where λ k ≥ 0, ∑ λ k = 1 , f 1 ( z ) = z and f k ( z ) = z −



k =1

(5)
k [1 + α (k − 1)]
zk

, k = 2,3,...

Theorem 1.3. [2] Let α , β , γ , δ be real constants that satisfy the conditions
Re γ
α ≥ 0, β > 0 (α + δ ) = (β + γ ) > 0 . Let ρ 0 be so that −
≡ ρ0 < ρ < 1
Re β
and we suppose that ρ ∈ [ρ 0 ,1] exists, so that 0 ≤ w( ρ ) , where

1
inf {H ( z ) : z < 1} and H ( z ) =
w( ρ ) =
Re β


∫t
1

0

41

(1 − z )2( ρ −1) Re β

β +γ −1

(1 + tz )

2 ( ρ −1) Re β

.
dt

Daniel Breaz - Integral operators on the TUCD( α )-class

Let ϕ and φ ∈ D satisfy the conditions:

δ + Re
and
Re

zϕ ′(z )
≥ βρ + γ
ϕ (z )

(6)

zφ ′( z )
≤ βw( ρ )
φ (z )

(7)

( )


β
 β +γ z α
δ −1 
If I ( f )( z ) =  γ
f
t
t
t
dt
, then I S ∗ ⊂ S ∗ .
(
)
(
)
ϕ


 z φ ( z) 0

1


Theorem 1.4. [1] If 0 ≤ α ≤ 1, α ≤ β and if f ∈ S ∗ , then the function
 β −1 z  f ( z )  α  β
F (z ) =  z ∫ 
 dt  = z + ...
t  

0
1

(8)

is also an element of S*.

Theorem 1.5. [1] If α > 0,η ≥ 0, γ + η ≥ 0 and if f ∈ S ∗ , then the function

α + γ + η

F (z ) = 
f α (t )t γ +η −1 dt 

γ

0
 z

z

α +η
1

= z + ...

(9)

is starlike in U.
Theorem 1.6. [2]
Let α , β , γ , δ and σ real number which satisfy
0 ≤ α ,0 < β ,0 ≤ σ and β + γ = α + δ > 0 . Let ρ 0 defined in the theorem 1.3.
and we suppose that exists ρ ∈ [ρ 0 ,1] so that δ −


where w( ρ ) Re β ≡ Inf {Re H ( z ) : z < 1}.

42

Let

σ

≥ β + γ and w( ρ ) > 0
2
φ ∈D
which
satisfies

Daniel Breaz - Integral operators on the TUCD( α )-class
zφ ′( z )
≤ βw( ρ ) . If
φ ( z)
defined
Re

f ∈ S ∗ , g ∈ K then I ( f , g ) ∈ S ∗ , where I ( f , g ) is

β
 β +γ z α
σ
δ −σ −1 
(
)
(
)
I ( f , g )( z ) =  γ
f
t
g
t
t
dt
 . (10)

 z φ ( z) 0

Corollary 1.7. [1] Let 0 ≤ α ,0 < β ,0 ≤ σ , γ > − β , β + γ = α + δ , and
α σ
zφ ′( z )
δ + − ≥ γ . Let φ ∈ D which satisfies Re
≤ βw(0) . If f , g ∈ K then
2 2
φ ( z)
I ( f , g ) ∈ S ∗ , where I ( f , g ) is defined in (10).
1

Main results

Theorem 2.1. Let ξ and δ complex number, ξ + δ > 0, φ ∈ D .
If f ∈ A is of the form (4) and
ξzf ' ( z ) zφ ' ( z )
+
+ δ p Qξ +δ ,
(11)
f (z )
φ (z )
while

z

 ξ +δ
F1 ( f ) = (ξ + δ )∫ f ξ (t ) ⋅ t δ −1 ⋅ φ (t )dt  .
0


Then F1 ( f ) ∈ TUCD (0) .
Theorem 2.2. Let
1

(12)

β
 β +γ z ξ
δ −1 
(
)
φ
(
)
F2 ( f )( z ) =  γ
f
t
t
t
dt


 . (13)

φ
(
)
z
z

0


If ξ , β , γ , δ ∈ R , ξ ≥ 0 , β > 0 , β + γ = ξ + δ şi ρ 0 verifies the relation
Re γ

≡ ρ0 ≤ ρ < 1
(14)
Re β
and we suppose that exists ρ ∈ [ρ 0 ,1] so that 0 ≤ w( ρ ) , where w verifies the
relation
zG ' ( z )
Re β
≥ w( ρ ) ⋅ Re β = Inf {Re H ( z ) z < 1},
(15)
G (z )
where
1

43

Daniel Breaz - Integral operators on the TUCD( α )-class
z


G ( z ) = I β ,γ ( g )( z ) = (β + γ )z −γ ∫ g β (t ) ⋅ t γ −1 dt 
0



1

2 ( ρ −1) Re β
1 − z)
(
H (z ) = 1
−γ
2 ( ρ −1) Re β
β +γ −1
(
)
t
1
tz
dt
+
∫0

and

β

, g∈A

,

(16)

(17)

ϕ and φ ∈ D satisfy the relations
δ + Re

and
Re

then F2 ( f ) ∈ TUCD (0 ) .

zφ' ( z )
≥ βρ + γ
φ( z )

zφ ' ( z )
≤ β ⋅ w( ρ )
φ (z )

(18)

(19)

Theorem 2.3. Let f ( z ) = z − ∑ a k z k , a k ≥ 0


a)If f ∈ S ⇒ F3 ( f ) ∈ TUCD (1) , where
k =2

*

F3 ( f )( z ) = ∫
z

0

f (t )
dt
t

(20)

is the Alexander operator.
Proof.
We know that if f ∈ S * ⇒ F3 ( f ) ∈ K . Considering the remark 1.2. b), we
obtain F3 ( f ) ∈ K ⇔ F3 ( f ) ∈ TUCD (1) .

b) f ∈ S * ⇒ F4 ( f ) ∈ TUCD (0 ) , where
2 z
F4 ( f )( z ) = ∫ f (t )dt
z 0
is the Libera operator.

(21)

Proof.
We know that if f ∈ S * ⇒ F4 ( f ) ∈ S ∗ . Considering the remark 1.2. a), we
obtain F4 ( f ) ∈ S ∗ ⇔ F4 ( f ) ∈ TUCD (0) .

44

Daniel Breaz - Integral operators on the TUCD( α )-class
c) f ∈ S * ⇒ F5 ( f ) ∈ TUCD (0 ) , where

1+ γ

γ ≥ −1 is the Bernardi operator.
F5 ( f )( z ) =

∫ f (t ) ⋅ t
z

γ −1

dt

(22)

0

Proof.
We know that if f ∈ S * ⇒ F5 ( f ) ∈ S ∗ . Considering the remark 1.2. a), we

obtain F5 ( f ) ∈ S ∗ ⇔ F5 ( f ) ∈ TUCD (0 ) .
Theorem 2.4. Let

 f (t ) 
dt
F6 ( f )( z ) = ∫ 
t 
0 
z

β

(23)

and 0 ≤ β ≤ 1 .
If f ∈ S * then F6 ( f ) ∈ TUCD (0) .
Proof.
Considering the theorem 1.4, for β = 1, α ≡ β we obtain f ∈ S * ⇒ F6 ( f ) ∈ S * .
According to the remark 1.2. a) we obtain F6 ( f ) ∈ TUCD (0) .
Theorem 2.5. Let

 z
 β
(24)
F7 ( f )( z ) =  β ∫ f β (t ) ⋅ t −1 dt  , β > 0 .
 0

*
If f ∈ S then F7 ( f ) ∈ TUCD (0) .
Proof.
Applying the theorem 1.5 for this integral operator for γ = 0,η = 0, β = α we
obtain f ∈ S * ⇒ F7 ( f ) ∈ S * . But the remark 1.2, a) we obtain
F7 ( f ) ∈ TUCD (0) .
1

Theorem 2.6. Let


β + γ z β
F8 ( f )( z ) =  γ ∫ f (t ) ⋅ t −1 dt 

 z 0
*
If f ∈ S then F8 ( f ) ∈ TUCD(0) .

45

1

β

, γ , β = 1,2,3K . (25)

Daniel Breaz - Integral operators on the TUCD( α )-class
Proof.
We have f ∈ S * ⇒ F8 ( f ) ∈ S * , according to the theorem 1.5. Applying the
remark 1.2, a), we obtain F8 ( f ) ∈ TUCD(0) .
Theorem 2.7. Let
 β + γ z  f (t )  ξ  g (t )  δ ξ +δ −1 
dt 
F9 ( f , g )( z ) =  γ ∫ 
 ⋅t
 

 z 0  t   t 

1

β

. (26)

If f ∈ S * , g ∈ K , then F9 ( f , g ) ∈ TUCD(0) .
Proof.
In [2] we proved that if f ∈ S * , g ∈ K ⇒ F9 ( f , g ) ∈ S ∗ . Applying the remark
1.2 a) we obtain F9 ( f , g ) ∈ TUCD(0) .
Theorem 2.8. Let
β
 β +γ z ξ
δ −1 
(
)
ϕ
(
)


F10 ( f )( z ) =  γ
f
t
t
t
dt
 , f ∈A

 z ⋅ φ (z ) 0

and the following conditions are satisfied:
φ, φ ∈ D, ξ, β, γ, δ the complex numbers with the properties,
1

(27)

 zφ' ( z ) 
β > 0, ξ + δ = β + γ , Re(ξ + δ ) > 0 , Re 
+ γ ≤ 0 .
(28)
 φ( z )

Then F10 ( f ) ∈ TUCD (0) .
Proof.
If f ∈ A satisfies the conditions of this theorem then F10 ( f ) ∈ S * , the result
proved in [2].
Applying the remark 1.2, a) we obtain F10 ( f ) ∈ TUCD (0) .

Theorem 2.9. Let ξ şi δ complex number, ξ + δ > 0, φ ∈ D .
If f ∈ A is the form (4) and
ξzf ' ( z ) zφ ' ( z )
+
+ δ p Qξ +δ ,
(29)
φ (z )
f (z )
and
z

 ξ +δ
F11 ( f ) = (ξ + δ )∫ f ξ (t ) ⋅ t δ −1 ⋅ φ (t )dt  .
0


1

46

(30)

Daniel Breaz - Integral operators on the TUCD( α )-class
Then F11 ( f ) ∈ TUCD (0) .
Proof.
If f ∈ A are the form (4) and verifies the conditions of the theorem 2.1, we
obtain F11 ( f ) ∈ S * ⇔ F11 ( f ) ∈ TUCD (0) , also considering the remark 1.2, a).
Theorem 2.10. Let

β
 β +γ z ξ
δ −1 
(
)
φ
(
)
F12 ( f )( z ) =  γ
f
t
t
t
dt
(31)


 .

 z ⋅ φ (z ) 0

If ξ , β , γ , δ ∈ R , ξ ≥ 0 , β > 0 , β + γ = ξ + δ and ρ 0 verifies the relation
(14) and suppose that exists ρ ∈ [ρ 0 ,1] so that 0 ≤ w( ρ ) , where w verifies the
relation
zG ' ( z )
Re β
≥ w( ρ ) ⋅ Re β = Inf {Re H ( z ) z < 1},
(32)
G (z )
where
1

z


G ( z ) = I β ,γ ( g )( z ) = (β + γ )z −γ ∫ g β (t ) ⋅ t γ −1 dt 
0



and

H (z ) =

1

(1 − z )2( ρ −1) Re β
−γ
1
2 ( ρ −1) Re β
β +γ −1
dt
∫0 t (1 + tz )

β

,

, g∈A

(33)

(34)

ϕ şi φ ∈ D and satisfy the relations
δ + Re

and
Re

zφ' ( z )
≥ βρ + γ
φ( z )

zφ ' ( z )
≤ β ⋅ w( ρ )
φ (z )

(35)

(36)

then F12 ( f ) ∈ TUCD (0) .
Proof.
Let f ∈ A and satisfies the above conditions according to theorem 1.3 and the
remark 1.2, a) we obtain F12 ( f ) ∈ S * ⇔ F12 ( f ) ∈ TUCD (0) .

47

Daniel Breaz - Integral operators on the TUCD( α )-class
Theorem 2.11. Let the integral operator F12 ( f ) defined in the theorem 2.10,
which verifies the conditions of the theorem 2.10, and the condition (35) from
theorem 2.10 becomes the folloving:
zφ' ( z )
ξ
+ δ + Re
≥ βρ + γ ,
(37)
φ( z )
2
then if f ∈ K ⇒ F12 ( f ) ∈ TUCD(0) .
Proof.
If f ∈ K , has the form (4) and verifies the conditions of this theorem we
obtain F12 ( f ) ∈ S * . Applying the remark 1.2, a) we obtain F12 ( f ) ∈ TUCD (0) .
Theorem 2.12. Let
β
 β +γ z ξ
σ
δ −σ −1 
F13 ( f , g ) =  γ
∫ f (t ) ⋅ g (t ) ⋅ t dt  , (38)
 z φ (z ) 0
ξ , β , γ , δ and σ ∈ R , ξ ≥ 0 , β > 0 , σ ≥ 0 , β + γ = ξ + δ > 0 . Let ρ 0 from
the theorem 2.10 and suppose that ρ ∈ [ρ 0 ,1] so that
1

σ

≥ β + γ , w( ρ ) > 0 ,
(39)
2
w given in the treorem 2.10.
Let φ ∈ D , so that
zφ' ( z )
Re
(40)
≤ β ⋅ w( ρ ) .
φ( z )
If f ∈ S * , g ∈ K , then F13 ( f , g ) ∈ TUCD (0) .
Proof.
We consider f ∈ S * , g ∈ K of the form (4). According to the theorem 1.7,

δ−

proved in [2] we obtain F13 ( f , g ) ∈ S * . Applying the remark 1.2, a) we obtain
F13 ( f , g ) ∈ TUCD (0) .
Theorem 2.13. Let

β
 β +γ z ξ
σ
δ −σ −1 


F14 ( f , g )( z ) =  γ
f
t
g
t
t
dt
(41)
(
)
(
)
 ,

φ
(
)
z
z
0


ξ , β , γ , δ and σ ∈ R , α ≥ 0 , β > 0 , σ ≥ 0 , β + γ = ξ + δ > 0 , ρ 0 , w( ρ ) as in
the theorem 2.10 and exists ρ ∈ [ρ 0 ,1] so that
1

48

Daniel Breaz - Integral operators on the TUCD( α )-class

Let φ ∈ D so that

ρ+

ξ
2



σ
2

≥ βρ + γ , w( ρ ) ≥ 0 .

(42)

zφ ' ( z )
(43)
≤ βw( ρ ) .
φ (z )
If f , g ∈ K of the form (4) then F14 ( f , g ) ∈ TUCD (0) .
Proof.
If f , g ∈ K according to the corrolary 1.6, the result proved in [1] we obatin
F14 ( f , g ) ∈ S ∗ . Applying the remark 1.2, a) we obatin F14 ( f , g ) ∈ TUCD (0) .
Re

References

1.Miller S.S., Mocanu P.T.- Differential Subordinations. Theory and
Applications, Marcel Dekker, Inc., New York.Basel, 2000.
2.Miller S.S., Mocanu P.T.- Classes of univalent integral operators, Journal of
Math. Analysis and Applications, vol. 157, No. 1, May 1, 1991, Printed in
Belgium, 147-165.
3.Rosy T., Stephen A.B., Subramanian K.G., Silverman H.- Classes of convex
functions, Internat. J. Math.& Math. Sci., vol 23, No. 12(2000), 819-825.
4.Silverman H.- Univalent functions with negative coefficients, Proc. Amer.
Math. Soc. 51(1975), 109-116.

Author:

Daniel Breaz – “1 Decembrie 1918” University of Alba Iulia, E-mail address:
[email protected]

49

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52