getdocca1b. 156KB Jun 04 2011 12:04:58 AM

Elect. Comm. in Probab. 15 (2010), 124–133

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

MEASURABILITY OF OPTIMAL TRANSPORTATION AND STRONG
COUPLING OF MARTINGALE MEASURES
JOAQUIN FONTBONA1
DIM-CMM, UMI(2807) UCHILE-CNRS, Universidad de Chile, Casilla 170-3, Correo 3, Santiago-Chile.
email: fontbona@dim.uchile.cl
HÉLÈNE GUÉRIN 2
IRMAR, Université Rennes 1, Campus de Beaulieu, 35042 Rennes-France.
email: helene.guerin@univ-rennes1.fr
SYLVIE MÉLÉARD3
CMAP, Ecole Polytechnique, CNRS, route de Saclay, 91128 Palaiseau Cedex-France.
email: sylvie.meleard@polytechnique.edu
Submitted August 5, 2008, accepted in final form March 22, 2010
AMS 2000 Subject classification: 49Q20;60G57
Keywords: Measurability of optimal transport. Coupling between orthogonal martingale measures. Predictable transport process.
Abstract

We consider the optimal mass transportation problem in Rd with measurably parameterized marginals
under conditions ensuring the existence of a unique optimal transport map. We prove a joint measurability result for this map, with respect to the space variable and to the parameter. The proof
needs to establish the measurability of some set-valued mappings, related to the support of the
optimal transference plans, which we use to perform a suitable discrete approximation procedure.
A motivation is the construction of a strong coupling between orthogonal martingale measures.
By this we mean that, given a martingale measure, we construct in the same probability space
a second one with a specified covariance measure process. This is done by pushing forward the
first martingale measure through a predictable version of the optimal transport map between the
covariance measures. This coupling allows us to obtain quantitative estimates in terms of the
Wasserstein distance between those covariance measures.

1

Introduction

We consider the optimal mass transportation problem in Rd with measurably parameterized marginals,
for general cost functions and under conditions ensuring the existence of a unique optimal transport map. The aim of this note is to prove a joint measurability result for this map, with respect
1

SUPPORTED BY FONDECYT PROYECT 1070743, ECOS-CONICYT C05E02 AND BASAL-CONICYT

SUPPORTED BY ECOS-CONICYT C05E02
3
SUPPORTED BY ECOS-CONICYT C05E02
2

124

Optimal transportation and coupling of martingale measures

to the space variable and the parameter. One of our motivations is the construction of couplings
between martingale measures (in the sense of Walsh [15]). This problem classically arises in
the literature, especially in cases where the martingale measures are compensated Poisson point
measures or space-time white noises, for which the covariance measures are deterministic (cf.
Grigelionis [5], El Karoui-Lepeltier [1], Tanaka [12], El Karoui-Méléard [2], Méléard-Roelly [7],
Guérin [6]). A classical approach for constructing such couplings is to use the Skorokhod representation theorem. However, this does not give any quantitative estimate.
Here, we aim at a method to construct what we call “strong coupling” between martingale measures. By this we mean that, given a martingale measure, we search to construct in the same
probability space a second one with specified covariance measure process. We will do this by
pushing forward the given martingale measure through the optimal transport map between the
two covariance processes. The interest of such a construction is that it will provide quantitative
estimates in terms of the Wasserstein distance between the covariance measures. But in order

to make this construction rigorous, the existence of a predictable version of the above described
transport map is needed. To our knowledge, available measurability results on the mass transportation problem with respect to some parameter require a topological structure on the space
of parameters, or concern measurability of transference plans, but not of transport maps (see e.g.
[10], or Corollaries 5.22 and 5.23 in [14]). Our main result provides the existence of the jointlymeasurable optimal transport map which is required.
Let us establish notations and recall basic facts. We denote the space of Borel probability measures
in Rd by P (Rd ) endowed with the usual weak topology, and by P p (Rd ) the subspace of probability
measures having finite p−order moment. Given π ∈ P (R2d ), we write
π 0 such that B(x, ǫ) × B( y, ǫ) ⊂ θ . In
particular, for all z ∈ B(x, ǫ) one has (z, y) ∈ θ and so B(x, ǫ) ⊂ G. By definition of measurability,
the set-valued mappings (λ, x) → {x} × F and (λ, x) → Ψ(µλ , νλ ) − ({x} × F ) are thus measurable
(see [9], Proposition 14.11(c)). The latter mapping being also closed valued, we conclude that







(λ, x) : Ψ(µλ , νλ ) − ({x} × F ) ∩ {0} =
6 ;

is a measurable set, which finishes the proof.
Proof of Theorem 1.1 Since any σ-finite measure is equivalent to a finite one, we can assume
without loss of generality that m is finite.
For a fixed k ≥ 1, we denote by (An,k )n∈Zd the partition of Rd in dyadic half-open rectangles of size
2−d k , that is

d 
Y
ni ni + 1
,
An,k :=
, where n = (n1 , . . . , nd ) ∈ Zd .
k
k
2
2
i=1
Consider the sets Bn,k = {(λ, x) ∈ E × Rd : ({x} × An,k ) ∩ Ψ(µλ , νλ ) 6= ;}, with Ψ defined by (2).



S Qd
ni ni +1
1
Notice that since An,k = j∈N i=1 2k , 2k − 2k+ j , one has
(
Bn,k =

[
j∈N

(λ, x) :

{x} ×

d 
Y
n
i=1

i

,
k
2

ni + 1
2k



1

!

2k+ j

)
∩ Ψ(µλ , νλ ) 6= ; ,

and so Bn,k is measurable thanks to Corollary 2.3.
Denote now by an,k ∈ An,k the “center” of the set, and define a Σ ⊗ B(Rd )−measurable function

by
X
T k (λ, x) =

an,k 1Bn,k (λ, x).

n∈Zd

(3)

Optimal transportation and coupling of martingale measures

129

For each λ ∈ E, let νλk be the discrete measure defined by pushing forward µλ through T k , that is,
Z
νλk (A)

1 T k (λ,x)∈A µλ (d x), A ∈ B(Rd ).


=

˜ ∈ E˜, H(µ ˜ , ν ˜ , c)
Denote also by E˜ ∈ Σ a measurable set with m( E˜ c ) = 0 and such that for all λ
λ λ
holds.
By hypothesis, for each λ ∈ E˜ we have that
µλ (d x) almost surely: 1Bn,k (λ, x) = 1{x:Tλ (x)∈An,k } .

(4)

where Tλ has been defined in the statement of Theorem 1.1. This implies that
Z
νλk ({an,k }) =

1Bn,k (λ, x)µλ (d x) = µλ ({x : Tλ (x) ∈ An,k }) = νλ (An,k )

by definition of Tλ .
We now check that (T k )k∈N is a Cauchy sequence in L 1 (E × Rd , m(dλ)µλ (d x)). Fix k ≤ k′ , and for


each n ∈ Zd denote by {An′ ,k′ }n′ the unique partition of An,k in dyadic rectangles of size 2−d k . We
then have that
Z Z


E

Rd

|T k (λ, x) − T k (λ, x)|µλ (d x)m(dλ)
Z Z
X

X

=

Rd n∈Zd n′ :An′ ,k′ ⊂An,k

E


1Bn′ ,k′ (λ, x)|an,k − an′ ,k′ |µλ (d x)m(dλ)

Z
X

=

X

E n∈Zd n′ :An′ ,k′ ⊂An,k

|an,k − an′ ,k′ |νλ (An′ ,k′ )m(dλ)

Z
X



E n∈Zd


2−k

X

νλ (An′ ,k′ )m(dλ)

n′ :An′ ,k′ ⊂An,k

Z
=

X

2−k νλ (An,k )m(dλ)

E n∈Zd

Z
=2

νλ (Rd )m(dλ) = 2−k m(E),

−k
E

and the Cauchy property follows since m(E) < ∞.
Let us denote by T the limit in L 1 (E × Rd , m(dλ)µλ (d x)) of the sequence T k . Theorem 1.1 will
be proved by verifying that for all λ in a set of Σ of full m-measure set, one has πλ (d x, d y) =
µλ (d x)δ T (λ,x) (d y). To that end, it is enough to check that
Z

Z
g(x) f (T (λ, x))µλ (d x) =

g(x) f ( y)πλ (d x, d y)

for any pair f , g : Rd → R of bounded Lipschitz-continuous functions. We denote by k f k :=
| f (x)− f ( y)|
sup x6= y |x− y| + sup x | f (x)| and kgk their corresponding norms.

130

Electronic Communications in Probability

We have for λ ∈ E˜ that
Z
Z



g(x) f ( y)πλ (d x, d y)− g(x) f (T (λ, x))µλ (d x)
Z

Z


j
≤ g(x) f ( y)πλ (d x, d y) − g(x) f (T (λ, x))µλ (d x)
Z



+ kgkk f k T j (λ, x) − T (λ, x) µλ (d x)

(5)

:=∆ j + ∆′j .
R

Since T j (λ, x) − T (λ, x) µλ (d x) converges in L 1 (m(dλ)) to 0, there is set Eˆ ∈ Σ of full measure
and a subsequence T ji such that limi→∞ ∆′ji = 0 for all λ ∈ E¯ := E˜ ∩ Eˆ.
It is therefore enough to show that for all λ ∈ E¯, one has ∆ j → 0 as j goes to ∞. First, we claim
that for λ ∈ E¯, one has for any Borel set C ⊆ Rd and all n ∈ Zd , k ∈ N that
Z
€
Š
1C×An,k (x, T j (λ, x))µλ (d x) = πλ C × An,k
for all j ≥ k.
(6)
Fix a Borel set Dλ of Rd of full µλ measure (which might depend on C, k and n) where (4) is
everywhere true. Then,
Z
Z
1C×An,k (x, T j (λ, x))µλ (d x) =

1(Dλ ∩C)×An,k (x, T j (λ, x))µλ (d x)
!

Z
=

1(Dλ ∩C)×An,k

x,

X

am, j 1Bm, j (λ, x)

µλ (d x)

m∈Zd




Z
=


1(Dλ ∩C)×An,k  x,

Remark now that for all j ≥ k, y ∈ An,k ⇐⇒
j ≥ k,
Z
Z
1C×An,k (x, T j (λ, x))µλ (d x) =

X


am, j 1Am, j (Tλ (x)) µλ (d x).

m:am, j ∈An,k

P
m:am, j ∈An,k

am, j 1Am, j ( y) ∈ An,k . This yields, for all

€
Š
1(Dλ ∩C)×An,k (x, Tλ (x))µλ (d x) = πλ C × An,k

establishing (6). Next, we introduce for each k ∈ N an approximation of h : Rd → R a bounded
Lipschitz-continuous function by step functions
X
h(k) (x) :=
h(an,k )1An,k (x), x ∈ Rd .
n∈Zd

(k)

−k

One has |h(x) − h (x)| ≤ khkd2 for all x ∈ Rd , from which it follows that
Z

Z


(k)
(k)
j
(k)
(k)
−k

∆ j ≤ d2 (4k f kkgk) + g (x) f (T (λ, x))µλ (d x) − g (x) f ( y)πλ (d x, d y) ≤
Z

X
€
Š

−k
j

|g(an,k )|| f (am,k )| 1Am,k ×An,k (x, T (λ, x))µλ (d x) − πλ Am,k × An,k
d2 (4k f kkgk) +
m,n∈Zd

Optimal transportation and coupling of martingale measures

131

for all k ∈ N. Thanks to (6), the sum identically vanishes for all j ≥ k. This means that ∆ j → 0 as
j goes to ∞, and the proof is complete.

3

Application: strong coupling for orthogonal martingale measures

We now develop an application of Theorem (1.1), which is a generalization of what has been
used in [3] to estimate the convergence rate of Landau type interacting particle systems. Let
(Ω, F , F t , P) be a filtered space and consider M an adapted orthogonal martingale measure on
R+ ×Rd (in the sense of Walsh [15]). Assume that its covariance measure has the form q t (d a)d k t ,
where q t (ω, d a) is a predictable random probability measure on Rd with finite second moment and
k t a predictable increasing process. Let us also consider another predictable random probability
measure qˆ t (ω, d a) on Rd with finite second moment.
We want to construct in the same probability space a second martingale measure with covariance
measure qˆ t (ω, d a)d k t , in such a way that in some sense, the distance between the martingale measures is controlled by the Wasserstein distance between their covariance measures. This distance
is defined for µ, ν ∈ P2 (Rd ) by W22 (µ, ν) = infπ 0 and for every
function φ : R+ × Ω × 
Rd → R that is
Rpredictable

SR
Lipschitz continuous in the last variable with E 0 φ 2 (s, a) qs (d a) + qˆs (d a) d ks < ∞, one has
‚Z t Z
E

sup
t≤S

0

Œ2 !

Z tZ
φ(s, ·, a)M (ds, d a) −

0

ˆ (ds, d a)
φ(s, ·, a) M

Z
≤E

!

S

(Ksφ )2

W22 (qs , qˆs )

d ks

0

(7)
where Ksφ (ω) is a measurable version of a Lipschitz constant of a 7→ φ(s, ω, a) and W22 is the
quadratic Wasserstein distance in P2 (Rd ).
Proof. Since q t (ω, d a) has a density for almost every (t, ω), assumption H(q t (ω, d a), qˆ t (ω, d a), c)
is satisfied. We can therefore apply Theorem 1.1 to (E, Σ, m) = (Ω × R+ , P r ed, P(dω)d k t (ω)),
where P r ed is the predictable σ−field with respect to F t . Then, there exists a predictable mapping T : R+ × Ω × Rd → Rd that for m-almost every (t, ω) pushes forward q t to qˆ t . Moreover, for
a.e. (t, ω), one has
Z
|a − T (t, ω, a)|2 q t (ω, d a) = W22 (q t , qˆ t ).
ˆ by the stochastic integrals
One can thus define a martingale measure M
Z tZ

Z tZ
ˆ (ds, d a) :=
ψ(s, a) M

0

ψ(s, T (s, a))M (ds, d a)
0

,

132

Electronic Communications in Probability

for predictable simple functions ψ. Its covariance measure is by construction qˆ t (d a)d k t , and by
Doob’s inequality, the left hand side of (7) is less than
!
Œ
‚Z
ZS
Z S Z

2
2
φ 2
|φ(s, a) − φ(s, T (s, a))| qs (d a)d ks ≤ E
|a − T (s, a)| qs (d a) d ks
E
(Ks )
0

0

Z
≤E

!

S

(Ksφ )2 W22 (qs , qˆs ) d ks

,

0

by definition of T and of W22 .
Remark 3.2. In general, a coupling satisfying the estimate (7) can be obtained by constructing an or˜ (d t, d a, d a′ ) on R+ ×Rd ×Rd with covariance measure π t (d a, d a′ )d k t ,
thogonal martingale measure M
π t being an optimal transference plan between q t and qˆ t . Then, the marginal martingale measures
˜ (d t, d a, Rd ) and M
˜ (d t, Rd , d a′ ) are orthogonal martingale measures with the required covariM
˜ (d t, d a, d a′ ) when the realization of
ances. Our argument provides a simple way of constructing M
one of the “marginal” martingale measures is given in advance.
An immediate consequence is
Corollary 3.3. Let the space (Ω, F , F t , P), the martingale measure M and the random measure
q t (d a)d k t be as in Theorem 3.1. Assume that (q tn (ω, d a))n∈N is a sequence of predictable random
Rt
probability measures on Rd in the same probability space, such that for all t > 0, 0 W22 (qs , qsn ) d ks
goes to 0 in L 1 (P) when n → ∞.
Then, there exists a sequence (Mn ) of orthogonal martingale measures in (Ω, F , F t , P) with covariRt
ance measures (q tn (d a)) such that for all t > 0 and all φ with ksups≤t Ksφ k L ∞ (P) < ∞, 0 φ(s, a)M n (ds, d a)
Rt
converges to 0 φ(s, a)M (ds, d a) in L 2 (P).
Acknowledgements We thank the anonymous referees for pointing out a gap in the proof of
Theorem 1.1 and for valuable comments that allowed us to improve the presentation of this work.

References
[1] EL KAROUI N., LEPELTIER J.P. : Représentation des processus ponctuels multivariés à l’aide
d’un processus de Poisson Z. Wahrsch. Verw. Geb. 39 (1977), 111–133. MR0448546
[2] EL KAROUI N., MÉLÉARD S. : Martingale measures and stochastic calculus, Probab. Th. Rel.
Fields 84 (1990), 83–101. MR1027822
[3] FONTBONA J., GUÉRIN H., MÉLÉARD S. : Mesurability of optimal transportation and convergence rate for Landau type interacting particle systems. Probab. Th. Rel. Fields 143 (2009),
329–351. MR2475665
[4] GANGBO W., MCCANN R.J. : The geometry of optimal transportation. Acta Math. 177 (1996),
113–161. MR1440931
[5] GRIGELIONIS B. : On the representation of integer valued measures by means of stochastic
integrals with respect to Poisson measures. Litov. Mat. Sb. 11 (1971), 93–108. MR0293703

Optimal transportation and coupling of martingale measures

133

[6] GUÉRIN, H. : Existence and regularity of a weak function-solution for some Landau equations
with a stochastic approach. Stochastic Process. Appl. 101 (2002), 303–325. MR1931271
[7] MÉLÉARD S., ROELLY S. : Discontinuous measure-valued branching processes and generalized
stochastic equations. Math. Nachr. 154 (1991), 141–156. MR1138376
[8] RACHEV S.T., RUSCHENDORF L. : Mass Transportation Problems, Vol. I . Probability and its
applications Springer (1998). MR1619171
[9] ROCKAFELLAR R.T., WETS R. J-B.: Variational Analysis.
Wissenschaften 317 Springer (1998). MR1491362

Grundlehren der mathematischen

[10] RÜSCHENDORF L. : The Wasserstein distance and approximation theorems. Z. Wahrsch. Verw.
Gebiete 70 (1985), 117–129. MR0795791
[11] SCHACHERMAYER W., TEICHMANN, J. : Characterization of optimal transport plans for the
Monge-Kantorovich-problem. Proc. Amer. Math. Soc. 137 (2009), 519–529. MR2448572
[12] TANAKA, H.: Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z.
Wahrsch. Verw. Geb. 46 (1978), 67–105. MR0512334
[13] VILLANI, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics Vol. 58,
AMS (2003). MR1964483
[14] VILLANI, C.: Optimal transport, old and new. Grundlehren der mathematischen Wissenschaften
338 Springer (2009). MR2459454
[15] WALSH, J.B.: An introduction to stochastic partial differential equations. École d’été de
Probabilités de Saint-Flour XIV, Lect. Notes in Math. 1180 (1984), 265-437. MR0876085

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52