Paper-18-Acta24.2010. 125KB Jun 04 2011 12:03:11 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 24/2010
pp. 201-209

A NOTE ON DIFFERENTIAL SUPERORDINATIONS USING
SĂLĂGEAN AND RUSCHEWEYH OPERATORS
Alina Alb Lupaş
Abstract. In the present paper we define a new operator using the Sălăgean
and Ruscheweyh operators. Denote by SRm the Hadamard product of the Sălăgean
operator S m and the Ruscheweyh operator Rm , given by SRm : An → An , SRm f (z)
= (S m ∗ Rm ) f (z) and An = {f ∈ H(U ), f (z) = z + an+1 z n+1 + . . . , z ∈ U } is the
class of normalized analytic functions. We study some differential superordinations
regarding the operator SRm .
2000 Mathematics Subject Classification: 30C45, 30A20, 34A40.
Keywords: Differential superordination, convex function, best subordinant, differential operator.
1. Introduction and definitions
Denote by U the unit disc of the complex plane U = {z ∈ C : |z| < 1} and H(U )
the space of holomorphic functions in U .
Let

An = {f ∈ H(U ), f (z) = z + an+1 z n+1 + . . . , z ∈ U }
and
H[a, n] = {f ∈ H(U ), f (z) = a + an z n + an+1 z n+1 + . . . , z ∈ U }
for a ∈ C and n ∈ N.
If f and g are analytic functions in U , we say that f is superordinate to g, written
g ≺ f , if there is a function w analytic in U , with w(0) = 0, |w(z)| < 1, for all z ∈ U
such that g(z) = f (w(z)) for all z ∈ U . If f is univalent, then g ≺ f if and only if
f (0) = g(0) and g(U ) ⊆ f (U ).
Let ψ : C2 × U → C and h analytic in U . If p and ψ (p (z) , zp′ (z) ; z) are
univalent in U and satisfies the (first-order) differential superordination
h(z) ≺ ψ(p(z), zp′ (z); z),

for z ∈ U,

(1)

then p is called a solution of the differential superordination. The analytic function
q is called a subordinant of the solutions of the differential superordination, or more
simply a subordinant, if q ≺ p for all p satisfying (1).
201


A. Alb Lupas - A note on differential superordinations using Sălăgean...

An univalent subordinant qe that satisfies q ≺ qe for all subordinants q of (1) is
said to be the best subordinant of (1). The best subordinant is unique up to a
rotation of U .
Definition 1. (Sălăgean [4]) For f ∈ An , n ∈ N, m ∈ N ∪ {0}, the operator S m
is defined by S m : An → An ,
S 0 f (z) = f (z)
S 1 f (z) = zf ′ (z)
...
S

m+1

f (z) = z (S m f (z))′ ,

z ∈ U.

P

P∞
j
m
m
j
Remark 1. If f ∈ An , f (z) = z+ ∞
j=n+1 aj z , then S f (z) = z+ j=n+1 j aj z ,
z ∈ U.
Definition 2. (Ruscheweyh [3]) For f ∈ An , n ∈ N, m ∈ N ∪ {0}, the operator
Rm is defined by Rm : An → An ,
R0 f (z) = f (z)
R1 f (z) = zf ′ (z)
...
(m + 1) R

m+1

f (z) = z (Rm f (z))′ + mRm f (z) ,

z ∈ U.


P
P∞
j
m
m
j
Remark 2. If f ∈ An , f (z) = z+ ∞
j=n+1 aj z , then R f (z) = z+ j=n+1 Cm+j−1 aj z ,
z ∈ U.
Definition 3. [2] We denote by Q the set of functions that are analytic and
injective on U \E (f ), where E (f ) = {ζ ∈ ∂U : lim f (z) = ∞}, and f ′ (ζ) 6= 0 for
z→ζ

ζ ∈ ∂U \E (f ). The subclass of Q for which f (0) = a is denoted by Q (a).
We will use the following lemmas.
Lemma 1. (Miller and Mocanu [2]) Let h be a convex function with h(0) = a,
and let γ ∈ C\{0} be a complex number with Re γ ≥ 0. If p ∈ H[a, n] ∩ Q,
p(z) + γ1 zp′ (z) is univalent in U and
h(z) ≺ p(z) +


1 ′
zp (z),
γ
202

for z ∈ U,

A. Alb Lupas - A note on differential superordinations using Sălăgean...

then
q(z) ≺ p(z),
where q(z) = nzγγ/n
best subordinant.

Rz
0

for z ∈ U,


h(t)tγ/n−1 dt, for z ∈ U. The function q is convex and is the

Lemma 2. (Miller and Mocanu [2]) Let q be a convex function in U and let
h(z) = q(z) + γ1 zq ′ (z), for z ∈ U, where Re γ ≥ 0. If p ∈ H [a, n] ∩ Q, p(z) + γ1 zp′ (z)
is univalent in U and
q(z) +

1
1 ′
zq (z) ≺ p(z) + zp′ (z) ,
γ
γ

for z ∈ U,

then
q(z) ≺ p(z),
where q(z) =

γ

nz γ/n

Rz
0

for z ∈ U,

h(t)tγ/n−1 dt, for z ∈ U. The function q is the best subordinant.
2. Main results

Definition 4. [1] Let m ∈ N. Denote by SRm the operator given by the
Hadamard product (the convolution product) of the Sălăgean operator S m and the
Ruscheweyh operator Rm , SRm : An → An ,
SRm f (z) = (S m ∗ Rm ) f (z) .

Remark 3. If f ∈ An , f (z) = z +
P∞
m
m 2 j
j=n+1 Cm+j−1 j aj z .


P∞

j=n+1 aj z

j,

then SRm f (z) = z +

Theorem 1. Let h be a convex function, h(0) = 1. Let m ∈ N ∪ {0}, f ∈ An
m
and suppose that z1 SRm+1 f (z) + m+1
z (SRm f (z))′′ is univalent and (SRm f (z))′ ∈
H [1, n] ∩ Q. If
h(z) ≺

m
1
SRm+1 f (z) +
z (SRm f (z))′′ ,

z
m+1

for z ∈ U,

(2)

then
q(z) ≺ (SRm f (z))′ ,
Rz

1
−1
n

for z ∈ U,

dt. The function q is convex and it is the best subordiwhere q(z) = 1 1 0 h(t)t
nz n
nant.

P
m
m+1 a2 z j−1
Proof. With notation p (z) = (SRm f (z))′ = 1 + ∞
j
j=n+1 Cm+j−1 j
203

A. Alb Lupas - A note on differential superordinations using Sălăgean...
P
j
and p (0) = 1, we obtain for f (z) = z + ∞
j=n+1 aj z ,
1
m

m+1
m
p (z) + zp (z) = z SR
f (z) + z m+1 (SR f (z))′′ . Evidently p ∈ H[1, n].

Then (2) becomes
h(z) ≺ p(z) + zp′ (z),

for z ∈ U.

By using Lemma 1, we have
q(z) ≺ p(z),
where q(z) =
dinant.

1
1
nz n

Rz
0

for z ∈ U,

i.e. q(z) ≺ (SRm f (z))′ ,

for z ∈ U,

1

h(t)t n −1 dt. The function q is convex and it is the best subor-

Corollary No. 1 Let h(z) = 1+(2β−1)z
be a convex function in U , where 0 ≤
1+z
m
β < 1. Let m ∈ N∪{0}, f ∈ An and suppose that z1 SRm+1 f (z)+ m+1
z (SRm f (z))′′

is univalent and (SRm f (z)) ∈ H [1, n] ∩ Q. If
h(z) ≺

m
1
SRm+1 f (z) +
z (SRm f (z))′′ ,
z
m+1

for z ∈ U,

(3)

then
q(z) ≺ (SRm f (z))′ ,
for z ∈ U,
R z t n1 −1
where q is given by q(z) = 2β − 1 + 2(1−β)
1
0 1+t dt, for z ∈ U. The function q is
nz n
convex and it is the best subordinant.
Proof. Following the same steps as in the proof of Theorem 1 and considering
p(z) = (SRm f (z))′ , the differential superordination (3) becomes
h(z) =

1 + (2β − 1)z
≺ p(z) + zp′ (z),
1+z

for z ∈ U.

By using Lemma 1 for γ = 1, we have q(z) ≺ p(z), i.e.,
Z z
Z z
1
1
1
1 + (2β − 1) t
1
−1
n
dt
dt
=
q(z) =
h
(t)
t
t n −1
1
1
1+t
nz n 0
nz n 0
1
Z
2(1 − β) z t n −1
= 2β − 1 +
dt ≺ (SRm f (z))′ , for z ∈ U.
1
1
+
t
0
nz n
The function q is convex and it is the best subordinant.

204

A. Alb Lupas - A note on differential superordinations using Sălăgean...

Theorem No. 2 Let q be convex in U and let h be defined by h (z) = q (z) +
m
zq ′ (z) . If m ∈ N ∪ {0}, f ∈ An , suppose that z1 SRm+1 f (z) + m+1
z (SRm f (z))′′ is

univalent, (SRm f (z)) ∈ H [1, n] ∩ Q and satisfies the differential superordination
h(z) = q (z) + zq ′ (z) ≺

1
m
SRm+1 f (z) +
z (SRm f (z))′′ ,
z
m+1

for z ∈ U,

(4)

then
q(z) ≺ (SRm f (z))′ ,
1
1
nz n

Rz

for z ∈ U,

1

h(t)t n −1 dt. The function q is the best subordinant.
P
m
m+1 a2 z j−1 .
Proof. Let p (z) = (SRm f (z))′ = 1 + ∞
j
j=n+1 Cm+j−1 j

where q(z) =

0

m
(SRm f (z))′′ , for
Differentiating, we obtain p(z) + zp′ (z) = z1 SRm+1 f (z) + z m+1
z ∈ U and (4) becomes

q(z) + zq ′ (z) ≺ p(z) + zp′ (z) ,

for z ∈ U.

Using Lemma 2, we have
q(z) ≺ p(z), for z ∈ U, i.e. q(z) =

1
nz

1
n

Z

z

1

h(t)t n −1 dt ≺ (SRm f (z))′ , for z ∈ U,

0

and q is the best subordinant.
Theorem 3. Let h be a convex function, h(0) = 1. Let m ∈ N, f ∈ An and
m
suppose that (SRm f (z))′ is univalent and SR zf (z) ∈ H [1, n] ∩ Q. If
h(z) ≺ (SRm f (z))′ ,
then
q(z) ≺

SRm f (z)
,
z

for z ∈ U,

(5)

for z ∈ U,

Rz
1
where q(z) = 1 1 0 h(t)t n −1 dt. The function q is convex and it is the best subordinz n
nant.
P
m
m 2 j
m
z+ ∞
j=n+1 Cm+j−1 j aj z
=
Proof. Consider p (z) = SR zf (z) =
z
P
m
m 2 j−1 . Evidently p ∈ H[1, n].
1+ ∞
j=n+1 Cm+j−1 j aj z
Differentiating, we obtain p (z) + zp′ (z) = (SRm f (z))′ .
Then (5) becomes
h(z) ≺ p(z) + zp′ (z),
205

for z ∈ U.

A. Alb Lupas - A note on differential superordinations using Sălăgean...

By using Lemma 1, we have
q(z) ≺ p(z),
where q(z) =
dinant.

1
1
nz n

Rz
0

for z ∈ U,

i.e. q(z) ≺

SRm f (z)
,
z

for z ∈ U,

1

h(t)t n −1 dt. The function q is convex and it is the best subor-

Corollary 2. Let h(z) =

1+(2β−1)z
1+z

be a convex function in U , where 0 ≤ β < 1.

Let m ∈ N ∪ {0}, f ∈ An and suppose that (SRm f (z))′ is univalent and
H [1, n] ∩ Q. If
h(z) ≺ (SRm f (z))′ ,
for z ∈ U,
then
q(z) ≺

SRm f (z)
,
z

SRm f (z)
z



(6)

for z ∈ U,

R z t n1 −1
where q is given by q(z) = 2β − 1 + 2(1−β)
1
0 1+t dt, for z ∈ U. The function q is
nz n
convex and it is the best subordinant.
Proof. Following the same steps as in the proof of Theorem 3 and considering
p(z) =

SRm f (z)
,
z

the differential superordination (6) becomes
h(z) =

1 + (2β − 1)z
≺ p(z) + zp′ (z),
1+z

for z ∈ U.

By using Lemma 1 for γ = 1, we have q(z) ≺ p(z), i.e.,
Z z
Z z
1
1
1
1
1 + (2β − 1) t
−1
q(z) =
h (t) t n dt =
t n −1
dt
1
1
1+t
nz n 0
nz n 0
1
Z
2(1 − β) z t n −1
SRm f (z)
= 2β − 1 +
dt

, for z ∈ U.
1
z
0 1+t
nz n
The function q is convex and it is the best subordinant.
Theorem 4. Let q be convex in U and let h be defined by h (z) = q (z) + zq ′ (z) .
m
If m ∈ N∪{0}, f ∈ An , suppose that (SRm f (z))′ is univalent, SR zf (z) ∈ H [1, n]∩Q
and satisfies the differential superordination
h(z) = q (z) + zq ′ (z) ≺ (SRm f (z))′ ,
then
q(z) ≺

SRm f (z)
,
z
206

for z ∈ U,

for z ∈ U,

(7)

A. Alb Lupas - A note on differential superordinations using Sălăgean...

where q(z) =

1
1
nz n

Rz
0

1

h(t)t n −1 dt. The function q is the best subordinant.

Proof. Let p (z) =

SRm f (z)
z

=

z+

P∞

j=n+1

m
Cm+j−1
j m a2j z j
z

=

P
m
m 2 j−1 . Evidently p ∈ H[1, n].
1+ ∞
j=n+1 Cm+j−1 j aj z
Differentiating, we obtain p(z)+zp′ (z) = (SRm f (z))′ , for z ∈ U and (7) becomes
q(z) + zq ′ (z) ≺ p(z) + zp′ (z) ,

for z ∈ U.

Using Lemma 2, we have
q(z) ≺ p(z), for z ∈ U,

i.e. q(z) =

1
1

nz n

Z

z

SRm f (z)
, for z ∈ U,
z

1

h(t)t n −1 dt ≺

0

and q is the best subordinant.
Theorem 5. Let h be a 
convex function, h(0) = 1. Let m ∈ N ∪ {0}, f ∈ An

m+1 f (z)
zSRm+1 f (z)
is univalent and SR
and suppose that
SRm f (z)
SRm f (z) ∈ H [1, n] ∩ Q. If
h(z) ≺



zSRm+1 f (z)
SRm f (z)

then

′

SRm+1 f (z)
,
SRm f (z)

q(z) ≺

for z ∈ U,

,

(8)

for z ∈ U,

Rz
1
where q(z) = 1 1 0 h(t)t n −1 dt. The function q is convex and it is the best subordin
nz
nant.
P
m+1 f (z)
C m+1 j m+1 a2j z j
z+ ∞
Pj=n+1 m+j
=
=
Proof. Consider p (z) = SR
SRm f (z)
z+ ∞
Cm
j m a2 z j
j=n+1

P
1+ ∞
C m+1 j m+1 a2j z j−1
Pj=n+1 m+j
m
m 2 j−1 .
1+ ∞
j=n+1 Cm+j−1 j aj z

m+j−1

j

Evidently p ∈ H[1, n].


m f (z))′
(SRm+1 f (z))

We have p′ (z) = SRm f (z) −p (z)· (SR
SRm f (z) and p (z)+zp (z) =
Then (8) becomes

h(z) ≺ p(z) + zp′ (z),



zSRm+1 f (z)
SRm f (z)

for z ∈ U.

By using Lemma 1, we have
q(z) ≺ p(z),

for z ∈ U,

i.e. q(z) ≺

207

SRm+1 f (z)
,
SRm f (z)

for z ∈ U,

′

.

A. Alb Lupas - A note on differential superordinations using Sălăgean...

where q(z) =
dinant.

1
1
nz n

Rz
0

1

h(t)t n −1 dt. The function q is convex and it is the best subor-

Corollary 3. Let h(z) =

1+(2β−1)z
1+z

be a convex function in U , where 0 ≤ β < 1.


m+1 f (z) ′
m+1 f (z)
is univalent, SR
Let m ∈ N ∪ {0}, f ∈ An and suppose that zSR
m
SR f (z)
SRm f (z) ∈
H [1, n] ∩ Q. If
′

zSRm+1 f (z)
,
for z ∈ U,
(9)
h(z) ≺
SRm f (z)
then

SRm+1 f (z)
,
for z ∈ U,
SRm f (z)
R z t n1 −1
where q is given by q(z) = 2β − 1 + 2(1−β)
1
0 1+t dt, for z ∈ U. The function q is
nz n
convex and it is the best subordinant.
Proof. Following the same steps as in the proof of Theorem 5 and considering
q(z) ≺

p(z) =

SRm f (z)
,
z

the differential superordination (9) becomes
h(z) =

1 + (2β − 1)z
≺ p(z) + zp′ (z),
1+z

for z ∈ U.

By using Lemma 1 for γ = 1, we have q(z) ≺ p(z), i.e.,
Z z
Z z
1
1
1
1
1 + (2β − 1) t
−1
h (t) t n dt =
t n −1
q(z) =
dt
1
1
1+t
nz n 0
nz n 0
1
Z
SRm+1 f (z)
2(1 − β) z t n −1
dt

, for z ∈ U.
= 2β − 1 +
1
SRm f (z)
0 1+t
nz n
The function q is convex and it is the best subordinant.
Theorem 6. Let q be convex in U andlet h be defined
+ zq ′ (z) .
′ by h (z) = q (z)m+1
m+1
f (z)
f (z)
If m ∈ N ∪ {0}, f ∈ An , suppose that zSR
is univalent, SR
SRm f (z)
SRm f (z) ∈
H [1, n] ∩ Q and satisfies the differential superordination
h(z) = q (z) + zq ′ (z) ≺
then
q(z) ≺



zSRm+1 f (z)
SRm f (z)

SRm+1 f (z)
,
SRm f (z)
208

′

,

for z ∈ U,

for z ∈ U,

(10)

A. Alb Lupas - A note on differential superordinations using Sălăgean...

where q(z) =

1
1
nz n

Rz
0

1

h(t)t n −1 dt. The function q is the best subordinant.

Proof. Let p (z) = p (z) =

SRm+1 f (z)
SRm f (z)

=

P
m+1 m+1 2 j
z+ ∞
Cm+j
j
aj z
Pj=n+1

m
z+ j=n+1 Cm+j−1
j m a2j z j

=

P
m+1 m+1 2 j−1
1+ ∞
Cm+j
j
aj z
Pj=n+1
.

m
1+ j=n+1 Cm+j−1
j m a2j z j−1

Evidently p ∈ H[1, n].


m+1 f (z) ′
Differentiating, we obtain p(z) + zp′ (z) = zSR
, for z ∈ U and (10)
SRm f (z)
becomes
q(z) + zq ′ (z) ≺ p(z) + zp′ (z) , for z ∈ U.
Using Lemma 2, we have
q(z) ≺ p(z), for z ∈ U, i.e. q(z) =

1
1

nz n

Z

z

1

h(t)t n −1 dt ≺

0

SRm+1 f (z)
, for z ∈ U,
SRm f (z)

and q is the best subordinant.

References
[1] Alina Alb Lupaş, A note on differential subordinations using Sălăgean and
Ruscheweyh operators, Romai Journal, Proceedings of CAIM 2009, (to appear).
[2] S.S. Miller, P.T. Mocanu, Subordinants of Differential Superordinations, Complex Variables, vol. 48, no. 10, 2003, 815-826.
[3] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math.
Soc., 49 (1975), 109-115.
[4] G.St. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math.,
Springer Verlag, Berlin, 1013 (1983), 362-372.
Alb Lupaş Alina
Department of Mathematics
University of Oradea
str. Universităţii nr. 1, 410087, Oradea, Romania
email: dalb@uoradea.ro

209

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52