Paper14-Acta25-2011. 132KB Jun 04 2011 12:03:15 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 25/2011
pp. 165-176

ON APPLICATIONS OF GENERALIZED INTEGRAL OPERATOR
TO A SUBCLASS OF ANALYTIC FUNCTIONS

Gangadharan Murugusundaramoorthy, Kaliappan Vijaya and
Nanjundan Magesh
Abstract. Making use of generalized integral operator, we define a subclass
of analytic functions with negative coefficients. The main object of this paper is to
obtain coefficient estimates, closure theorems and extreme points. Also we obtain
radii of close-to-convexity, starlikeness and convexity and neighbourhood results for
functions in the generalized classR∗ (α, β, µ, η).
2000 Mathematics Subject Classification: 30C45.
1.Introduction and Preliminaries
Denote by A the class of functions of the form
f (z) = z +



X

an z n

(1)

n=2

that are analytic and univalent in the open disc U = {z : |z| < 1}. Also denote by
T the subclass of A consisting of functions of the form
f (z) = z −


X

an z n ,

an ≥ 0, z ∈ U.


(2)

φn z n

(3)

ψn z n ,

(4)

n=2

was introduced and studied by Silverman [21].
For functions Φ ∈ A given by
Φ(z) = z +


X

n=2


and Ψ ∈ A given by
Ψ(z) = z +


X

n=2

165

G.Murugusundaramoorthy, K. Vijaya and N. Magesh - On Applications of...

we define the Hadamard product (or convolution ) of Φ and Ψ by
(Φ ∗ Ψ)(z) = z +


X

φn ψn z n , z ∈ U.


(5)

n=2

We recall here a general Hurwitz-Lerch Zeta function Φ(z, s, a) defined in [23]
by
Φ(z, s, a) :=


X

zn
(n + a)s
n=0

(6)

(a ∈ C \ {Z0− }; s ∈ C, when |z| < 1 R(s) > 1 and |z| = 1)
where, as usual, Z0− := Z \ {N }, (Z := {0, ±1, ±2, ±3, ...}); N := {1, 2, 3, ...}.

Several interesting properties and characteristics of the Hurwitz-Lerch Zeta function Φ(z, s, a) can be found in the recent investigations by Choi and Srivastava [5],
Ferreira and Lopez [7], Garg et al. [9], Lin and Srivastava [12], Lin et al. [13],
and others. Srivastava and Attiya [22] (see also Raducanu and Srivastava [19], and
Prajapat and Goyal [17]) introduced and investigated the linear operator:
Jµ,b : A → A
defined in terms of the Hadamard product by
Jµ,b f (z) = Gb,µ ∗ f (z)

(7)

(z ∈ U ; b ∈ C \ {Z0− }; µ ∈ C; f ∈ A), where, for convenience,
Gµ,b (z) := (1 + b)µ [Φ(z, µ, b) − b−µ ] (z ∈ U ).

(8)

We recall here the following relationships (given earlier by [19]) which follow
easily by using (1), (7) and (8)
Jbµ f (z) = z +



∞ 
X
1+b µ

n+b

n=2

an z n .

(9)

Motivated essentially by the Srivastava-Attiya operator, Al-Shaqsi and Darus [?]
introduced and investigated the integral operator
η,k
Jµ,b
f (z) = z +


X


Cnη (b, µ)an z n .

(10)

n=2

where
Cnη (b, µ) = |



1+b
n+b



η!(n + k − 2)!
|
(k − 2)!(n + η − 1)!


166

(11)

G.Murugusundaramoorthy, K. Vijaya and N. Magesh - On Applications of...

and (throughout this paper unless otherwise mentioned) the parameters µ, b are
1,2
constrained as b ∈ C \ {Z0− }; µ ∈ C, k ≥ 2 and η > −1. Further note that Jµ,b
is
η,k
the Srivastava-Attiya operator, and J0,b
is the well-known Choi-Saigo- Srivastava
operator (see [6]). Assuming η = 1 and k = 2,we state the following integral
operators by specializing µ and b.

1. For µ = 0
Jb0 (f )(z) := f (z).
2. For µ = 1


z

Z

Jb1 (f )(z) :=

0

(12)

f (t)
dt := Lb f (z).
t

(13)

3. For µ = 1 and b = ν(ν > −1)
Jν1 (f )(z)


1+ν
:= Fν (f )(z) =


Z

z

t

ν−1

f (t)dt := z +

0


∞ 
X
1+ν


n=2

n+ν

an z n . (14)

4. For µ = σ(σ > 0) and b = 1
J1σ (f )(z) := z +

∞ 
X

n=2

2
n+1



an z n = I σ (f )(z),

(15)

where Lb (f ) and Fν are the integral operators introduced by Alexandor [1] and
Bernardi [4], respectively, and I σ (f ) is the Jung-Kim-Srivastava integral operator
[11] closely related to some multiplier transformation studied by Fleet [8]. Making
λ,k
use of the operator Jµ,b
, we introduce a new subclass of analytic functions with
negative coefficients and discuss some usual properties of the geometric function
theory of this generalized function class.
For α(α ≥ 0), β(0 ≤ β < 1), and η(η > −1), we let R(α, β, µ, η) denote the
subclass of A consisting of functions f (z) of the form (1) and satisfying the analytic
criterion


Re (1 − α)



′
η,k
Jµ,b
f (z)

 

+α z

 ′ ′ 
η,k
Jµ,b f (z)

> β,

z ∈ U.

(16)

We also let R∗ (α, β, µ, η) = R(α, β, µ, η) ∩ T .
We note that, by suitably specializing the parameters α, β, µ, η, the class R∗ (α, β, µ, η)
reduces to the classes studied in [2,3,20].
Motivated by the earlier works of Murugusundaramoorthy [14,15,16] and Prajapat et.al.,[17] we obtain the necessary and sufficient conditions for the functions
f (z) ∈ R∗ (α, β, µ, η), and to study the extreme points, closure properties, radii of
close-to-convexity, starlikness and convexity, δ− neighbourhoods for f (z) ∈ R∗ (α, β, µ, η).
167

G.Murugusundaramoorthy, K. Vijaya and N. Magesh - On Applications of...

2.Main Results
Theorem 1. Let the function f (z) be defined by (7). Then f (z) ∈ R∗ (α, β, µ, η), if
and only if

X

n[1 + (n − 1)α]Cnη (b, µ)an ≤ 1 − β,

(17)

n=2

α(α ≥ 0), β(0 ≤ β < 1), and η(η > −1).
Proof. Assume that inequality (17) holds and let |z| < 1. Then we have


 

′
 ′ ′


(1 − α) J η,k f (z) + α z J η,k f (z)
− 1

µ,b
µ,b
!

X

nCnη (b, µ)an z n−1

= |(1 − α) 1 −

n=2

+α 1 −


X

n

2

Cnη (b, µ)an z n−1

n=2

!

−1 |



X




n[1 + (n − 1)α]Cnη (b, µ)an z n−1


n=2

≤ 1 − β.

This shows that the values of (1−α)



′
η,k
Jµ,b
f (z) +α

 

z

 ′ ′
η,k
Jµ,b f (z)

lies in a circle

centered at w = 1 whose radius is 1 − β. Hence f (z) satisfies the condition (16).
Conversely, assume that the function f (z) defined by (7), is in the class R∗ (α, β, µ, η).
Then
Re



(1 − α)



′
η,k
Jµ,b
f (z)

= Re {(1 − α) 1 −


X

 

+α z

nCnη (b, µ)an z n−1

n=2

+α 1 −


X

n

2

Cnη (b, µ)an z n−1

n=2

> β, z ∈ U.

 ′ ′ 
η,k
Jµ,b f (z)
!

!

}

Letting z → 1 along the real axis, we obtain the desired inequality.
Corollary 1. Let the function f (z) defined by (7) be in the class R∗ (α, β, µ, η).
Then we have
(1 − β)
.
(18)
an ≤
n[1 + (n − 1)α]Cnη (b, µ)
168

G.Murugusundaramoorthy, K. Vijaya and N. Magesh - On Applications of...

The equation (18) is attained for the function
f (z) = z −

(1 − β)
zn
n[1 + (n − 1)α]Cnη (b, µ)

(n ≥ 2).

(19)

Let the functions fj (z) be defined, for j = 1, 2, . . . m, by
fj (z) = z −


X

an, j z n

an,

j

≥ 0, z ∈ U.

(20)

n=2

We shall prove the following results for the closure of functions in the class R∗ (α, β, µ, η).
Theorem 2. (Closure Theorem) Let the functions fj (z)(j = 1, 2, . . . m) defined by (20) be in the classes R∗ (α, βj , λ, η) (j = 1, 2, . . . m) respectively. Then the
function h(z) defined by




m

X
1 X

an, j  z n
h(z) = z −
m n=2 j=1

is in the class R∗ (α, β, µ, η), where β = min {βj } where 0 ≤ βj ≤ 1.
1≤j≤m

Proof. Since fj (z) ∈ R∗ (α, βj , µ, η) (j = 1, 2, . . . m) by applying Theorem 1, to
(20) we observe that




m
1 X
an, j 
n [1 + (n − 1)α]Cnη (b, µ) 
m
n=2
j=1

X

=



m
X
1 X
n [1 + (n − 1)α] Cnη (b, µ)an,
m j=1 n=2

j

!

m
1 X
(1 − βj )
m j=1

≤ 1−β

which in view of Theorem 1, h(z) ∈ R∗ (α, β, µ, η) and hence the proof is complete.
Theorem 3. Let f (z) defined by (7) and g(z) defined by g(z) = z −
in the class R∗ (α, β, µ, η). Then the function h(z) defined by
h(z) = (1 − λ)f (z) + λg(z) = z −


X

n=2

169

qn z n


P

n=2

bn z n be

G.Murugusundaramoorthy, K. Vijaya and N. Magesh - On Applications of...

where qn = (1 − λ)an + λbn ; 0 ≤ λ < 1 is also in the class R∗ (α, β, µ, η).
Theorem 4. (Extreme Points )
f1 (z) = z

Let

and

fn (z) = z −

(1 − β)
zn
n[1 + (n − 1)α]Cnη (b, µ)

(n ≥ 2)

(21)

for α ≥ 0, 0 ≤ β < 1 and η > −1. Then f (z) is in the class R∗ (α, β, µ, η) if and
only if it can be expressed in the form
f (z) =


X

λn fn (z)

(22)

n=1

where λn ≥ 0 (n ≥ 1) and


P

λn = 1.

n=1

Proof. Suppose that
f (z) = λ1 f1 (z) +


X

λn fn (z) = z −

n=2


X

(1 − β)
λn z n .
η
n[1
+
(n

1)α]C
(b,
µ)
n
n=2

Then it follows that

X
n[1 + (n − 1)α]

n=2

(1 − β)

Cnη (b, µ)λn

(1 − β)
≤1
n[1 + (n − 1)α]Cnη (b, µ)

by Theorem 1, f (z) ∈ R∗ (α, β, µ, η).
Conversely, suppose that f (z) ∈ R∗ (α, β, µ, η). Then an ≤
2) we set λn =
f (z) = λ1 f1 (z)

(1−β)
(n
η
n[1+(n−1)α]Cn
(b,µ)

P
1−
λn . We obtain
n=2

n[1+(n−1)α]
Cnη (b, µ) an (n ≥ 2) and λ1 =
(1−β)

P
+
λn fn (z). This completes the proof of Theorem
n=2

4.

3.Radius of Starlikeness and Convexity

In this section we obtain the radii of close-to-convexity, starlikeness and convexity
for the class R∗ (α, β, µ, η).
Theorem 5. Let the function f (z) defined by (7)belong to the class R∗ (α, β, µ, η).
Then f (z) is close-to-convex of order σ (0 ≤ σ < 1) in the disc |z| < r1 , where
r1 = r1 (α, β, µ, η, σ) := inf

n≥2



1−σ
[1 + (n − 1)α]Cnη (b, µ)
1−β


170



1
n−1

.

(23)



G.Murugusundaramoorthy, K. Vijaya and N. Magesh - On Applications of...

The result is sharp, with extremal function f (z) given by (19).
Proof. Given f ∈ T , and f is close-to-convex of order σ, we have
|f ′ (z) − 1| < 1 − σ.

(24)

For the left hand side of (24) we have


|f (z) − 1| ≤


X

nan |z|n−1 .

n=2

The last expression is less than 1 − σ if

X

n
an |z|n−1 < 1.
1

σ
n=2
Using the fact, that f ∈ R∗ (α, β, µ, η) if and only if

X
n[1 + (n − 1)α]

(1 − β)

n=2

Cnη (b, µ)an ≤ 1,

We can say (24) is true if
n
n[1 + (n − 1)α] η
|z|n−1 ≤
Cn (b, µ)
1−σ
(1 − β)
Or, equivalently,
n−1

|z|

=



1−σ
[1 + (n − 1)α]Cnη (b, µ)
1−β




Which completes the proof.
Theorem 6. Let f ∈ R∗ (α, β, µ, η). Then
1. f isnstarlike
o of order σ(0 ≤ σ < 1) is the disc |z| < r2 ; that is,
zf ′ (z)
Re
> σ, where
f (z)
r2 = inf

n≥2



n(1 − σ)
[1 + (n − 1)α]Cnη (b, µ)
(n − σ)(1 − β)




1
n−1

(n ≥ 2).

(25)

2. f isnconvex of order
σ (0 ≤ σ < 1) in the unit disc |z| < r3 , that is
o
zf ′′ (z)
Re 1 + f ′ (z) > σ, (|z| < r3 ; 0 ≤ σ < 1), where
r3 = inf

n≥2



(1 − σ)
[1 + (n − 1)α]Cnη (b, µ)
(n − σ)(1 − β)




171

1
n−1

(n ≥ 2).

(26)

G.Murugusundaramoorthy, K. Vijaya and N. Magesh - On Applications of...

Each of these results are sharp for the extremal function f (z) given by (21).
Proof. Given f ∈ T , and f is starlike of order σ, we have



zf (z)


f (z) − 1 < 1 − σ.

(27)

For the left hand side of (27) we have




zf (z)



1

f (z)


P

(n − 1)an |z|n−1

n=2

1−

.
an

|z|n−1

n=2

The last expression is less than 1 − σ if

X
n−σ

n=2


P

an |z|n−1 < 1.

1−σ

Using the fact, that f ∈ R∗ (α, β, µ, η) if and only if

X
n[1 + (n − 1)α]

n=2

(1 − β)

Cnη (b, µ)an ≤ 1.

We can say (27) is true if
n − σ n−1 n[1 + (n − 1)α]Cnη (b, µ)
|z|
<
1−σ
(1 − β)
Or, equivalently,
n−1

|z|

=



n(1 − σ)
[1 + (n − 1)α]Cnη (b, µ)
(n − σ)(1 − β)



which yields the starlikeness of the family.
(2)
Using the fact that f is convex if and only if zf ′ is starlike, we can
prove (2), on lines similar to the proof of (1).
4.Inclusion relations involving Nδ (e)
Following [10,18], we define the δ− neighborhood of function f (z) ∈ T by
Nδ (f ) :=

(

g ∈ T : g(z) = z −


X

bn z

n=2

172

n

and


X

n=2

)

n|an − bn | ≤ δ .

(28)

G.Murugusundaramoorthy, K. Vijaya and N. Magesh - On Applications of...

Particulary for the identity function e(z) = z, we have
Nδ (e) :=

(

g ∈ T : g(z) = z −


X

bn z

n

and

n=2


X

)

n|bn | ≤ δ .

n=2

(29)

Theorem 7. If
δ :=

(1 − β)
(1 + α)C2η (b, µ)

(30)

then R∗ (α, β, µ, η) ⊂ Nδ (e).
Proof. For f ∈ R∗ (α, β, µ, η), Theorem 1 immediately yields
2C2η (b, µ)(1 + α)


X

an ≤ 1 − β,

n=2

so that


X

an ≤

n=2

(1 − β)
+ α)

(31)

2C2η (b, µ)(1

On the other hand, from (17) and (31) that

X

nan ≤ (1 − β) − 2αC2η (b, µ)

n=2

an

n=2

≤ (1 − β) − 2αC2η (b, µ)

that is


X


X

(1 − β)
+ α)

2C2η (b, µ)(1

1−β
,
C2η (b, µ)(1 + α)
nan ≤

n=2

1−β
C2η (b, µ)(1

+ α)

:= δ

(32)

which, in view of the definition (29) proves Theorem 7.
Now we determine the neighborhood for the class R∗(ρ) (α, β, µ, η) which we define
as follows. A function f ∈ T is said to be in the class R∗(ρ) (α, β, µ, η) if there exists
a function g ∈ R∗(ρ) (α, β, µ, η) such that



f (z)


g(z) − 1 < 1 − ρ, (z ∈ U, 0 ≤ ρ < 1).

(33)

Theorem 8.If g ∈ R∗(ρ) (α, β, µ, η) and
ρ=1−

δC2η (b, µ)(1 + α)
2C2η (b, µ)(1 + α) − (1 − β)
173

(34)

G.Murugusundaramoorthy, K. Vijaya and N. Magesh - On Applications of...

then
Nδ (g) ⊂ R∗(ρ) (α, β, λ, η).

(35)

Proof. Suppose that f ∈ Nδ (g) we then find from (28) that

X

n|an − bn | ≤ δ

n=2

which implies that the coefficient inequality

X

δ
|an − bn | ≤ .
2
n=2
Next, since g ∈ R∗ (α, β, µ, η), we have

X

bn =

n=2

(1 − β)
2C2η (b, µ)(1 + α)

so that



f (z)


g(z) − 1

<


P

|an − bn |

n=2

1−


P

bn

n=2

2C2η (b, µ)(1 + α)
δ
×
η
2 2C2 (b, µ)(1 + α) − (1 − β)
δC2η (b, µ)(1 + α)

2C2η (b, µ)(1 + α) − (1 − β)
= 1 − ρ.



provided that ρ is given precisely by (35). Thus by definition, f ∈ R∗(ρ) (α, β, λ, η)
for ρ given by (35), which completes the proof.
References
[1] J. W. Alexander, Functions which map the interior of the unit circle upon
simple regions, Ann. of Math., 17(1915), 1222.
[2] H.S.Al-Amiri, On a subclass of close-to-convex functions with negative coefficients, Mathematica 31(54), No.1 (1989), 1-7.
[3] O.Altintas, A subclass of analytic functions with negative coefficients, Hocellepe. Bull. Natur. Sci. Engg., 19 (1990), 15-24.
174

G.Murugusundaramoorthy, K. Vijaya and N. Magesh - On Applications of...

[4] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer.
Math. Soc., 135,(1969), 429–446.
[5] J. Choi and H. M. Srivastava, Certain families of series associated with the
Hurwitz-Lerch Zeta function, Appl. Math. Comput., 170 (2005), 399-409.
[6] J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of a
certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432445.
[7] C. Ferreira and J. L. Lopez, Asymptotic expansions of the Hurwitz-Lerch Zeta
function, J. Math. Anal. Appl., 298(2004), 210-224.
[8] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some
related inequalities, J. Math. Anal. Appl., 38(1972), 746765
[9] M. Garg, K. Jain and H. M. Srivastava, Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch Zeta functions, Integral
Transform. Spec. Funct., 17(2006), 803-815.
[10] A.W.Goodman, Univalent functions and nonanalytic curves, Proc. Amer.
Math. Soc., (8) (1957), 598-601.
[11] I. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic
functions associated with certain one-parameter families of integral operators, J.
Math. Anal. Appl., 176(1993), 138147.
[12] S.-D. Lin and H. M. Srivastava, Some families of the Hurwitz-Lerch Zeta
functions and associated fractional derivative and other integral representations,
Appl. Math. Comput., 154(2004), 725-733.
[13] S.-D. Lin, H. M. Srivastava and P.-Y. Wang, Some espansion formulas
for a class of generalized Hurwitz-Lerch Zeta functions, Integral Transform. Spec.
Funct., 17(2006), 817-827.
[14] G.Murugusundaramoorthy, Unified class of analytic functions with negative coefficients involving the Hurwitz-Lerch Zeta function, Bulletin of Mathematical
Analysis and Applications, Volume 1 Issue 3(2009), 71-84.
[15] G.Murugusundaramoorthy, Subordination results and integral means inequalities for k- uniformly starlike functions defined by convolution involving the
Hurwitz-Lerch Zeta function, Studia Univ. ”Babes-Bolyai”, Mathematica,Volume
LV, Number 4,( 2010)155–165
[16] G.Murugusundaramoorthy, A subclass of analytic functions associated with
the Hurwitz-Lerch Zeta function, Hacepetee J Maths, Volume 39 (2) (2010), 265 272
[17] J. K. Prajapat and S. P. Goyal, Applications of Srivastava-Attiya operator to the classes of strongly starlike and strongly convex functions, J. Math. Inequal., 3(2009), 129-137.
[18] S.Rucheweyh, Neighborhoods of univalent functions, Proc.Amer.Math.Soc.,
81 (1981),521-527.

175

G.Murugusundaramoorthy, K. Vijaya and N. Magesh - On Applications of...

[19] D. Raducanu and H. M. Srivastava, A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function,
Integral Transform. Spec. Funct., 18(2007), 933-943.
[20] S.M.Sarangi and B.A. Uralegaddi, The radius of convexity and starlike for
certain classes of analytic functions with negative coefficients I, Rend. Acad.Nat.
Lincei., 65 (1978), 38 - 42.
[21] H. Silverman, Univalent functions with negative coefficients, Proc. Amer.
Math. Soc., 51, (1975), 109 - 116.
[22] H. M. Srivastava and A. A. Attiya, An integral operator associated with
the Hurwitz-Lerch Zeta function and differential subordination, Integral Transform.
Spec. Funct., 18(2007), 207–216.
[23] H. M. Srivastava and J. Choi, Series associated with the Zeta and related
functions, Dordrecht, Boston, London: Kluwer Academic Publishers, 2001.
Gangadharan Murugusundaramoorthy
School of Advanced Sciences
VIT University
Vellore - 632014,Tamil Nadu, India.
email : [email protected]
Kaliappan Vijaya
School of Advanced Sciences
VIT University
Vellore - 632014,Tamil Nadu, India.
email : [email protected]
Nanjundan Magesh
Department of Mathematics
Government Arts College (Men)
Krishnagiri-635001,Tamil Nadu, India.
email : nmagi [email protected]

176

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52