Miodrag Iovanov. 165KB Jun 04 2011 12:09:14 AM

Miodrag Iovanov-Determining of an extremal domain for the functions
from the S-class

DETERMINING OF AN EXTREMAL DOMAIN FOR THE
FUNCTIONS FROM THE S-CLASS
by
Miodrag Iovanov
Abstract. Let S be the class of analytic functions of the form f(z) = z + a2 z2 +…, f(0)= 0,

f′(0)=1 defined on the unit disk z 0 given. For solving the problem we
shall use the variational method of Schiffer-Goluzin [1].
Key words: olomorf functions, variational method, extremal functions.

1. Let S the class of functions f(z) = z + a2 z2 +…, f(0)= 0, f′(0)=1 holomorf
and univalent in the unit disk z 0 existed.
Geometrically this is expressed like in the figure below:

In region (Ωe) any parallel (Re z >Re|ze| ) to Ox, is intersected f( z = r), in
one point. Because the class S is compact, exists this region. In this paper we will
resolve this problem with the variational method of Schiffer-Goluzin [1].


135

Miodrag Iovanov-Determining of an extremal domain for the functions
from the S-class
2.Let z = r and let f ∈ S with Rez f′(z)=0, extremal function for exists the

maximum max Re f(z), f ∈ S. We consider a variation f∗(z) for the function f(z) given
by Schiffer-Goluzin formula [1],

ψ real, where
(1)

(2)

f * ( z ) = f ( z ) + λV ( z; ζ ;ψ ) + O(λ2 ), ζ < 1, λ > 0


V(z;ζ ;ψ ) = e iψ



 iψ zf ′( z )
⋅ζ
− e ⋅
z −ζ


 f (ζ ) 
f 2 ( z)
− e iψ f(z)
 −
f ( z ) − f (ζ )
 ζf ′(ζ ) 
2

 f (ζ ) 
z 2 f ′( z )  f (ζ ) 
− iψ
⋅ζ 
⋅
 .

 +e ⋅
1−ζ z
ζf ′(ζ ) 
ζf ′(ζ ) 
2

2

Is known that for λ sufficiently small, the function f∗(z) is in the class S. We
consider a variation z∗ for z:
z∗ =z + λ h + O( λ 2), h=

∂z ∗
∂λ

λ =0

where satisfy the conditions:
(3)


z ∗ = r şi Re z∗ f∗’ (z∗)=0

Observing that :

z∗

2

= z

2

+ 2λ Re( z h) +O( λ2 ) = r2.

Because z = r from relation (3) we obtain :
(4)

Re ( z h) = 0.

Replacing z with z∗ in f∗(z) we have : z∗f∗’(z∗) = A +B λ + O( λ2 ) where :


A = hf ' ( z )


 B = hf ' ( z ) + zhf ' ' ( z ) + zV ' ( z; ζ ;ψ )

The condition Re z∗f∗’(z∗) =0 from relation (3) become:

136

Miodrag Iovanov-Determining of an extremal domain for the functions
from the S-class
Re {h( f ' ( z ) + zf " ( z )) + zV ' ( z; ζ ;ψ )} = 0 .

(5)

Because f(z) is extremes we have:

where is equivalent with :


Re f∗(z*) ≤ Re f(z)

Re { f ( z ) + λhf ′( z ) + L + λV ( z; ζ : ψ ) + L} ≤ Re f(z)
Re {hf ′( z ) + V ( z; ζ ;ψ )} ≤ 0.

or
(6)
From (5) ( h = −

z
h ) and (6) we obtain:
z
z
h( f ′( z ) + zf ′′( z )) + zV ′( z; ζ ;ψ ) − h (f ′(z ) + z ⋅ f ′′(z ) ) + z ⋅ V ′(z ; ξ ;ψ ) = 0
z

from where:

z z ⋅ V ( z; ζ ;ψ ) + z 2⋅V ′( z; ζ ;ψ )
/


(7)

h=

− zf ′( z ) − z 2 f ′′( z ) + z ⋅ f ′( z ) + z 2 ⋅ f ′′( z )

.

We will use the next denotations:
f= f(z),

w=f( ζ ) , l = f ′(z ), m = f ′′(z ) ,V = (z; ζ ;ψ ), V ′ = VZ′ ( z; ζ ;ψ ) .

With previous denotations, the relations (6) and (7) can be writhed as follows:
(8)

where p =

zl − z ⋅ l


− zl − z 2 m + z ⋅ l + z 2 ⋅ m

Re {pz V ′ +V } ≤ 0

(p real).

Ι .We suppose that Im (zl + z2m) ≠ 0 (-zl + z2m + z ⋅ l + z 2 ⋅ m ≠ 0 ). From
the relation (2) obtain:

137

Miodrag Iovanov-Determining of an extremal domain for the functions
from the S-class

 w 
f2
zl
 − e iψ ⋅
V =e ⋅

⋅ζ
− e iψ ⋅ f 
f −w
z −ζ
 ζ ⋅ w′ 
2



 w 
 w 
z 2l

 + e −iψ ⋅
⋅ ξ ⋅ 
⋅ 
/ 
1−ζ ⋅ z
 ζ ⋅ w′ 
ζ ⋅ w 

2

and

V′ = e



 w 
z( z − ζ ) ⋅ m − ζ ⋅ l
fl ( f − 2 w)
 − e iψ
⋅ζ
− e iψ ⋅ l ⋅ 

2
( f − w)
(z − ζ )2
 ζ ⋅ w′ 
2


+e

−iψ

z 2 (1 − ζ ⋅ z )m + zl ( 2 − ζ z )
⋅ζ
(1 − ζ z ) 2

[

 w 
 +
⋅ 
/ 
ζ ⋅w 
2

 w 
 .
⋅.
/ 
ζ ⋅w 
2

]

Replacing in relation (8) the expression of V and V / we obtain:
Re e iψ ( E − GF ) ≤ 0,

(9)
where:

[

]


f (− f − 2 pzl ) w + f 2 + pzlf
=
E

( f − w) 2

2

⋅l
zl
z
G = f +
ζ−
ζ + pzl +
z −ζ

(1 − zζ ) 2

2
+ pz[z ( z − ζ )m − ζ ⋅ l ] ⋅ ζ − pz z (1 − ζ ⋅ z ) ⋅ m + z ⋅ l ⋅ (2 − ζ ⋅ z ) ⋅ ζ

(z − ζ )2
(1 − z⋅) 2

2

 w 
 .
 F = 

 ζ w′ 

[

]

Because ψ is arbitrary, from relation (8) is result that the function w = f (ξ )
has to satisfy the differential equation :

138

2

Miodrag Iovanov-Determining of an extremal domain for the functions
from the S-class

[

∑t ζ

]

 ζ ⋅ w′  f (− f − 2 pzl ) w + f + pzlf
k =0
=

 ⋅
( f − w) 2
( z − ζ ) 2 (1 − z ⋅ ζ ) 2
 w 
2

(10)

2

4

k

k

where
t 0 = z 2 ( f + pzl ) + f

2
t1 = −2 zf (1 + r 2 ) + z 2 l − z l − 2 plz 2 (1 − r 2 ) + pz 3 m − pr 2 ( m z + 2l ),

4
2
2
2
4
4
2
t 2 = f (r + 4r + 1) − zl ( 2r + 1) − z ⋅ l (2r + r ) + pzl ( r + 4r + 1) −

2
2
4
− pz (2r ⋅ zm + mz + l ) + pz 2r (m ⋅ z + 2 ⋅ l ) + r ( m ⋅ z + l )
2

2
2
2
2
2
2
2
t 3 = −2 f z (1 − 2r ) + r zl ( z + 2) − z l (1 + 2r ) + pr ( −2r + mr z + 2mz − m z − 2l − 2r z m − 2r l )
2
4
2

4
t 4 = f z + p m( z − z ) + z (lz − l ⋅ z ) ..

[

[

]

]

The extremal function transforms the unit disk in the domain without external
points. To justify this thing is sufficient to suppose that the transformed domain by an
external function w = f (ζ ) has an external point w0 and to consider the function the
variation:

f * ( z ) = f ( z ) + λe i ψ

f 2 (z )
, λ >0, ψ real, f * ∈ S
f (z ) − w 0

3.Is known that the extrema function w = f (ζ ) transform the unit disk ζ <

1, in whole plane, cutted lengthwise of a finite number of analytically arc. Let q = e iθ ,
the point of the circle ζ =1 where corresponding the extremity of this kind of

section in which w / (q ) = 0 and ζ = q is double root for the polynom
Because ζ = q is double root for this polynom , we can write :

∑t ζ
4

k =0

k

k

(

= 1 − q ⋅ζ

) (a
2

0

139

)

+ a1ζ + a 2ζ 2 .

∑t ζ
4

k =0

k

k

.

Miodrag Iovanov-Determining of an extremal domain for the functions
from the S-class
From the relation about the coefficients tk , k = 0,4 results that we can take

a0 = t 0 , a1 = −2kq , a2 = q 2 ⋅ t 4 .

The differential equation (10) can be write:

2

(11)

] (

[

)

2
1 − qζ (t 0 − 2kqζ + q 2 t 4ζ 2 )
 ζw′  f (− f − 2 pzl )w + f + pzlf
.
=

 ⋅
2
( f − w )2
 w 
(z − ζ )2 1 − zζ

(

2

)

4.After radical extraction in (11) we obtain:

[

]

(1 − qζ ) t 0 − 2kqζ + q 2 t 4ζ 2
f (− f − 2 pzl )w + f 2 + pzlf
dw =
.
w( f − w)
ζ ( z − ζ )(1 − zζ )

[

]

From double integration:



w

(12)

0

ζ
(1 − qζ ) t0 − 2kqζ + q 2t4ζ 2
f (− f − 2 pzl )w + f 2 + pzlf
.
dw = ∫
w( f − w)
ζ ( z − ζ )(1 − zζ )
0

[

For calculation the integral from left side of (12) we denote:

I1 =



]

f (− f − 2 pzl )w + f 2 + pzlf
dw .
w( f − w)

We observe that :

f (− f − 2 pzl ) ∫

w + a2
f 2 + pzlf
= a2.
dw where we denoted
− f − 2 pzl
w( f − w)
2
2
For the calculation of I 1 we make the substitution : w = u − a , dw = 2udu. We
I1 =

obtain I 1 =

f (− f − 2 pzl ) ∫

− 2u 2 du
,b2 = a + f .
(u 2 − a 2 )(u 2 − b 2 )

Observe that :

140

Miodrag Iovanov-Determining of an extremal domain for the functions
from the S-class

− 2u 2
2a 2
1
2b 2
1
=


⋅ 2
.
2
2
2
2
2
2
2
2
2
2
(u − a )(u − b ) b − a u − a
b − a u − b2
So:

I1 =

u−a
b
u − b
 a
f (− f − 2 pzl ) ⋅  2
ln
ln
− 2
2
2
u+a b −a
u + b 
b − a

or

f − (− f − 2 pzl )

I1 =

(13)

b2 − a2

where :

 u − a  a  u + b  b 
⋅ ln 
 ⋅
 
 u + a   u − b  

u = w + a2

.

For calculation the integral from right side of (12) we denote:

I2 = ∫

(1 − qζ ) t 0 − 2kqζ + q 2 t 4ζ 2

ζ ( z − ζ )(1 − zζ )

dζ .

We have: q 2 t 4ζ 2 − 2kqζ + t 0 = q 2 t 4 ⋅ (ζ − ζ 1 )(ζ − ζ 2 )

where ζ 1, 2 =

ζ1 =

δ

t4

k ± k 2 − t0t4

q and ζ 2 =

t4
t0

δ

with this denotations,

q. If we denotation k − k 2 − t 0 t 4 = δ observe that

q.
q 2 t 4 − 2kqζ + t 0 = q 2 t 4 (ζ −

δ
t4

q )(ζ −

calculate the integral I 2 make the substitution :
(14)

(ζ −

δ
t4

q )(ζ −

δ

t0

q ) = v(ζ −

From (14) obtain :

141

δ
t4

q) .

δ

t0

q ) . For the

Miodrag Iovanov-Determining of an extremal domain for the functions
from the S-class

ζ =σ ⋅

(15)

tt
v2 −α 2
δ
with σ = q and α 2 = 0 24 .
2
t4
δ
v −1

By an elementary calculation from (15) obtained successively:

(16)


σα 2 − z
v2 − β 2
2vσ (α 2 − 1)
2
ζ
ζ
σ
β
dv
z
z
d
=

=


=
,
(
)
cu
,

2
2
2
σ
z

v
v


(
1
)
1


v2 − δ 2
v2 − γ 2
1 − zσα 2
2
ζ
σ
ζ
σ
γ
q
q
cu
z
z

=

=

=


,
1
(
1
)
1
(
1
)

v2 −1
v2 −1
1 − zσ


t
δ
σ (1 − α 2 )v
1 − qσα 2
şi (ζ − q)(ζ − 0 q ) =
.
cu δ 2 =
δ
t4
v2 −1

1 − qσ

By using previous relations we obtain:

(17)

I2 =

2σq (1 − qσ )(1 − α 2 ) 2 t 4
(σ − z )(1 − zσ )

v 2 (v 2 − δ 2 )
∫ (v 2 − 1)(v 2 − α 2 )(v 2 − β 2 )(v 2 − γ 2 ) dv .

Let:

F (v ) =

v 2 (v 2 − δ 2 )
;
(v 2 − 1)(v 2 − α 2 )(v 2 − β 2 )(v 2 − γ 2 )

we are looking for a decomposition

(18)

F (v ) =

A
A
A
A
A
A1
A
A
+ 2 + 3 + 4 + 5 + 6 + 7 + 8 .
v −1 v +1 v −α v + α v − β v + β v − γ v + γ

From (1) we obtain the next values for the coefficients:

142

Miodrag Iovanov-Determining of an extremal domain for the functions
from the S-class
not

1−δ 2
A
A
= τ1
=
=
2
 1
2
2
2
α
β
γ
2
(
1
)(
1
)(
1
)





α (α 2 − δ 2 )
A
A
=τ2
=

=
 3
4
2(α 2 − 1)(α 2 − β 2 )(α 2 − γ 2 )


β (β 2 − δ 2 )
A = −A =
= τ3
6
 5
2( β 2 − 1)( β 2 − α 2 )( β 2 − γ 2 )

γ (γ 2 − δ 2 )

A
A
=

=
=τ4 ⋅
8
2
2
2
2
2
 7
γ
γ
α
γ
β
2
(
1
)(
)(
)





(19)

We denote, µ =

2σq (1 − qσ )(1 − α 2 ) 2 ⋅ t 4
(σ − z )(1 − zσ )

; from (18) and (19) we obtain

for I 2 the expression:
(20)


v −1
v −α
v−β
v −γ 
+ τ 4 ln
+ τ 3 ln
+ τ 2 ln
I 2 = µ τ 1 ln
.
v +1
v +α
v+β
v + γ 


From the relation (14) observe that:

v(ζ ) =

(21)

ζ−

ζ−

δ
δ

t0

t4

q
,

v(0) = ±α

q

and from w = u 2 − a 2 we obtain:

(22)

u (ζ ) = w(ζ ) −

f 2 + 2 pzlf
, u (0) = ± a .
f + 2 pzl

With the relations (13) and (20) the relation (12) becomes:

143

Miodrag Iovanov-Determining of an extremal domain for the functions
from the S-class

I 1 0w = I 2

(12 / )

ζ
0

For ζ = 0 from (13), (20) and (12 / ) obtained the constant (which is obtained
from that two members of relations (13) and (20) corresponding to
(from left)): ln(−1)

a

f ( − f − 2 pzl )
b2 −a 2

+ µτ 2

u−a
v −α
from
u+a
v +α

, obtained in left member of equality (12 / ). Thus,

(12 / ) can be writhed:
f (− f − 2 pzl )
b2 − a2

+ ln (− 1)

 u (ζ ) − a  2

ln 
 u (ζ ) + a 

a f ( − f − 2 pzl )
b2 −a 2

+ µτ 2

=

 u (ζ ) + b 

⋅ 
 u (ζ ) − b 

2


+


τ2
  v(ζ ) − 1 τ 1
 v(ζ ) − β
 v(ζ ) − α 
 + ln
 + ln
= µ ln
  v(ζ ) + 1 
 v(ζ ) + β
 v(ζ ) + α 

 α − 1 τ 1
− µ ln 

 α + 1 

α − β
⋅ 
α + β





τ3

τ4
α −γ  
 .

 α + γ  

f ( − f − 2 pzl )
b2 − a2





τ3

a+b
ln

a−b

 v(ζ ) − γ
+ ln
 v(ζ ) + γ





τ4

b


−


With calculus the previsious equality can be writhed:
f ( − f − 2 pzl )

a
b
b2 −a 2


  a − u (ζ )   u (ζ ) + b a + b 
 ⋅
 

=

a + u (ζ )   u (ζ ) − b a − b  





(23) 
τ1
τ2
τ3
τ4 µ
 












+


ζ
α
ζ
ζ
β
α
β
ζ
γ
α
γ
v
v
v
v
(
)
1
(
)
(
)
(
)
= 











 .
  v(ζ ) + 1   α + v(ζ )   v(ζ ) + β α − β   v(ζ ) + γ α + γ  

 

where u (ζ ) and v(ζ ) is obtained by the relations (22) and (21).

144

Miodrag Iovanov-Determining of an extremal domain for the functions
from the S-class
The relation (23) represent under the implicitly equation where is verify the
extremal function w = w(ζ ) , where realized max Re f ( z ).
f ∈S

II. We suppose that Im( zl + z m) = 0. In this case the expression of p, have
2

to zl − z l = 0 . How zl + z l = 0 implies zl = 0 . If l = 0( z = r > 0) then l = 0.

From (6) results that w(ζ ) have to verify the condition:

  f 2
Ree iψ 

  f − w

(24)

 w
f  /
 ζw

 
  ≤ 0 .
 

How ψ is arbitrary, real, results that w(ζ ) verify next differential equation:

(25)

or

f dw

w f −w

=



ζ


f
 =
.
f −w


 w
 /
 ζw

2

. From double integration:

∫w
w

(26)

f dw

0

f −w

=∫
ζ

0



ζ

.

With denotation
f − w = t , obtained w = f − t 2 , dw = −2tdt. The relation
(26) becomes (without limits of integration):

f (−2t )dt

∫ (f −t
ln

t−

t+

2

f
f

)⋅t

=∫



ζ

or

∫t

2 f

2

− ( f )2

= ln ζ or

145

dt = lnζ , from where

Miodrag Iovanov-Determining of an extremal domain for the functions
from the S-class

ln

(27)

f −w−

f −w+

f
f

w
0

= ln ζ .
ζ

0

After the calculus we obtained successively:


f
ln
f


and

ln f

f


−w − f

−w + f

− ln

f −w − f

f −w + f

0

= ln ζ − ln ζ

ζ =0

,

 ζ( f − w + f ) 2 
 ζ =0 = ln ζ
+ ln

−w
−w + f


−w − f


ln



from where:

and
(28)

f −

f +


⋅ 4 f  = ln ζ

f −w


f −w

f −

f +

f −w

f −w

=

ζ
4f

.

From (28) we obtained:
(29)

16 zf 2 ( z )
.
w( z ) =
(4 f ( z ) + z ) 2

How f(z) is considerate the extremal from (29) obtained after some calculus that

w( z ) =

z
. Observe that:
4

146

Miodrag Iovanov-Determining of an extremal domain for the functions
from the S-class

Fig 2
and the condition Re zw / ( z ) = 0 implies x = 0( z = x + iy ) .

Then z = max Re w( z ) = 0 , so for z e = 0 and ∀ z > z e , any parallel to Ox

intersected f ( z = r ) in one point.

We exclude this ordinary case, it showing that the problem is true.
From I and II, result that the extremal function which is corresponding to the
extremal region Ω e from fig 1, has the implicitly form in equation (23).

5.Still remain to show how to determine the θ . For this we make in (11)

ζ → z; and after simplifications and by multiplication of equality from z l we
3

(

obtained:

)

r 3 (r 2 − 1)l l ⋅ p = (1 − qz ) 2 t 0 − 2kqz + q 2 ⋅ t 4 ⋅ z 2 ⋅ z ⋅ l
or :
(30)

3

r 3 (r 2 − 1)l l ⋅ p = ( z − qr 2 ) 2 (t 0 z l − 2kqlr 2 + q 2 t 4 l z ⋅ r 2 ) .

Because p is real, r 3 (r 2 − 1)l l p, is real from the relation (30) we obtain a
system with two equation and determinate θ and k :

(31)

[(

)

r 3 (r 2 − 1)l l p = Re z − qr 2 2 (t z l − 2kqlr 2 + q 2 t l zr 2 )
0
4



2
2
2
2
Im z − qr (t 0 z l − 2kqlr + q t 4 l zr ) = 0

[(

)

147

]

]

Miodrag Iovanov-Determining of an extremal domain for the functions
from the S-class
With θ and k determinated in this way the extremal function from equation
(27) is well determine and with its assisting we find z e = max Re f ( z ) with the

{

}

f ∈w

geometrical property enounced: in domain Ω e = z z > z e , any parallel to the Ox
axis intersect f ( z = r ) in one point (eventually in maximum one point).
References

[1].G.M. Goluzin, Geometriceskaia teoria complecsnogo peremenogo, MoscvaLeningrad, 1952.
[2].Petru T. Mocanu, O problemă extremală în clasa funcţiilor univalente,
Universitatea Babeş Bolyai-Cluj Napoca, Facultatea de Matematică, 1998.

Author:
Miodrag Iovanov, “Constantin Brâncuşi” University of Târgu-Jiu, Romania

148

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52