Paper-04-22-2010. 113KB Jun 04 2011 12:03:08 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 22/2010
pp. 33-40

DIFFERENTIAL SUBORDINATION DEFINED BY USING
EXTENDED MULTIPLIER TRANSFORMATIONS OPERATOR AT
THE CLASS OF MEROMORPHIC FUNCTIONS

R. M. El-Ashwah

Abstract.By using the generalized multiplier transformations, I m (λ, ℓ)f (z) (z ∈
U ), we obtain interesting properties of certain subclass of p-valent meromorphic
functions.
2000 Mathematics Subject Classification: 30C45.
1. Introduction
Let H(U ) be the class of analytic functions in the unit disk U = {z : |z| < 1} and
denote by U∗ = U \{0}. We can let

A(n) = f ∈ H (UP

) , f (z) = z + an+1 z n+1 + an+2 z n+2 + ......, z ∈ U
with A(1) = A. Let p,k denote the class of functions in U ∗ of the form:
f (z) =

1
+ ak z k + ak+1 z z+1 + ......, (p ∈ N = {1, 2, 3, ........}) ,
zp

where k is integer , k ≥ −p + 1, p ∈ N which are regular in the punctured disk
U ∗ . If f (z) and g(z) are analytic in U , we say that f (z) is subordinate to g(z)
written symbolically as follows:
f ≺ g (z ∈ U ) or f (z) ≺ g(z) (z ∈ U ),
if there exists a Schwarz function w(z), which (by definition) is analytic in U with
w(0) = 0 and |w(z)| < 1 (z ∈ U ), such that f (z) = g(w(z)) (z ∈ U ). Indeed it is
known that f (z) ≺ g(z) (z ∈ U ) ⇒ f (0) = g(0) and f (U ) ⊂ g(U ). Further, if the
function g(z) is univalent in U , then we have the following equivalent ( see [7, p.4])
f (z) ≺ g(z) (z ∈ U ) ⇔ f (0) = g(0) and f (U ) ≺ g(U ).
33

R. M. El-Ashwah - Differential subordination defined by using extended...


A function f ∈ H (U ) is said to be convex if it is univalent and f (U ) is a convex
domain. It is well known that the function f is convex if and only if f ′ (0) 6= 0 and


zf ′′ (z)
Re 1 + ′
> 0 (z ∈ U ).
f (z)
We denote by that class of functions by K.
Definition 1. [2] Let the function f (z) ∈ A(n). For m ∈ N0 = N ∪ {0}, λ ≥
0, ℓ ≥ 0. The extended muliplier transformation I m (λ, ℓ) on A(n) is defined by the
following infinite series:

∞ 
X
1 + λ(k − 1) + ℓ m
I m (λ, ℓ)f (z) = z +
ak z k .
(1.1)

1+ℓ
k=n+1

It follows from (1.1) that
I 0 (λ, ℓ)f (z) = f (z),
λz(I m (λ, ℓ)f (z))′ = (ℓ + 1 − λ)I m (λ, ℓ)f (z) − (ℓ + 1)I m+1 (λ, ℓ)f (z) (λ > 0) (1.2)
and
I m1 (λ, ℓ)(I m2 (λ, ℓ))f (z) = I m1 +m2 (λ, ℓ)f (z) = I m2 (λ, ℓ)(I m1 (λ, ℓ))f (z).

(1.3)

for all integers m1 and m2 .
We note that:
I 0 (1, 0)f (z) = f (z)

and



I 1 (1, 0)f (z) = zf (z).


By specializing the parameters m, λ and ℓ, we obtain the following operators
studied by various authors:
(i) I m (1, ℓ)f (z) = Iℓm f (z) (see [3] and [4]);
(ii) I m (λ, 0)f (z) = Dλm f (z) (see [1]);
(iii) I m (1, 0)f (z) = Dm f (z) (see [9]);
(iv) I m (1, 1)f (z) = Im f (z) (see [10]).
Also if f ∈ A(n), then we can write
I m (λ, ℓ)f (z) = (f ∗ ϕm
λ,ℓ )(z),
where
ϕm
λ,ℓ (z)


∞ 
X
1 + λ(k − 1) + ℓ m k
z .
=z+

1+ℓ
k=n+1

34

(1.4)

R. M. El-Ashwah - Differential subordination defined by using extended...

To establish our main results, we shall need the following lemmas.
Lemma 1 [5]. Let the function h(z ) be analytic and convex (univalent) in U with
h(0 ) = 1 . Suppose also the function ϕ(z) given by
ϕ(z) = 1 + cn z n + cn+1 z n+1 + ...

(1.5)

be analytic in U . If
ϕ(z) +

zϕ′ (z)

≺ h(z)
δ

then
δ
δ
ϕ(z) ≺ ψ(z) = z −( n )
n

Zz

(Re(δ) > 0; δ 6= 0; z ∈ U ),

δ

t( n )−1 h(t)dt ≺ h(z)

(z ∈ U ),

(1.6)


0

and ψ is the best dominant.
Lemma 2 [7, p.66, Corollary 2.6.g.2 ] . Let f ∈ A and F is given by
Z
2 z
f (t)dt
F (z) =
z 0
If


1
zf ′′ (z)
> − (z ∈ U ),
Re 1 + ′
f (z)
2
then F ∈ K.

For the case when F (z) has a more elaborate form, Lemma 2, can be rewritten
in the following form.
Lemma 3 [8] . Let f ∈ A, δ > 1 and F is given by
F (z) =

1+δ
δz

1
δ

Zz

1

f (t)t δ −1 dt.

0

If



zf ′′ (z)
Re 1 + ′
f (z)



then F ∈ K.

35

>−

1
(z ∈ U ),
2

R. M. El-Ashwah - Differential subordination defined by using extended...


2.Main results
Unless otherwise mentioned, we assume throughout this paper that m ∈ N0 , p, n ∈
N, ℓ ≥ 0 and λ > 0.
Theorem 1. Let h ∈ H (U ) , with h (0) = 1, which verifies the inequality:



ℓ+1
zh′′ (z)
λ
Re 1 + ′
(z ∈ U ).
>−
h (z)
2(p + k)
P
If f ∈ p,k and verifies the differentional subordination
 m+1
′
I

(λ, ℓ)(z p+1 f (z)) ≺ h(z) (z ∈ U ),

then

(2.1)

(2.2)

 m
′
I (λ, ℓ) z p+1 f (z) ≺ g(z) (z ∈ U ),

where

g(z) =

ℓ+1
λ

(p + k) z


(

ℓ+1
λ
p+k

)

Z

( ℓ+1
λ )

z

h(t)t

p+k −1 dt.

(2.3)

0

The function g is convex and is the best (1,p+k)-dominant.
Proof. From the identity (1.2), we have
h


′
λ
z I m (λ, ℓ) z p+1 f (z)
I m+1 (λ, ℓ)(z p+1 f (z)) = ℓ+1
+

ℓ+1
λ



− 1 I m (λ, ℓ) z p+1 f (z) (z ∈ U ).

(2.4)

Differentiating (2.4) with respect to z, we obtain
′  λ  n  m
 m+1
′′
I
(λ, ℓ)(z p+1 f (z)) = ℓ+1
z I (λ, ℓ)(z p+1 f (z))
+
If we put

ℓ+1
λ



′ o
I m (λ, ℓ) z p+1 f (z)

(λ > 0; z ∈ U ).


′
q(z) = I m (λ, ℓ) z p+1 f (z)
(z ∈ U ),

then (2.5) becomes


 m+1
′
λ
zq ′ (z) (z ∈ U ).
I
(λ + ℓ) z p+1 f (z) = q(z) + ℓ+1
Using (2.7), subordination (2.2) is equivalent to


λ
q(z) + ℓ+1
zq ′ (z) ≺ h(z) (z ∈ U ),
36

(2.5)
(2.6)

(2.7)

(2.8)

R. M. El-Ashwah - Differential subordination defined by using extended...

where
q(z) = 1 + cp+k+1 z p+k + ... .
By using Lemma 1, for δ =
we have
g(z) =

ℓ+1
λ ,n
ℓ+1
λ

(p + k) z


(

= p + k, we have q(z) ≺ g(z) ≺ h(z),

ℓ+1
λ
p+k

Z

)

( ℓ+1
λ )

z

h(t)t

p+k −1 dt

(z ∈ U ),

0

is the best (1,p+k)-dominant.
By applying Lemma 3 for the function given by (2.3) and function h with the
property in (2.1) for δ = ℓ+1
λ , we obtain that the function g is convex.
Putting p = λ = 1 and m = k = ℓ = 0 in Theorem 1, we obtain the result due
to Libera [6] (see also [7 p. 64,Theorem 2.6.g]).
Corollary 1. Let h ∈ H(U ) , with h(0) = 1 which verifies the inequality


1
zh′′ (z)
Re 1 + ′
> − (z ∈ U ).
h (z)
2
P
If f ∈ 1,0 and verifies the differential subordination:
then


′′ 
′
z z 2 f (z) + z 2 f (z) ≺ h(z) (z ∈ U ),
(z 2 f (z))′ ≺ g(z) (z ∈ U ),

where
g(z) =

1
z

Z

z

h(t)dt (z ∈ U ),

0

the function g(z) is convex and is the best (1,1)-dominat.
Theorm 2. Let h ∈ H(U ), with h(0) = 1, which verifies the inequality:


zh′′ (z)
1
Re 1 + ′
(z ∈ U ).
>−
h (z)
2(p + k)
P
If f ∈ p,k and verifies the differential subordination
then

 m
′
I (λ, ℓ)(z p+1 f (z)) ≺ h(z) (z ∈ U ),
I m (λ, ℓ)(z p+1 f (z))
≺ g(z) (z ∈ U ),
z
37

(2.9)

(2.10)

R. M. El-Ashwah - Differential subordination defined by using extended...

where
1

g(z) =

(p + k) z



1
p+k



Zz

h(t)t



1
p+k



−1

dt (z ∈ U ).

(2.11)

0

The function g is convex and is the best (1,p+k)-dominant.
Proof. We let
q(z) =

I m (λ, ℓ)(z p+1 f (z))
(z ∈ U ),
z

(2.12)

and we obtain

Then (2.9) gives

 m
′
I (λ, ℓ)(z p+1 f (z)) = q(z) + zq ′ (z) (z ∈ U ).
q(z) + zq ′ (z) ≺ h(z)

where
q(z) = 1 + qp+k+1 z p+k + ....... (z ∈ U ).
By using Lemma 1 for δ = 1, n = p + k, we have
q(z) ≺ g(z) ≺ h(z),
where
g(z) =

1
(p + k)z



1
p+k



Z

z

h(t)t



1
p+k



−1

dt (z ∈ U ),

0

and g is the best (1,p+k)-dominent.
By applying Lemma 3 for the function g(z) given by (2.11) and the function h(z)
with the property in (2.9) for n = p + k, we obtain that the function g(z) is convex.
Putting p = λ = 1 and m = k = ℓ = 0 in Theorem 2, we obtain the following
corollary.
Corollary 2. Let h ∈ H(U ), with h(0) = 1, which verifies the inequality:


zh′′ (z)
1
Re 1 + ′
> − (z ∈ U ).
h (z)
2
P
If f ∈ 1,0 and verifies the differential subordination:
then

′
z 2 f (z) ≺ h(z) (z ∈ U ),

(zf (z)) ≺ g(z) (z ∈ U ),
38

R. M. El-Ashwah - Differential subordination defined by using extended...

where

1
g(z) =
z

Z

z

h(t)dt,

(z ∈ U ).

0

The function g(z) is convex and is the best (1,1)-dominant.
Remark. Putting ℓ = 0 and λ = 1 in the above results we obtain the results obtained
by Oros [8].
References
[1] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean
operator, Internat.J. Math. Math. Sci., 27(2004), 1429-1436.
[2] A. Catas, On certain classes of p-valent functions defined by multiplier transformations, in Proceedings of the International Symposium on Geometric Function
Theory and Applications: GFTA 2007 Proceedings (İstanbul, Turkey; 20-24 August 2007) (S. Owa and Y. Polatoģlu, Editors), pp. 241–250, TC İstanbul Kűltűr
University Publications, Vol. 91, TC İstanbul Kűltűr University, İstanbul, Turkey,
2008.
[3] N. E. Cho and H. M. Srivastava, Argument estimates of certain anaytic functions defined by a class of multipier transformations, Math. Comput. Modelling, 37
(1-2)(2003), 39-49.
[4] N. E. Cho and T.H. Kim, Multiplier transformations and strongly close-toconvex functions, Bull. Korean. Math. Soc., 40(2003), no. 3, 399-410.
[5] D. J. Hallenbeck and St. Ruscheweyh, Subordinations by convex functions,
Proc. Amer. Math. Soc. 52(1975), 191-195.
[6] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math.
Soc. 16(1965), 755-758.
[7] S. S. Miller and P. T. Mocanu, Differential subordinations : Theory and
Applications, Series on Monographs and Textbooks in Pure and Appl. Math. No.225
Marcel Dekker, Inc., New York, 2000.
[8] G. I. Oros, Differential subordinations defined by using Salagean differential
operator at the class of meromorphic functions, Acta Univ. Apulensis, (2006), no.
11, 219-224.
[9] G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. (
Springer-Verlag ) 1013, (1983), 362-372.
[10] B. A. Uralegaddi and C. Somanatha, Certain classes of univalent functions,
In Current Topics in Analytic Function Theory, (Edited by H. M. Srivastava and S.
Owa), 371-374, World Scientific. Publishing, Company, Singapore, 1992.

39

R. M. El-Ashwah - Differential subordination defined by using extended...

R. M. El-Ashwah
Department of Mathematics
Faculty of Science
Mansoura University
Mansoura 35516, Egypt.
email: r elashwah@yahoo.com

40

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52