Paper-19-Acta23.2010. 105KB Jun 04 2011 12:03:12 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 23/2010
pp. 189-194

EXISTENCE THEOREM FOR FREDHOLM TYPE INTEGRAL
EQUATIONS WITH MODIFIED ARGUMENT

Monica Lauran

Abstract In this paper some existence theorems for a Fredholm integral equation, are given by using nonexpansive mapping technique in L2 (Ω).
1. Introduction
In the paper [2], the author studies a Fredholm type integral equation of the
form
Z
y(x) = f (x) + λ K(x, s, y(s))ds,
(1)


L2 (Ω)


in
using Contraction mapping principle. The purpose of this paper is to
establish an existence theorems for a kind of Fredholm integral equation, where the
mapping associated to equation is nonexpansive. Let Ω ⊂ Rn be a measurable set.
A function f : Ω → R Lebesgue measurable is called square summabile, if
Z
f 2 (x)dx < ∞


Denote by L2 (Ω, R) the square summabile real functions set. It is well known that

1/2
R 2
2
L (Ω, R) with norm kykL2 (Ω) =
f (x)dx


is uniformly convex Banach space.


Theorem 1. (Browder-Ghode-Kirk) Let X be a uniformly convex Banach space
and Y ⊂ X, Y nonempty, bounded, closed and convex subset. If f : Y → Y be an
nonexpansive map, then f has a fixed point.
In paper [2], the author studies the solvability of equation (1.1) in L2 (Ω) by
using the contraction mapping principle. Suppose that
K : Ω × Ω × R → R satisfies Caratheodory condition, that means:
189

M. Lauran - Existence theorem for Fredholm type integral equations with...

(a) f (•, •, u) is measurable in Ω × Ω, for any u ∈ R
(b) f (t, s, •) is continuous in R, for almost all t ∈ Ω and s ∈ Ω.
Theorem 2. (I.A.Rus,[2]) Suppose that
(i) f ∈ L2 (Ω) and there exists L ∈ L2 (Ω × Ω) such that
|K (x, s, u) − K (x, s, v)| ≤ L (x, s) · |u − v| for any x, s ∈ Ω and u, v ∈ R;
R
(ii) K (•, s, 0) ds ∈ L2 (Ω);



(iii) |λ| <

1
||L||L2 (Ω×Ω) ;

In this conditions, the equation (1.1) has a solution in L2 (Ω) which is obtained by
succesive approximation method started from any element on L2 (Ω).
2. Main results
We extend the Rus theorem, using the technique of nonexpansive mappings
instead of the technique of Picard operators. We study the solvability of Fredholm
integral equation with modified argument in L2 (Ω):
Z
x(t) = f (t) + K(t, s, x(s), x(g(s)))ds,
(2)


where
K : Ω × Ω × R × R → R;
f : Ω → R;
g : Ω → Ω.

Denote B (f, r) = {x ∈ L2 (Ω)/ ||x − f | |L2 (Ω) ≤ r, r > 0} ⊂ L2 (Ω)
Theorem 3. Assume that the following conditions are satisfied:
(i) K(t, s, x, y) satisfied the Caratheodory condition, i.e
(a) K(t, s, •, •) is continuous almost everywhere in R2 for almost all t ∈ Ω and s ∈ Ω;
(b) K(•, •, x, y) is measurable in Ω × Ω, for any (x, y) ∈ R2 fixed.
(ii) f ∈ L2 (Ω) and there exists L ∈ L2 (Ω × Ω) such that
|K(t, s, u1 , u2 ) − K(t, s, v1 , v2 )| ≤ L(t, s) · (|u1 − v1 | + |u2 − v2 |) ,
for any t, s ∈ Ω and ui , vi ∈ R, i = 1, 2.
(iii) ||L| |L2 (Ω×Ω) · mes(Ω) ≤ 12 ;
190

M. Lauran - Existence theorem for Fredholm type integral equations with...

(iv) M · mes (Ω) ≤ r, where M is a positiv constant for which
||K(t, s, u1 , u2 )| |L2 (Ω) ≤ M,
for any t, s ∈ Ω and u1 , u2 ∈ R.
Then the equation (2) has a solution in B (f, r) ⊂ L2 (Ω).
Denote




Z

e (t) = K(t, s, x(s), x(g(s)))ds,
Ax


 
e (t).
(Ax) (t) = f (t) + Ax

The set of the solutions of the integral equation (2) coincides with the set of fixed
points of the operator A in L2 (Ω).
We show that A : B (f, r) → B (f, r). We take x ∈ B (f, r) and we prove that
Ax ∈ B (f, r).
For x ∈ B (f, r) ⇔ ||x − f | |L2 (Ω) ≤ r
 
R
e (t) = K(t, s, x(s), x(g(s)))ds.
(Ax) (t) − f (t) = Ax



Using the norm we obtain that ||Ax − f | |L2 (Ω) ≤ M · mes(Ω) ≤ r, so Ax ∈
B(f, r), A is well defined and

A B (f, r) ⊂ B (f, r) .

We show that A is a nonexpansive operator.


Z



|(Ax)(t) − (Ay)(t)| = (K(t, s, x(s), x(g(s))) − K(t, s, y(s), y(g(s)))ds) ≤



Z
Z

|K(t, s, x(s), x(g(s))) − K(t, s, y(s), y(g(s)))| ds ≤ L(t, s) · (|x(s) − y(s)| +




+ |x(g(s)) − y(g(s))|)ds
Using the L2 (Ω) norm in last inequality, we obtain:
||Ax − Ay| |L2 (Ω) ≤ ||L| |L2 (Ω×Ω) · 2 · ||x − y| |L2 (Ω) · mes(Ω)
For ||L| |L2 (Ω) · mes(Ω) ≤

1
2

we obtain:

||Ax − Ay| |L2 (Ω) ≤ ||x − y| |L2 (Ω) .
191

M. Lauran - Existence theorem for Fredholm type integral equations with...


In the case ||L| |L2 (Ω) · mes(Ω) < 12 the result follows by Theorem 1.2 using the
technique of Picard operators. In equality case A is a nonexpansive mapping and
using Browder-Ghode-Kirk theorem (Theorem 1.1) for A : B (f, r) → B (f, r),it
results that A has a fixed point. We know that B (f, r) is nonempty, bounded,
convex and closed subset of L2 (Ω).
The integral equation (2) has a solution in B (f, r) ⊂ L2 (Ω) but is not unique.
Remark 1. If Ω = [a, b] then by Theorem 1.2 we obtain a result for equation (2),
see [3].
Generalization
We consider the integral equation with modified argument :
Z
x(t) = f (t) + K(t, s, x(g1 (s)), ..., x(gm (s)))ds

(3)



where:
K : Ω × Ω × Rm → R;
f : Ω → R;

gk : Ω → Ω, k = 1, m.
Theorem 4. Assume that the following conditions are satisfied:
(i) K(t, s, x(g1 ), ..., x(gm )) satisfied the Caratheodory condition, i.e
(a) K(t, s, •, •), ..., •) is continuous almost everywhere in Rm for almost all t ∈ Ω
and s ∈ Ω;
(b) K(•, •, x(g1 ), ..., x(gm )) is measurable in Ω × Ω, for any x(gi ) ∈ Rm , i = 1, m
fixed.
(ii) f ∈ L2 (Ω) and there exists L ∈ L2 (Ω × Ω) such that
|K(t, s, u1 , u2 , ..., um ) − K(t, s, v1 , v2 , ..., vm )| ≤ L(t, s) ·

m
X
i=1

for any t, s ∈ Ω and ui , vi ∈ Rm , i = 1, m.
(iii) ||L| |L2 (Ω×Ω) · mess(Ω) ≤

1
m;


(iv) M · mes (Ω) ≤ r, where M is a positiv constant for which
||K(t, s, u1 , u2 , ..., um )| |L2 (Ω) ≤ M,
for any t, s ∈ Ω and ui ∈ R, i = 1, m.
Then the equation (3) has a solution in B(f, r) ⊂ L2 (Ω).
192

kui − vi kL2 (Ω) ,

M. Lauran - Existence theorem for Fredholm type integral equations with...

Similarly, we define the operator
Z
(Ax) (t) = f (t) + K(t, s, x(g1 (s)), ..., x(gm (s)))ds, x ∈ B(f, r).


In similarly case the operator A map B(f, r) ⊂ L2 (Ω) in itself. We obtain
kAx − AykL2 (Ω) ≤ kLkL2 (Ω×Ω) · m · mess(Ω) · kx − yk
Thus, by the same proof as given in Theorem 2.3, we can prove that in equality case
A is nonexpansive map and it has a fixed point.The solution of integral equation (3)
is the fixed point of operator A.

3. Examples
Example 1. Consider the integral equation with deviating argument:
2

x(t) = t +

Za

e−t · s2 · x(s) · x(s − e−s )ds

(4)

1

Note that the above equation represent a special case of (2.2) where
f (t) = t2 ,

K(t, s, x(s), x(g(s))) = e−t · s2 · x(s) · x(s − e−s ).




B(t2 , r) = x ∈ L2 (Ω)/ |x − t2 |L2 (Ω) ≤ r ,

where Ω = [1, a]. It is easily seen that for (4), the assumption (ii) of Theorem 2.3 is
satisfied with L(t, s) = e−t · s2 .
In this case the assumption (iv) is satisfied for the constant M = a2 · r2 and r ≤
1
. Moreover the assumption (iii) of Theorem 2.3 is satisfied for
a2 (a−1)
v
uZa Za
r
u
−e−2a + e−2 a5 − 1
1
u
2
(a − 1) · t
·
· (a − 1) ≤
(e−t · s2 ) · dsdt =
2
5
2
1

1

In this case we obtain a ≈ 1.29. Note that Theorem 1.2 cannot be applied.
2
For a good approximation of M we take M = ae and we obtain from (iii) and (iv)
r≤

a2

e
e
and a2 (a − 1) ≤
· (a − 1)
2

with a solution of inequation a ≈ 1.559
So, for Ω = [1; a] the equation (4) has a solution in B(t2 , r) ⊂ L2 (Ω).
193

M. Lauran - Existence theorem for Fredholm type integral equations with...

Example 2. Consider the integral equation with deviating argument:
x(t) = t +

Za
1

 −t

e · x(s) + s · x(s − e−s ) ds

(5)

In this case f (t) = t, K(t, s, x(s), x(g(s))) = e−t · x(s) + s · x(s − e−s ) and


B(t, r) = x ∈ L2 (Ω)/ ||x − t| |L2 (Ω) ≤ r ,

where Ω = [1, a].
The assumption (ii) of Theorem 2.3 is satisfied for L(t, s) = max{e−t , s} for t, s ∈
[1, a]. From the assumptions (iii) and (iv) and a good approximation of L(t, s) and
M = a2 (r + 1)2 , we obtain the inequation
r
1
a2 + a + 1
≤ (a − 1)2 · a ≤
(a − 1)2 ·
3
2

with a solution of inequation a = 1, 565 and a2 · (r + 1)2 · (a − 1) ≤ r. In this case,
for equality, the Theorem 1.2 cannot be applied.
The equation (5) has a solution in B(t, r) ⊂ L2 (Ω).

References
[1] Rus, I.A, Ecuaţii diferenţtiale, ecuaţii integrale şi sisteme dinamice, Ed. Transilvania Press, 1996, p.90-93
[2] Rus, I.A., Principii şi aplicaţii ale teoriei punctului fix, Ed. Dacia,p.120-124
[3] Bernfeld, S.R., Lakshmikanthan, V., An introduction to nonlinear boundary
value problem, Ed. Academic Press. Inc, p.228-232
Monica Lauran
Department of Mathematics and Computer Science
North University of Baia Mare
Victoriei nr. 76
Baia Mare, Romania email:[email protected]

194

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52