Daniel Breaz. 49KB Jun 04 2011 12:08:35 AM

Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics – ICTAMI 2003, Alba Iulia

INTEGRAL OPERATORS ON THE UCD( α )-CLASS
by
Daniel Breaz
Abstract. We consider the class of functions f = z + a 2 z 2 + a3 z 3 + ... , that are analytically
and univalent in the unit disk.
We consider the class of functions UCD( α ), α ≥ 0 with the properties
Re f ′( z ) ≥ α zf ′′( z ) (∀)z ∈ U .
In this paper we present some results from integrals operators at this class.

1.Introduction
Theorem A. [4] A sufficient condition for a function f of the form

f (z ) = z + a 2 z 2 + a 3 z 3 + ...

(1)

so that it belongs to the UCD(α ), α ≥ 0 class is


∑ k [1 + α (k − 1)]⋅ a


k =2

k

≤ 1.

(2)

2.Main results

Theorem 1. Let be f ∈ S , f (z ) = z + a 2 z 2 + a3 z 3 + ... , z ∈ U . We suppose that the
coefficients of function f verify the condition

∑ k [1 + α (k − 1)]⋅ a


k =2


We consider the integral operator
F (z ) =


z

0

k

f (t )
dt ,
t

≤ 1.

which is the Alexander operator.
In this conditions, we have F ∈ UCD(α ), α ≥ 0, z ∈ U .


61

Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics – ICTAMI 2003, Alba Iulia

Proof
Let be f of the form (1), verifying the condition (2).
We have:

∫(



)

z


t + a 2 t 2 + a3t 3 + K
a t2 a t3

dt = 1 + a 2 t + a 3 t 2 + K dt = t + 2 + 3 + K =
F (z ) =
2
3
t


0
0
z

a
a
= z + 2 z 2 + 3 z 3 ... .
2
3

Denoting

z


0

bk =

ak
,k ≥ 2,
k
we can write, F (z ) = z + b2 z 2 + b3 z 3 + ... .

In that following, we evaluate the relation (2), for the function F , with the
coefficients bk .




k =2


k [1 + α (k − 1)] ⋅ bk =


∑ [1 + α (k − 1)]⋅ a
k =2

k






k =2


k [1 + α (k − 1)] ⋅

ak
=
k


∑ k [1 + α (k − 1)] ⋅ a
k =2

k

∑ k [1 + α (k − 1)]⋅ a


k =2

k



1

k

< 1.


According to the relation (2), from the Theorem A, we obtain:
F ∈ UCD(α ), α > 0, z ∈ U .

Theorem 2. Let be f ∈ A , f ( z ) = z + a 2 z 2 + a3 z 3 + ... , α ≥ 0 , z ∈ U .We suppose
that the condition (2) is satisfied and we consider the Libera operator,



2
L( f )( z ) =
f (t )dt .
z0
z

Then L ∈ UCD(α ) , α ≥ 0 , z ∈ U .

Proof
Let be f of the form (1) verifying the condition (2).

We have:


62

Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics – ICTAMI 2003, Alba Iulia
2
F (z ) =
z

=

∫(
z

)


2 t2
t3
t4

+ a3
+ K =
t + a 2 t + a 3 t + K dt =  + a 2
3
4
z 2

2

3


a
a
2z

+ 2 z 3 + 3 z 4 + K =

3
4

z 2

0

z

0

2

=z+




2a k k
2a 2 2 2a3 3
z +
z +K = z +
z .
3
4
k =2 k + 1

Denoting

bk =

2a k
,
k +1

we can write L( f )(z ) = z + b2 z 2 + b3 z 3 + ... .
We evaluate the relation (2), for the function obtained after integration with the
coefficients bk..
Since k ≥ 2 , we have



2a k
2
=

k [1 + α (k − 1)] ⋅ a k ⋅
k [1 + α (k − 1)] ⋅ bk =
k [1 + α (k − 1)] ⋅
k + 1 k =2
k +1
k =2
k =2




∑ k [1 + α (k − 1)]⋅ a





k =2

k





2 2
≤ < 1.
3 3

L( f ) ∈ UCD(α ) , α ≥ 0 ,
so, the Libera operator preserves this class.
that implies

Theorem 3. Let be f ∈ A , f ( z ) = z + a 2 z 2 + a3 z 3 + ... , z ∈ U . We suppose that the
condition (2) is satisfied and we consider the Bernardi operator,

1+ γ
F (z ) = γ
z

∫ f (t ) ⋅ t
z

Then, we have F ∈ UCD(α ) , α ≥ 0 , z ∈ U .

γ −1

dt , γ ≥ −1 .

0

Proof
Let be f of the form (1), verifying the condition (2).
We have

1+ γ
F (z ) = γ
z

∫ (t + a t
z

2

0

2

)

+ a3 t + K ⋅ t
3

γ −1

1+ γ
dt = γ
z

63

∫ (t
z

0

γ

)

+ a 2 t γ +1 + a3 t γ + 2 + K dt =

Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics – ICTAMI 2003, Alba Iulia
1+ γ
= γ
z

 t γ +1

1+ γ
t γ +2

+
+ K = γ
a
2
 γ +1
γ +2
z

0
z

 z γ +1 a 2 z γ + 2 a 3 z γ +3 


 γ + 1 + γ + 2 + γ + 3 K =




γ +1 2
γ +1 3
γ +1 k
⋅z .
z + a3
z + K = z + ∑ ak ⋅
γ +2
γ +3
γ +k
k =2
γ +1
.
Let be bk = a k ⋅
γ +k

= z + a2

We evaluate the relation (2) for the function F (z ) = z + b2 z 2 + b3 z 3 + ...
We have:



γ +1
γ +1

=
k [1 + α (k − 1)] ⋅ bk =
k [1 + α (k − 1)] ⋅ a k
k [1 + α (k − 1)] ⋅ a k ⋅
γ + k k =2
γ +k
k =2
k =2









k [1 + α (k − 1)] ⋅ a k ⋅

F ∈ UCD(α ) .
k =2



γ +1 ∞

k [1 + α (k − 1)] ⋅ a k ≤ 1 , so:
γ +1 ∑
k =2

Theorem 4. Let

1+ γ
F (z ) = γ

∫ f (t ) ⋅ t
z

γ −1

dt .

If f is of the form (1), f ∈ S , α > 0 and Re f ′( z ) ≥ α zf ′′( z ) (∀)z ∈ U , then
z

0

(1 + γ )F ′(z ) + zF ′′(z ) ≥ α z[(2 + γ )F ′′ + zF ′′′].

Proof

F (z ) =

1+ γ



z

f (t ) ⋅ t γ −1 dt ⇔

0


F (z ) =
1+ γ

∫ f (t ) ⋅ t
z

0

γ −1

dt .

After successive derivations, we obtain:

zF ' ( z )
γ
γ
⋅ z γ −1 ⋅ F ( z ) +
⋅ F ' ( z ) = f ( z ) ⋅ z γ −1 ⇔
⋅ F (z ) +
= f (z ) ⇒
1+ γ
1+ γ
1+ γ
1+ γ
F ′( z ) zF ′′( z )
γ
1
= f ' ( z ) ⇔ F ′(z ) +
⋅ z ⋅ F ′′( z ) = f ' ( z ) ⇔
+
⋅ F ' (z ) +
1+ γ
1+ γ
1+ γ
1+ γ
zF ′′′( z )
1
⇔ F ′′(z ) +
F ′′( z ) +
= f ′′(z ) .
1+ γ
1+ γ
2+γ
1
So, we have f ′′(z ) =
F ′′(z ) +
zF ′′′(z ) .
1+ γ
1+ γ

64

Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics – ICTAMI 2003, Alba Iulia
If Re f ′(z ) ≥ α zf ′′( z ) (∀)z ∈ U , α > 0 , then
f ∈ UCD(α ) ⇒ f ′( z ) ≥ α zf ′′(z ) .

In this inequality, we put the expressions of
F ′( z ) +



1
zF ′′( z ) ≥ α
1+ γ

2+γ
z 
 1+ γ

f ′ and


1
 F ′′(z ) +
zF ′′′(z ) ⇔
1+ γ


f ′′ , and we obtain:

1
(1 + γ )F ′(z ) + zF ′′(z ) ≥ α z (2 + γ )F ′′(z ) + z 2 F ′′′(z ) ⇔
1+ γ
1+ γ

[

]

⇔ (1 + γ )F ' (z ) + zF " ( z ) ≥ α z (2 + γ )F " (z ) + z 2 F ′′′(z ) .

Remark 5. If f is of the form (1), f ∈ S , α > 0 and Re f ′( z ) ≥ α zf ′′( z ) (∀)z ∈ U ,
then
1
log f ' (z ) ≤
.
αz
Proof

According to the Theorem 4 we have:
2+γ 
1
1 2
 F ′′(z ) +
F ′( z ) +
zF ′′( z ) ≥ α z 
z F ′′′( z ) ⇔
γ
γ
+
1+ γ
1
1
+



2+γ
1

F ′′( z ) +
zF ′′′(z )
 

1
1+ γ
1+ γ



= α ⋅ z ⋅ log F (z ) +
⇔1≥α ⋅ z ⋅
zF ( z ) ⇔
1
1+ γ

 
F ′(z ) +
zF ′′( z )
1+ γ



⇔ 1 ≥ α ⋅ z ⋅ [log f ′(z )] ⇔ [log f ′(z )] ≤

α⋅z
1

.

References

1.Miller S.S., Mocanu P.T.- Integral operators on certain classes of analytic functions,
Univalent Functions, Fractional Calculus, and their Applications, Halstead Pres, John
Wiley (1989), 153-166.
2. Miller S.S., Mocanu P.T., Reade M.O.- Starlike integral operators, Pacific Journal
of Mathematics, vol. 79, No. 1/1978, 157-168.

65

Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics – ICTAMI 2003, Alba Iulia
3. Miller S.S., Mocanu P.T.- Differential subordinations and univalent functions,
Michigan, Math. J. 28(1981), 157-171.
4. Rosy T., Stephen A.B., Subramanian K.G., Silverman H.- Classes of convex
functions, Internat. J. Math.& Math. Sci., vol 23, No. 12(2000), 819-825.
5. Silverman H.- Univalent functions with negative coefficients, Proc. Amer. Math.
Soc. 51(1975), 109-116.
Author:
Daniel Breaz, “1 Decembrie 1918” University of Alba Iulia, Romania, [email protected]

66

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52