Daniel Breaz. 49KB Jun 04 2011 12:08:35 AM
Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics – ICTAMI 2003, Alba Iulia
INTEGRAL OPERATORS ON THE UCD( α )-CLASS
by
Daniel Breaz
Abstract. We consider the class of functions f = z + a 2 z 2 + a3 z 3 + ... , that are analytically
and univalent in the unit disk.
We consider the class of functions UCD( α ), α ≥ 0 with the properties
Re f ′( z ) ≥ α zf ′′( z ) (∀)z ∈ U .
In this paper we present some results from integrals operators at this class.
1.Introduction
Theorem A. [4] A sufficient condition for a function f of the form
f (z ) = z + a 2 z 2 + a 3 z 3 + ...
(1)
so that it belongs to the UCD(α ), α ≥ 0 class is
∑ k [1 + α (k − 1)]⋅ a
∞
k =2
k
≤ 1.
(2)
2.Main results
Theorem 1. Let be f ∈ S , f (z ) = z + a 2 z 2 + a3 z 3 + ... , z ∈ U . We suppose that the
coefficients of function f verify the condition
∑ k [1 + α (k − 1)]⋅ a
∞
k =2
We consider the integral operator
F (z ) =
∫
z
0
k
f (t )
dt ,
t
≤ 1.
which is the Alexander operator.
In this conditions, we have F ∈ UCD(α ), α ≥ 0, z ∈ U .
61
Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics – ICTAMI 2003, Alba Iulia
Proof
Let be f of the form (1), verifying the condition (2).
We have:
∫(
∫
)
z
t + a 2 t 2 + a3t 3 + K
a t2 a t3
dt = 1 + a 2 t + a 3 t 2 + K dt = t + 2 + 3 + K =
F (z ) =
2
3
t
0
0
z
a
a
= z + 2 z 2 + 3 z 3 ... .
2
3
Denoting
z
0
bk =
ak
,k ≥ 2,
k
we can write, F (z ) = z + b2 z 2 + b3 z 3 + ... .
In that following, we evaluate the relation (2), for the function F , with the
coefficients bk .
∑
∞
k =2
∞
k [1 + α (k − 1)] ⋅ bk =
∑ [1 + α (k − 1)]⋅ a
k =2
k
≤
∑
∞
k =2
∞
k [1 + α (k − 1)] ⋅
ak
=
k
∑ k [1 + α (k − 1)] ⋅ a
k =2
k
∑ k [1 + α (k − 1)]⋅ a
∞
k =2
k
⋅
1
≤
k
< 1.
According to the relation (2), from the Theorem A, we obtain:
F ∈ UCD(α ), α > 0, z ∈ U .
Theorem 2. Let be f ∈ A , f ( z ) = z + a 2 z 2 + a3 z 3 + ... , α ≥ 0 , z ∈ U .We suppose
that the condition (2) is satisfied and we consider the Libera operator,
∫
2
L( f )( z ) =
f (t )dt .
z0
z
Then L ∈ UCD(α ) , α ≥ 0 , z ∈ U .
Proof
Let be f of the form (1) verifying the condition (2).
We have:
62
Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics – ICTAMI 2003, Alba Iulia
2
F (z ) =
z
=
∫(
z
)
2 t2
t3
t4
+ a3
+ K =
t + a 2 t + a 3 t + K dt = + a 2
3
4
z 2
2
3
a
a
2z
+ 2 z 3 + 3 z 4 + K =
3
4
z 2
0
z
0
2
=z+
∑
∞
2a k k
2a 2 2 2a3 3
z +
z +K = z +
z .
3
4
k =2 k + 1
Denoting
bk =
2a k
,
k +1
we can write L( f )(z ) = z + b2 z 2 + b3 z 3 + ... .
We evaluate the relation (2), for the function obtained after integration with the
coefficients bk..
Since k ≥ 2 , we have
∞
∞
∞
2a k
2
=
≤
k [1 + α (k − 1)] ⋅ a k ⋅
k [1 + α (k − 1)] ⋅ bk =
k [1 + α (k − 1)] ⋅
k + 1 k =2
k +1
k =2
k =2
∑
≤
∑ k [1 + α (k − 1)]⋅ a
∑
∞
k =2
k
⋅
∑
2 2
≤ < 1.
3 3
L( f ) ∈ UCD(α ) , α ≥ 0 ,
so, the Libera operator preserves this class.
that implies
Theorem 3. Let be f ∈ A , f ( z ) = z + a 2 z 2 + a3 z 3 + ... , z ∈ U . We suppose that the
condition (2) is satisfied and we consider the Bernardi operator,
1+ γ
F (z ) = γ
z
∫ f (t ) ⋅ t
z
Then, we have F ∈ UCD(α ) , α ≥ 0 , z ∈ U .
γ −1
dt , γ ≥ −1 .
0
Proof
Let be f of the form (1), verifying the condition (2).
We have
1+ γ
F (z ) = γ
z
∫ (t + a t
z
2
0
2
)
+ a3 t + K ⋅ t
3
γ −1
1+ γ
dt = γ
z
63
∫ (t
z
0
γ
)
+ a 2 t γ +1 + a3 t γ + 2 + K dt =
Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics – ICTAMI 2003, Alba Iulia
1+ γ
= γ
z
t γ +1
1+ γ
t γ +2
+
+ K = γ
a
2
γ +1
γ +2
z
0
z
z γ +1 a 2 z γ + 2 a 3 z γ +3
γ + 1 + γ + 2 + γ + 3 K =
∞
γ +1 2
γ +1 3
γ +1 k
⋅z .
z + a3
z + K = z + ∑ ak ⋅
γ +2
γ +3
γ +k
k =2
γ +1
.
Let be bk = a k ⋅
γ +k
= z + a2
We evaluate the relation (2) for the function F (z ) = z + b2 z 2 + b3 z 3 + ...
We have:
∞
∞
∞
γ +1
γ +1
≤
=
k [1 + α (k − 1)] ⋅ bk =
k [1 + α (k − 1)] ⋅ a k
k [1 + α (k − 1)] ⋅ a k ⋅
γ + k k =2
γ +k
k =2
k =2
∑
≤
∑
∞
∑
k [1 + α (k − 1)] ⋅ a k ⋅
F ∈ UCD(α ) .
k =2
∑
γ +1 ∞
≤
k [1 + α (k − 1)] ⋅ a k ≤ 1 , so:
γ +1 ∑
k =2
Theorem 4. Let
1+ γ
F (z ) = γ
∫ f (t ) ⋅ t
z
γ −1
dt .
If f is of the form (1), f ∈ S , α > 0 and Re f ′( z ) ≥ α zf ′′( z ) (∀)z ∈ U , then
z
0
(1 + γ )F ′(z ) + zF ′′(z ) ≥ α z[(2 + γ )F ′′ + zF ′′′].
Proof
F (z ) =
1+ γ
zγ
∫
z
f (t ) ⋅ t γ −1 dt ⇔
0
zγ
F (z ) =
1+ γ
∫ f (t ) ⋅ t
z
0
γ −1
dt .
After successive derivations, we obtain:
zγ
zF ' ( z )
γ
γ
⋅ z γ −1 ⋅ F ( z ) +
⋅ F ' ( z ) = f ( z ) ⋅ z γ −1 ⇔
⋅ F (z ) +
= f (z ) ⇒
1+ γ
1+ γ
1+ γ
1+ γ
F ′( z ) zF ′′( z )
γ
1
= f ' ( z ) ⇔ F ′(z ) +
⋅ z ⋅ F ′′( z ) = f ' ( z ) ⇔
+
⋅ F ' (z ) +
1+ γ
1+ γ
1+ γ
1+ γ
zF ′′′( z )
1
⇔ F ′′(z ) +
F ′′( z ) +
= f ′′(z ) .
1+ γ
1+ γ
2+γ
1
So, we have f ′′(z ) =
F ′′(z ) +
zF ′′′(z ) .
1+ γ
1+ γ
64
Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics – ICTAMI 2003, Alba Iulia
If Re f ′(z ) ≥ α zf ′′( z ) (∀)z ∈ U , α > 0 , then
f ∈ UCD(α ) ⇒ f ′( z ) ≥ α zf ′′(z ) .
In this inequality, we put the expressions of
F ′( z ) +
⇔
1
zF ′′( z ) ≥ α
1+ γ
2+γ
z
1+ γ
f ′ and
1
F ′′(z ) +
zF ′′′(z ) ⇔
1+ γ
f ′′ , and we obtain:
1
(1 + γ )F ′(z ) + zF ′′(z ) ≥ α z (2 + γ )F ′′(z ) + z 2 F ′′′(z ) ⇔
1+ γ
1+ γ
[
]
⇔ (1 + γ )F ' (z ) + zF " ( z ) ≥ α z (2 + γ )F " (z ) + z 2 F ′′′(z ) .
Remark 5. If f is of the form (1), f ∈ S , α > 0 and Re f ′( z ) ≥ α zf ′′( z ) (∀)z ∈ U ,
then
1
log f ' (z ) ≤
.
αz
Proof
According to the Theorem 4 we have:
2+γ
1
1 2
F ′′(z ) +
F ′( z ) +
zF ′′( z ) ≥ α z
z F ′′′( z ) ⇔
γ
γ
+
1+ γ
1
1
+
2+γ
1
′
F ′′( z ) +
zF ′′′(z )
1
1+ γ
1+ γ
′
′
′
= α ⋅ z ⋅ log F (z ) +
⇔1≥α ⋅ z ⋅
zF ( z ) ⇔
1
1+ γ
F ′(z ) +
zF ′′( z )
1+ γ
′
′
⇔ 1 ≥ α ⋅ z ⋅ [log f ′(z )] ⇔ [log f ′(z )] ≤
α⋅z
1
.
References
1.Miller S.S., Mocanu P.T.- Integral operators on certain classes of analytic functions,
Univalent Functions, Fractional Calculus, and their Applications, Halstead Pres, John
Wiley (1989), 153-166.
2. Miller S.S., Mocanu P.T., Reade M.O.- Starlike integral operators, Pacific Journal
of Mathematics, vol. 79, No. 1/1978, 157-168.
65
Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics – ICTAMI 2003, Alba Iulia
3. Miller S.S., Mocanu P.T.- Differential subordinations and univalent functions,
Michigan, Math. J. 28(1981), 157-171.
4. Rosy T., Stephen A.B., Subramanian K.G., Silverman H.- Classes of convex
functions, Internat. J. Math.& Math. Sci., vol 23, No. 12(2000), 819-825.
5. Silverman H.- Univalent functions with negative coefficients, Proc. Amer. Math.
Soc. 51(1975), 109-116.
Author:
Daniel Breaz, “1 Decembrie 1918” University of Alba Iulia, Romania, [email protected]
66
Mathematics and Informatics – ICTAMI 2003, Alba Iulia
INTEGRAL OPERATORS ON THE UCD( α )-CLASS
by
Daniel Breaz
Abstract. We consider the class of functions f = z + a 2 z 2 + a3 z 3 + ... , that are analytically
and univalent in the unit disk.
We consider the class of functions UCD( α ), α ≥ 0 with the properties
Re f ′( z ) ≥ α zf ′′( z ) (∀)z ∈ U .
In this paper we present some results from integrals operators at this class.
1.Introduction
Theorem A. [4] A sufficient condition for a function f of the form
f (z ) = z + a 2 z 2 + a 3 z 3 + ...
(1)
so that it belongs to the UCD(α ), α ≥ 0 class is
∑ k [1 + α (k − 1)]⋅ a
∞
k =2
k
≤ 1.
(2)
2.Main results
Theorem 1. Let be f ∈ S , f (z ) = z + a 2 z 2 + a3 z 3 + ... , z ∈ U . We suppose that the
coefficients of function f verify the condition
∑ k [1 + α (k − 1)]⋅ a
∞
k =2
We consider the integral operator
F (z ) =
∫
z
0
k
f (t )
dt ,
t
≤ 1.
which is the Alexander operator.
In this conditions, we have F ∈ UCD(α ), α ≥ 0, z ∈ U .
61
Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics – ICTAMI 2003, Alba Iulia
Proof
Let be f of the form (1), verifying the condition (2).
We have:
∫(
∫
)
z
t + a 2 t 2 + a3t 3 + K
a t2 a t3
dt = 1 + a 2 t + a 3 t 2 + K dt = t + 2 + 3 + K =
F (z ) =
2
3
t
0
0
z
a
a
= z + 2 z 2 + 3 z 3 ... .
2
3
Denoting
z
0
bk =
ak
,k ≥ 2,
k
we can write, F (z ) = z + b2 z 2 + b3 z 3 + ... .
In that following, we evaluate the relation (2), for the function F , with the
coefficients bk .
∑
∞
k =2
∞
k [1 + α (k − 1)] ⋅ bk =
∑ [1 + α (k − 1)]⋅ a
k =2
k
≤
∑
∞
k =2
∞
k [1 + α (k − 1)] ⋅
ak
=
k
∑ k [1 + α (k − 1)] ⋅ a
k =2
k
∑ k [1 + α (k − 1)]⋅ a
∞
k =2
k
⋅
1
≤
k
< 1.
According to the relation (2), from the Theorem A, we obtain:
F ∈ UCD(α ), α > 0, z ∈ U .
Theorem 2. Let be f ∈ A , f ( z ) = z + a 2 z 2 + a3 z 3 + ... , α ≥ 0 , z ∈ U .We suppose
that the condition (2) is satisfied and we consider the Libera operator,
∫
2
L( f )( z ) =
f (t )dt .
z0
z
Then L ∈ UCD(α ) , α ≥ 0 , z ∈ U .
Proof
Let be f of the form (1) verifying the condition (2).
We have:
62
Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics – ICTAMI 2003, Alba Iulia
2
F (z ) =
z
=
∫(
z
)
2 t2
t3
t4
+ a3
+ K =
t + a 2 t + a 3 t + K dt = + a 2
3
4
z 2
2
3
a
a
2z
+ 2 z 3 + 3 z 4 + K =
3
4
z 2
0
z
0
2
=z+
∑
∞
2a k k
2a 2 2 2a3 3
z +
z +K = z +
z .
3
4
k =2 k + 1
Denoting
bk =
2a k
,
k +1
we can write L( f )(z ) = z + b2 z 2 + b3 z 3 + ... .
We evaluate the relation (2), for the function obtained after integration with the
coefficients bk..
Since k ≥ 2 , we have
∞
∞
∞
2a k
2
=
≤
k [1 + α (k − 1)] ⋅ a k ⋅
k [1 + α (k − 1)] ⋅ bk =
k [1 + α (k − 1)] ⋅
k + 1 k =2
k +1
k =2
k =2
∑
≤
∑ k [1 + α (k − 1)]⋅ a
∑
∞
k =2
k
⋅
∑
2 2
≤ < 1.
3 3
L( f ) ∈ UCD(α ) , α ≥ 0 ,
so, the Libera operator preserves this class.
that implies
Theorem 3. Let be f ∈ A , f ( z ) = z + a 2 z 2 + a3 z 3 + ... , z ∈ U . We suppose that the
condition (2) is satisfied and we consider the Bernardi operator,
1+ γ
F (z ) = γ
z
∫ f (t ) ⋅ t
z
Then, we have F ∈ UCD(α ) , α ≥ 0 , z ∈ U .
γ −1
dt , γ ≥ −1 .
0
Proof
Let be f of the form (1), verifying the condition (2).
We have
1+ γ
F (z ) = γ
z
∫ (t + a t
z
2
0
2
)
+ a3 t + K ⋅ t
3
γ −1
1+ γ
dt = γ
z
63
∫ (t
z
0
γ
)
+ a 2 t γ +1 + a3 t γ + 2 + K dt =
Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics – ICTAMI 2003, Alba Iulia
1+ γ
= γ
z
t γ +1
1+ γ
t γ +2
+
+ K = γ
a
2
γ +1
γ +2
z
0
z
z γ +1 a 2 z γ + 2 a 3 z γ +3
γ + 1 + γ + 2 + γ + 3 K =
∞
γ +1 2
γ +1 3
γ +1 k
⋅z .
z + a3
z + K = z + ∑ ak ⋅
γ +2
γ +3
γ +k
k =2
γ +1
.
Let be bk = a k ⋅
γ +k
= z + a2
We evaluate the relation (2) for the function F (z ) = z + b2 z 2 + b3 z 3 + ...
We have:
∞
∞
∞
γ +1
γ +1
≤
=
k [1 + α (k − 1)] ⋅ bk =
k [1 + α (k − 1)] ⋅ a k
k [1 + α (k − 1)] ⋅ a k ⋅
γ + k k =2
γ +k
k =2
k =2
∑
≤
∑
∞
∑
k [1 + α (k − 1)] ⋅ a k ⋅
F ∈ UCD(α ) .
k =2
∑
γ +1 ∞
≤
k [1 + α (k − 1)] ⋅ a k ≤ 1 , so:
γ +1 ∑
k =2
Theorem 4. Let
1+ γ
F (z ) = γ
∫ f (t ) ⋅ t
z
γ −1
dt .
If f is of the form (1), f ∈ S , α > 0 and Re f ′( z ) ≥ α zf ′′( z ) (∀)z ∈ U , then
z
0
(1 + γ )F ′(z ) + zF ′′(z ) ≥ α z[(2 + γ )F ′′ + zF ′′′].
Proof
F (z ) =
1+ γ
zγ
∫
z
f (t ) ⋅ t γ −1 dt ⇔
0
zγ
F (z ) =
1+ γ
∫ f (t ) ⋅ t
z
0
γ −1
dt .
After successive derivations, we obtain:
zγ
zF ' ( z )
γ
γ
⋅ z γ −1 ⋅ F ( z ) +
⋅ F ' ( z ) = f ( z ) ⋅ z γ −1 ⇔
⋅ F (z ) +
= f (z ) ⇒
1+ γ
1+ γ
1+ γ
1+ γ
F ′( z ) zF ′′( z )
γ
1
= f ' ( z ) ⇔ F ′(z ) +
⋅ z ⋅ F ′′( z ) = f ' ( z ) ⇔
+
⋅ F ' (z ) +
1+ γ
1+ γ
1+ γ
1+ γ
zF ′′′( z )
1
⇔ F ′′(z ) +
F ′′( z ) +
= f ′′(z ) .
1+ γ
1+ γ
2+γ
1
So, we have f ′′(z ) =
F ′′(z ) +
zF ′′′(z ) .
1+ γ
1+ γ
64
Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics – ICTAMI 2003, Alba Iulia
If Re f ′(z ) ≥ α zf ′′( z ) (∀)z ∈ U , α > 0 , then
f ∈ UCD(α ) ⇒ f ′( z ) ≥ α zf ′′(z ) .
In this inequality, we put the expressions of
F ′( z ) +
⇔
1
zF ′′( z ) ≥ α
1+ γ
2+γ
z
1+ γ
f ′ and
1
F ′′(z ) +
zF ′′′(z ) ⇔
1+ γ
f ′′ , and we obtain:
1
(1 + γ )F ′(z ) + zF ′′(z ) ≥ α z (2 + γ )F ′′(z ) + z 2 F ′′′(z ) ⇔
1+ γ
1+ γ
[
]
⇔ (1 + γ )F ' (z ) + zF " ( z ) ≥ α z (2 + γ )F " (z ) + z 2 F ′′′(z ) .
Remark 5. If f is of the form (1), f ∈ S , α > 0 and Re f ′( z ) ≥ α zf ′′( z ) (∀)z ∈ U ,
then
1
log f ' (z ) ≤
.
αz
Proof
According to the Theorem 4 we have:
2+γ
1
1 2
F ′′(z ) +
F ′( z ) +
zF ′′( z ) ≥ α z
z F ′′′( z ) ⇔
γ
γ
+
1+ γ
1
1
+
2+γ
1
′
F ′′( z ) +
zF ′′′(z )
1
1+ γ
1+ γ
′
′
′
= α ⋅ z ⋅ log F (z ) +
⇔1≥α ⋅ z ⋅
zF ( z ) ⇔
1
1+ γ
F ′(z ) +
zF ′′( z )
1+ γ
′
′
⇔ 1 ≥ α ⋅ z ⋅ [log f ′(z )] ⇔ [log f ′(z )] ≤
α⋅z
1
.
References
1.Miller S.S., Mocanu P.T.- Integral operators on certain classes of analytic functions,
Univalent Functions, Fractional Calculus, and their Applications, Halstead Pres, John
Wiley (1989), 153-166.
2. Miller S.S., Mocanu P.T., Reade M.O.- Starlike integral operators, Pacific Journal
of Mathematics, vol. 79, No. 1/1978, 157-168.
65
Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics – ICTAMI 2003, Alba Iulia
3. Miller S.S., Mocanu P.T.- Differential subordinations and univalent functions,
Michigan, Math. J. 28(1981), 157-171.
4. Rosy T., Stephen A.B., Subramanian K.G., Silverman H.- Classes of convex
functions, Internat. J. Math.& Math. Sci., vol 23, No. 12(2000), 819-825.
5. Silverman H.- Univalent functions with negative coefficients, Proc. Amer. Math.
Soc. 51(1975), 109-116.
Author:
Daniel Breaz, “1 Decembrie 1918” University of Alba Iulia, Romania, [email protected]
66