getdoc9935. 106KB Jun 04 2011 12:04:44 AM

Elect. Comm. in Probab. 12 (2007), 51–56

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

A NOTE ON THE INVARIANCE PRINCIPLE OF THE
PRODUCT OF SUMS OF RANDOM VARIABLES1
LI-XIN ZHANG
Department of Mathematics, Yuquan Campus, Zhejiang University, Hangzhou 310027, China
email: lxzhang@mail.hz.zj.cn
WEI HUANG
Department of Mathematics, Yuquan Campus, Zhejiang University, Hangzhou 310027, China
email: hwmath2003@hotmail.com
Submitted 20 April 2006, accepted in final form 20 November 2006
AMS 2000 Subject classification: Primary 60F15, 60F05, Secondary 60G50
Keywords: product of sums of r.v.; central limit theorem; invariance of principle
Abstract
The central limit theorem for the product of sums of various random variables has been studied
in a variety of settings. The purpose of this note is to show that this kind of result is a corollary
of the invariance principle.


Let
Pn {Xk ; k ≥ 1} be a sequence of i.i.d exponential random variables with mean 1, Sn =
k=1 Xk , n ≥ 1. Arnold and Villaseñor (1998) proved that
n
Y
Sk
k

k=1

!1/√n

D

→e


2N (0,1)


,

as n → ∞,

(1)

where N (0, 1) is a standard normal random variable. Later Rempala and Wesolowski (2002)
extended such a central limit theorem to general i.i.d. positive random variables. Recently,
the central limit theorem for product of sums has also been studied for dependent random
variables (c.f., Gonchigdanzan and Rempala (2006)). In this note, we will show that this kind
of result follows from the invariance principle.
Let {Sn ; n ≥ 1} be a sequence of positive random variables. To present our main idea, we
assume that (possibly in an enlarged probability space in which the sequence {Sn ; n ≥ 1} is
redefined without changing its distribution) there exists a standard Wiener process {W (t) :
t ≥ 0} and two positive constants µ and σ such that

Sn − nµ − σW (n) = o( n) a.s.
(2)
1 RESEARCH SUPPORTED BY NATURAL SCIENCE FOUNDATION OF CHINA (NSFC) (NO.
10471126)


51

52

Electronic Communications in Probability

Then


n
n
n
X
Y
Sk
σ W (k)
Sk X
−1/2
=

log
=
log 1 +
+ o(k
)
log


µ k
k=1
k=1
k=1

n
n 
X

σ X W (k)
σ W (k)
+ o(k −1/2 ) =

+ o( n)
=
µ k
µ
k
k=1
k=1
Z n

W (x)
σ
dx + o( n) a.s.,
=
µ 0
x

(3)

where log x = ln(x ∨ e). It follows that
n


Y Sk D
µ 1
√ log

σ n

k=1

Z

1
0

W (x)
dx,
x

as n → ∞.


It is easily seen that the random variable on the right hand side is a normal random variable
with
Z 1
Z 1
W (x)
EW (x)
E
dx =
dx = 0
x
x
0
0
and
E

Z

1


0

2 Z 1 Z 1
Z 1Z 1
min(x, y)
EW (x)W (y)
W (x)
dx =
dxdy =
dxdy = 2.
x
xy
xy
0
0
0
0

So
n

Y
Sk


k=1

!γ/√n

D

→e



2N (0,1)

,

as n → ∞,


(4)

where γ = µ/σ. If Sn is the partial sum of a sequence {Xk ; k ≥ 1} of i.i.d. random variables,
then (2) is satisfied when E|Xk |2 log log |Xk | < ∞. (2) is known as the strong invariance
principle. To show (4) holds for sums of i.i.d. random variables only with the finite second
moments, we replace the condition (2) by a weaker one. The following is our main result.
Theorem 1 Let {Sk ; k ≥ 1} be a nondecreasing sequence of positive random variables. Suppose there exists a standard Wiener process {W (t); t ≥ 0} and two positive constants µ and σ
such that
S[nt] − [nt]µ D

Wn (t) =:
→ W (t) in D[0, 1], as n → ∞
(5)
σ n
and
sup
n

Then




[nt]

Y Sk



k=1

where γ = µ/σ.

γ/√n

D

→ exp

E|Sn − nµ|

< ∞.
n

Z

0

t


W (x)
dx
in D[0, 1], as n → ∞,
x

(6)

(7)

Invariance principle of the product of sums of random variables

53

Remark 1 (5) is known as the weak invariance principle. The conditions (5) and (6) are
satisfied for many random variables sequences. For example,
Pn if {Xk ; k ≥ 1} are i.i.d. positive
random variables with mean µ and variance σ 2 and Sn = i=1 Xk , then (5) is satisfied by the
invariance principle (c.f., Theorem 14.1 of Billingsley (1999)). Also, for any n ≥ 1,
 


1/2
Sn − nµ
|Sn − nµ|


≤ Var
E
= σ,
n
n
by the Cauchy-Schwarz inequality, so Condition (6) is also satisfied. Many dependent random
sequences also satisfy these two conditions.
Proof of Theorem 1. For x > −1, write log(1 + x) = x + xθ(x), where θ(x) → 0, as x → 0.
Then for any t > 0,
γ/√n



[nt]
[nt]
[nt]
Y Sk
1 X Sk − kµ
Sk
1 X Sk − kµ


+ √
θ
−1 .
(8)
= √
log

σ n
k
σ n
k

k=1

k=1

k=1

Notice that for any ρ > 1,
max

ρn ≤k

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52