Pengaruh Partisipasi Anggaran Terhadap Kinerja Manajerial dengan Keadilan Prosedural, Motivasi, dan Job Relevant Information (JRI) Sebagai Variabel Intervening (Studi Empiris Pada Perusahaan Jasa di Kota Semarang) - Unika Repository
Anoraga, Pandji, 2005, Psikologi Kerja, Jakarta : PT. Rineka Cipta
Dewi, Yenny Naranatha. (2010). “Pengaruh Budaya Organisasi, Motivasi Kerja,
dan Kepuasan Kerja Terhadap Kinerja Manajer Pada Perusahaann Manufaktur diProgram Semarang”. Skripsi (tidak dipublikasikan) Sarjana Universitas Katolik Soegijapranata Semarang.
Early, P.C. dan E.A. Lind, (1987), “Procedural Justice and Participation in Task
Selection: The Role ofControl in Mediating Justice Judgments”, Journal of Personality and Social Psycology, 56 (6): 1148-1160.
Garisson, Ray H dan Eric W. Norren, 2000, Akuntansi Manajemen, terjemahan A.
Totok Budi Santoso, Jakarta : Salemba Empat
Ghozali, Prof.Dr .H.Imam,M.Com, Akt, 2006, Aplikasi Analisis Multivariate
dengan Program SPSS , Semarang: Badan Penerbit Universitas DiponegoroGovindarajan, V., (1986), “Impact of Participation in The Budgetary Process on
Managerial Attitudes and Performance: Universilistic and Contingency Perspectives”, Decision Sciences, 17: 496- 516. Greenberg, and R.H. Willis: 27-55, New York, NY: Plenum Press.Hasibuan, H Malayu S.P, 2001, Organisasi dan Motivasi : Dasar Peningkatan
Produktivitas, Jakarta : Bumi Aksara
pengolahan kayu skala menengah di Jawa Timur”. Jurusan Ekonomi Manajemen, fakultas Ekonomi, Universitas Kristen Petra.
Kren, L., (1992), “Budgetary Participation and Managerial Performance: The Impact of
Information and Environmental Volatility”, The Accounting Review, July: 511-526.
Lind, E.A. and T. Tyler, (1988), The Social Psychology of Procedural Justice,
New York, NY: Plenum Press.Munandar, M,, 1986, Budgeting : Perencanaan Kerja, Pengkoordinasian,
Pengawasan , Yogyakarta : BPFE
Mulyadi dan Jhony Setiawan, 2001, Sistem Perencanaan dan Pengendalian
Masyarakat , Edisi Kedua, Cetakan Pertama, Jakarta : Salemba Empat.
Nafarin, 2000, Penganggaran Perusahaan, Edisi Pertama, Jakarta : Salemba
EmpatP. Agustinus Aryo. (2007). “Pengaruh Partisipasi Dalam Penganggaran terhadap
Kinerja Manajer dengan Motivasi Kerja Sebagai VariabelModerating. Skripsi (tidak dipublikasikan) Program Sarjana Universitas Katolik Soegijapranata Semarang.
P, Agatha Dyah Rukmi. (2006). “ Peran Partisipasi Anggaran Dalam Hubungan
Antara Keadilan Prosedural dengan Kinerja Manajerial. Skripsi (tidak dipublikasikan) Program Sarjana Universitas Katolik Soegijapranata Semarang.Kerja (Studi Empiris pada Perusahaan Jasa Perhotelan). Skripsi (tidak dipublikasikan) Program Sarjana Universitas Katolik Soegijapranata Semarang.
Sumadiyah, SE, AK & Sri Susanta, SE, Msi, AK.2004. Job Relevant Information
dan Ketidakpastian Lingkungan dalam Hubungan antara PenyusunanPartisipasi Anggaran dan Kinerja Manajerial. SNA VII. Denpasar Bali, 23 Desember.
W. Veronika Imelda. (2005). “Peran Partisipasi Penganggaran dalam Hubungan Antara Keadilan Prosedural dan Keadilan Distributif dengan Kinerja
Manajerial dan Kepuasan Kerja (Studi Empiris Pada Perusahaan Manufaktur di Semarang). Skripsi (tidak dipublikasikan) Program Sarjana Universitas Katolik Soegijapranata Semarang.
Yusfaningrum Kusnasriyanti & Imam Ghozali, 2007.Analisis Pengaruh
Partisipasi Anggaran terhadap Kinerja Manajerial melalui KomitmenTujuan Anggaran dan Job Relevant Information (JRI) sebagai Variabel Intervening. SNA VIII. Solo,15-16 September.
Hipotesis awal (PA ke KM) Regression b Variables Entered/Removed
Variables Variables Model Entered Removed Method
a
1 pa . Enter a. All requested variables entered.
b. Dependent Variable: km
b Model Summary
Adjusted R Std. Error of the Model R R Square Square Estimate
a
1 .515 .266 .255 6.45851
a. Predictors: (Constant), pa
b. Dependent Variable: km
b ANOVA Model Sum of Squares df Mean Square F Sig. a
1 Regression 1010.516 1 1010.516 24.226 .000 Residual 2794.730 67 41.712 Total 3805.246
68
a. Predictors: (Constant), pa
a
Residuals Statistics
Minimum Maximum Mean Std. Deviation N Predicted Value 21.7040 37.1649 28.1594 3.85494
69 Residual -1.58577E1 12.25246 .00000 6.41085
69 Std. Predicted Value -1.675 2.336 .000 1.000
69 Std. Residual -2.455 1.897 .000 .993
69
a. Dependent Variable: km
Hipotesis awal Normalitas NPar Tests
One-Sample Kolmogorov-Smirnov Test
Unstandardized Residual
N
69 Normal Parameters
a
Mean .0000000 Std. Deviation 6.41084785
Most Extreme Differences Absolute .078 Positive .051 Negative -.078
Kolmogorov-Smirnov Z .649 Asymp. Sig. (2-tailed) .794 a. Test distribution is Normal.
Uji Heterokedastisitas Regression b Variables Entered/Removed
Variables Variables Model Entered Removed Method
a
1 pa . Enter a. All requested variables entered.
b. Dependent Variable: abs
Model Summary
Adjusted R Std. Error of the Model R R Square Square Estimate
a
1 .000 .000 -.015 3.61737
a. Predictors: (Constant), pa
b ANOVA Model Sum of Squares df Mean Square F Sig. a
1 Regression .000 1 .000 .000 .997 Residual 876.720 67 13.085 Total 876.721
68
a. Predictors: (Constant), pa
Uji Hipotesis 1 MODEL 1 (PA ke KP) Regression b Variables Entered/Removed
Variables Variables Model Entered Removed Method
a
1 pa . Enter a. All requested variables entered.
b. Dependent Variable: kp
b Model Summary
Adjusted R Std. Error of the Model R R Square Square Estimate
a
1 .327 .107 .093 4.83312
a. Predictors: (Constant), pa
b. Dependent Variable: kp
b ANOVA Model Sum of Squares df Mean Square F Sig. a
1 Regression 186.858 1 186.858 7.999 .006 Residual 1565.056 67 23.359 pa .317 .112 .327 2.828 .006
a. Dependent Variable: kp
a Residuals Statistics
Minimum Maximum Mean Std. Deviation N Predicted Value 18.0502 24.6986 20.8261 1.65768
69 Residual -1.07990E1 8.00005 .00000 4.79745
69 Std. Predicted Value -1.675 2.336 .000 1.000
69 Std. Residual -2.234 1.655 .000 .993
69
a. Dependent Variable: kp
Uji Normalitas NPar Tests
One-Sample Kolmogorov-Smirnov Test
Unstandardized Residual
N
69 Normal Parameters
a
Mean .0000000 Std. Deviation 4.79744958
Most Extreme Differences Absolute .091 Positive .091 Negative -.090
Kolmogorov-Smirnov Z .753 Asymp. Sig. (2-tailed) .622 a. Test distribution is Normal.
Uji Heterokedastisitas Regression b Variables Entered/Removed
Variables Variables Model Entered Removed Method
a
1 pa . Enter a. All requested variables entered.
b. Dependent Variable: abs_pakp
Model Summary
Adjusted R Std. Error of the Model R R Square Square Estimate
a
1 .108 .012 -.003 2.43902
a. Predictors: (Constant), pa
b
ANOVA
Model Sum of Squares df Mean Square F Sig.1 (Constant) 4.992 1.046 4.774 .000 pa -.050 .056 -.108 -.885 .379 a. Dependent Variable: abs_pakp
UJI HIPOTESIS 1 MODEL 2 (PA,KP,KM) Regression b Variables Entered/Removed
Variables Variables Model Entered Removed Method
a
1 KP, PA . Enter a. All requested variables entered.
b. Dependent Variable: KM
b Model Summary
Adjusted R Std. Error of the Model R R Square Square Estimate
a
1 .656 .431 .414 5.72803
a. Predictors: (Constant), KP, PA
b. Dependent Variable: KM
Standardized Unstandardized Coefficients Coefficients Model B Std. Error Beta t Sig.
1 (Constant) 5.439 3.298 1.649 .104 PA .535 .140 .375 3.815 .000 KP .634 .145 .430 4.379 .000
a. Dependent Variable: KM
a Residuals Statistics
Minimum Maximum Mean Std. Deviation N Predicted Value 18.5018 39.2583 28.1594 4.91062
69 Residual -1.34823E1 11.25764 .00000 5.64316
69 Std. Predicted Value -1.967 2.260 .000 1.000
69 Std. Residual -2.354 1.965 .000 .985
69
a. Dependent Variable: KM
One-Sample Kolmogorov-Smirnov Test
Unstandardized Residual
N
69 Normal Parameters
a
Mean .0000000 Std. Deviation 5.64316460
Most Extreme Differences Absolute .114 Positive .072 Negative -.114
Kolmogorov-Smirnov Z .951 Asymp. Sig. (2-tailed) .327 a. Test distribution is Normal.
Regression b Variables Entered/Removed
Variables Variables Model Entered Removed Method
a
1 KP, PA . Enter a. All requested variables entered.
b. Dependent Variable: abs_pakpkm
Model Summary
Adjusted R Std. Error of the Model R R Square Square Estimate
a
1 .127 .016 -.014 3.65745
a. Predictors: (Constant), KP, PA
b ANOVA Model Sum of Squares df Mean Square F Sig. a
1 Regression 14.472 2 7.236 .541 .585 Residual 882.879 66 13.377 Total 897.351
68
a. Predictors: (Constant), KP, PA
b. Dependent Variable: abs_pakpkm
Regression b Variables Entered/Removed
Variables Variables Model Entered Removed Method
a
1 KP, PA . Enter a. All requested variables entered.
b. Dependent Variable: KM
Model Summary
Adjusted R Std. Error of the Model R R Square Square Estimate
a
1 .656 .431 .414 5.72803
a. Predictors: (Constant), KP, PA
b ANOVA Model Sum of Squares df Mean Square F Sig. a
1 Regression 1639.766 2 819.883 24.989 .000 Residual 2165.481 66 32.810 Total 3805.246
68
a. Predictors: (Constant), KP, PA
b. Dependent Variable: KM
Variance Proportions Dimensi
Model on Eigenvalue Condition Index (Constant) PA KP
1 1 2.924 1.000 .01 .01 .01 2 .048 7.780 .08 .95 .26 3 .028 10.299 .92 .04 .73
a. Dependent Variable: KM
Hipotesis 2 MODEL 1 (PA ke M) Regression b Variables Entered/Removed
Variables Variables Model Entered Removed Method
a
1 PA . Enter a. All requested variables entered.
b. Dependent Variable: M
b Model Summary
Adjusted R Std. Error of the Model R R Square Square Estimate
a
1 .521 .271 .260 5.25087
a. Predictors: (Constant), PA
a
Coefficients
Standardized Unstandardized Coefficients Coefficients Model B Std. Error Beta t Sig.
1 (Constant) 13.671 2.251 6.072 .000 PA .607 .122 .521 4.995 .000
a. Dependent Variable: M
a Residuals Statistics
Minimum Maximum Mean Std. Deviation N Predicted Value 19.1378 31.8937 24.4638 3.18051
69 Residual -1.64640E1 9.61023 .00000 5.21211
69 Std. Predicted Value -1.675 2.336 .000 1.000
69 Std. Residual -3.135 1.830 .000 .993
69
a. Dependent Variable: M
Uji Normalitas NPar Tests
One-Sample Kolmogorov-Smirnov Test
Unstandardized Residual
N
69 Normal Parameters
a
Mean .0000000 Std. Deviation 5.21211341
Most Extreme Differences Absolute .106 Positive .070 Negative -.106
Kolmogorov-Smirnov Z .880 Asymp. Sig. (2-tailed) .421 a. Test distribution is Normal.
Uji Heterokedastisitas Regression b Variables Entered/Removed
Variables Variables Model Entered Removed Method
a
1 PA . Enter a. All requested variables entered.
b. Dependent Variable: abs_pam
Model Summary
Adjusted R Std. Error of the Model R R Square Square Estimate
a
1 .004 .000 -.015 3.05152
a. Predictors: (Constant), PA
Standardized Unstandardized Coefficients Coefficients Model B Std. Error Beta t Sig.
1 (Constant) 4.250 1.308 3.248 .002 PA -.002 .071 -.004 -.031 .975
a. Dependent Variable: abs_pam
HIPOTESIS 2 MODEL 2 (PA, M , KM) Regression b Variables Entered/Removed
Variables Variables Model Entered Removed Method
a
1 M, PA . Enter a. All requested variables entered.
b. Dependent Variable: KM
b Model Summary
Adjusted R Std. Error of the Model R R Square Square Estimate
b ANOVA Model Sum of Squares df Mean Square F Sig. a
1 Regression 1208.771 2 604.386 15.363 .000 Residual 2596.475 66 39.341 Total 3805.246
68
b. Dependent Variable: KM
a
Coefficients
Standardized Unstandardized Coefficients Coefficients Model B Std. Error Beta t Sig.
1 (Constant) 10.599 3.348 3.165 .002 PA .537 .170 .376 3.157 .002 M .328 .146 .267 2.245 .028
a. Dependent Variable: KM
a Residuals Statistics
Minimum Maximum Mean Std. Deviation N Predicted Value 19.6933 37.6453 28.1594 4.21617
69 Residual -1.41011E1 10.97909 .00000 6.17928
69 Std. Predicted Value -2.008 2.250 .000 1.000
69 Std. Residual -2.248 1.750 .000 .985
69
Uji Normalitas NPar Tests
One-Sample Kolmogorov-Smirnov Test
Unstandardized Residual
N
69 Normal Parameters
a
Mean .0000000 Std. Deviation 6.17927645
Most Extreme Differences Absolute .080 Positive .051 Negative -.080
Kolmogorov-Smirnov Z .666 Asymp. Sig. (2-tailed) .767 a. Test distribution is Normal.
One-Sample Kolmogorov-Smirnov Test
Unstandardized Residual
N
69 Normal Parameters
a
Mean .0000000 Std. Deviation 6.17927645
Most Extreme Differences Absolute .080 Positive .051 Negative -.080
Kolmogorov-Smirnov Z .666 Asymp. Sig. (2-tailed) .767
Uji Heterokedastisitas Regression b Variables Entered/Removed
Variables Variables Model Entered Removed Method
a
1 M, PA . Enter a. All requested variables entered.
b. Dependent Variable: abs_pamkm
Model Summary
Adjusted R Std. Error of the Model R R Square Square Estimate
a
1 .080 .006 -.024 3.34244
a. Predictors: (Constant), M, PA
a
Coefficients
Standardized Unstandardized Coefficients Coefficients Model B Std. Error Beta t Sig.
1 (Constant) 5.338 1.784 2.991 .004 PA .052 .091 .082 .574 .568
Uji Multikolinearitas Regression b Variables Entered/Removed
Variables Variables Model Entered Removed Method
a
1 M, PA . Enter a. All requested variables entered.
b. Dependent Variable: KM
Model Summary
Adjusted R Std. Error of the Model R R Square Square Estimate
a
1 .564 .318 .297 6.27220
a. Predictors: (Constant), M, PA
a
Coefficients
Standardized Unstandardized Coefficients Coefficients Collinearity Statistics
Model B Std. Error Beta t Sig. Tolerance
VIF 1 (Constant) 10.599 3.348 3.165 .002 PA .537 .170 .376 3.157 .002 .729 1.372
Hipotesis 3 MODEL 1 (PA ke JRI) Regression b Variables Entered/Removed
Variables Variables Model Entered Removed Method
a
1 PA . Enter a. All requested variables entered.
b. Dependent Variable: JRI
b Model Summary
Adjusted R Std. Error of the Model R R Square Square Estimate
a
1 .363 .132 .119 3.52720
a. Predictors: (Constant), PA
b. Dependent Variable: JRI
b
ANOVA
Model Sum of Squares df Mean Square F Sig.1 (Constant) 11.319 1.512 7.484 .000 PA .260 .082 .363 3.185 .002
a. Dependent Variable: JRI
a Residuals Statistics
Minimum Maximum Mean Std. Deviation N Predicted Value 13.6606 19.1247 15.9420 1.36237
69 Residual -6.56351 7.07917 .00000 3.50117
69 Std. Predicted Value -1.675 2.336 .000 1.000
69 Std. Residual -1.861 2.007 .000 .993
69
a. Dependent Variable: JRI
One-Sample Kolmogorov-Smirnov Test
Unstandardized Residual
N
69 Normal Parameters
a
Mean .0000000 Std. Deviation 3.50116863
Most Extreme Differences Absolute .094 Positive .078 Negative -.094
Kolmogorov-Smirnov Z .781 Asymp. Sig. (2-tailed) .576 a. Test distribution is Normal.
b Variables Entered/Removed
Variables Variables Model Entered Removed Method
a
1 PA . Enter a. All requested variables entered.
b. Dependent Variable: abs_pajri
Model Summary
Adjusted R Std. Error of the Model R R Square Square Estimate
a
1 .188 .035 .021 1.81195
a. Predictors: (Constant), PA
b ANOVA Model Sum of Squares df Mean Square F Sig. a
1 Regression 8.057 1 8.057 2.454 .122 Residual 219.972 67 3.283 Total 228.028
68
a. Predictors: (Constant), PA
b. Dependent Variable: abs_pajri
a
Coefficients
Hipotesis 3 MODEL 1 (PA ke JRI) Regression b Variables Entered/Removed
Variables Variables Model Entered Removed Method
a
1 PA . Enter a. All requested variables entered.
b. Dependent Variable: JRI
b Model Summary
Adjusted R Std. Error of the Model R R Square Square Estimate
a
1 .363 .132 .119 3.52720
a. Predictors: (Constant), PA
b. Dependent Variable: JRI
b ANOVA Model Sum of Squares df Mean Square F Sig. a
1 Regression 126.212 1 126.212 10.145 .002 Residual 833.556 67 12.441
a
Coefficients
Standardized Unstandardized Coefficients Coefficients Model B Std. Error Beta t Sig.
1 (Constant) 11.319 1.512 7.484 .000 PA .260 .082 .363 3.185 .002
a. Dependent Variable: JRI
a Residuals Statistics
Minimum Maximum Mean Std. Deviation N Predicted Value 13.6606 19.1247 15.9420 1.36237
69 Residual -6.56351 7.07917 .00000 3.50117
69 Std. Predicted Value -1.675 2.336 .000 1.000
69 Std. Residual -1.861 2.007 .000 .993
69
a. Dependent Variable: JRI
Uji Normalitas NPar Tests
One-Sample Kolmogorov-Smirnov Test
Unstandardized Residual
N
69 Normal Parameters
a
Mean .0000000 Std. Deviation 3.50116863
Most Extreme Differences Absolute .094 Positive .078 Negative -.094
Kolmogorov-Smirnov Z .781 Asymp. Sig. (2-tailed) .576 a. Test distribution is Normal.
Uji Heterokedastisitas Regression b Variables Entered/Removed
Variables Variables Model Entered Removed Method
a
1 PA . Enter a. All requested variables entered.
b. Dependent Variable: abs_pajri
Model Summary
Adjusted R Std. Error of the Model R R Square Square Estimate
a
1 .188 .035 .021 1.81195
a. Predictors: (Constant), PA
b ANOVA Model Sum of Squares df Mean Square F Sig. a
1 Regression 8.057 1 8.057 2.454 .122 Residual 219.972 67 3.283 Total 228.028
68
a. Predictors: (Constant), PA
Hipotesis 3 MODEL 1 (PA ke JRI) Regression b Variables Entered/Removed
Variables Variables Model Entered Removed Method
a
1 PA . Enter a. All requested variables entered.
b. Dependent Variable: JRI
b Model Summary
Adjusted R Std. Error of the Model R R Square Square Estimate
a
1 .363 .132 .119 3.52720
a. Predictors: (Constant), PA
b. Dependent Variable: JRI
b
Standardized Unstandardized Coefficients Coefficients Model B Std. Error Beta t Sig.
1 (Constant) 11.319 1.512 7.484 .000 PA .260 .082 .363 3.185 .002
a. Dependent Variable: JRI
a Residuals Statistics
Minimum Maximum Mean Std. Deviation N Predicted Value 13.6606 19.1247 15.9420 1.36237
69 Residual -6.56351 7.07917 .00000 3.50117
69 Std. Predicted Value -1.675 2.336 .000 1.000
69 Std. Residual -1.861 2.007 .000 .993
69
a. Dependent Variable: JRI
NPar Tests
One-Sample Kolmogorov-Smirnov Test
Unstandardized Residual
N
69 Normal Parameters
a
Mean .0000000 Std. Deviation 3.50116863
Most Extreme Differences Absolute .094 Positive .078 Negative -.094
Kolmogorov-Smirnov Z .781 Asymp. Sig. (2-tailed) .576 a. Test distribution is Normal.
Regression b Variables Entered/Removed
Variables Variables Model Entered Removed Method
a
1 PA . Enter a. All requested variables entered.
b. Dependent Variable: abs_pajri
Model Summary
Adjusted R Std. Error of the Model R R Square Square Estimate
a
1 .188 .035 .021 1.81195
a. Predictors: (Constant), PA
b ANOVA Model Sum of Squares df Mean Square F Sig. a
1 Regression 8.057 1 8.057 2.454 .122 Residual 219.972 67 3.283 Total 228.028
68
a. Predictors: (Constant), PA
b. Dependent Variable: abs_pajri
Hipotesis 3 MODEL 2 (PA, JRI, KM) Regression b Variables Entered/Removed
Variables Variables Model Entered Removed Method
a
1 JRI, PA . Enter a. All requested variables entered.
b. Dependent Variable: KM
b Model Summary
Adjusted R Std. Error of the Model R R Square Square Estimate
a
1 .700 .490 .475 5.42039
a. Predictors: (Constant), JRI, PA
b. Dependent Variable: KM
b
ANOVA
a
Coefficients
Standardized Unstandardized Coefficients Coefficients Model B Std. Error Beta t Sig.
1 (Constant) 3.610 3.149 1.146 .256 PA .473 .135 .331 3.509 .001 JRI 1.013 .188 .509 5.396 .000
a. Dependent Variable: KM
a Residuals Statistics
Minimum Maximum Mean Std. Deviation N Predicted Value 17.9953 38.5923 28.1594 5.23861
69 Residual -1.31613E1 11.57370 .00000 5.34008
69 Std. Predicted Value -1.940 1.992 .000 1.000
69 Std. Residual -2.428 2.135 .000 .985
69
a. Dependent Variable: KM
Uji Normalitas NPar Tests
One-Sample Kolmogorov-Smirnov Test
Unstandardized Residual
N
69 Normal Parameters
a
Mean .0000000 Std. Deviation 5.34008039
Most Extreme Differences Absolute .103 Positive .086 Negative -.103
Kolmogorov-Smirnov Z .858 Asymp. Sig. (2-tailed) .454 a. Test distribution is Normal.
Uji Heterokedastisitas Regression b Variables Entered/Removed
Variables Variables Model Entered Removed Method
a
1 JRI, PA . Enter a. All requested variables entered.
b. Dependent Variable: abs_pajrikm
Model Summary
Adjusted R Std. Error of the Model R R Square Square Estimate
a
1 .142 .020 -.010 3.52809
a. Predictors: (Constant), JRI, PA
b
ANOVA B Std. Error Beta 1 (Constant) 4.032 2.050 1.967 .053 PA .092 .088 .137 1.046 .299 JRI -.105 .122 -.112 -.856 .395
a. Dependent Variable: abs_pajrikm
Uji Multikolinearitas Regression b Variables Entered/Removed
Variables Variables Model Entered Removed Method
a
1 JRI, PA . Enter a. All requested variables entered.
b. Dependent Variable: KM
Model Summary
Adjusted R Std. Error of the Model R R Square Square Estimate
a
1 .700 .490 .475 5.42039
a. Predictors: (Constant), JRI, PA
b
Standardized Unstandardized Coefficients Coefficients Collinearity Statistics
Model B Std. Error Beta t Sig. Tolerance
VIF 1 (Constant) 3.610 3.149 1.146 .256 PA .473 .135 .331 3.509 .001 .868 1.151 JRI 1.013 .188 .509 5.396 .000 .868 1.151
a. Dependent Variable: KM
a Collinearity Diagnostics
Variance Proportions Dimensi
Model on Eigenvalue Condition Index (Constant) PA JRI
1 1 2.927 1.000 .00 .01 .01 2 .046 7.953 .12 .99 .20 3 .026 10.566 .87 .01 .80
a. Dependent Variable: KM