Pengaruh Partisipasi Anggaran Terhadap Kinerja Manajerial dengan Keadilan Prosedural, Motivasi, dan Job Relevant Information (JRI) Sebagai Variabel Intervening (Studi Empiris Pada Perusahaan Jasa di Kota Semarang) - Unika Repository

  Anoraga, Pandji, 2005, Psikologi Kerja, Jakarta : PT. Rineka Cipta

Dewi, Yenny Naranatha. (2010). “Pengaruh Budaya Organisasi, Motivasi Kerja,

dan Kepuasan Kerja Terhadap Kinerja Manajer Pada Perusahaann Manufaktur di

  Program Semarang”. Skripsi (tidak dipublikasikan) Sarjana Universitas Katolik Soegijapranata Semarang.

Early, P.C. dan E.A. Lind, (1987), “Procedural Justice and Participation in Task

Selection: The Role of

  Control in Mediating Justice Judgments”, Journal of Personality and Social Psycology, 56 (6): 1148-1160.

Garisson, Ray H dan Eric W. Norren, 2000, Akuntansi Manajemen, terjemahan A.

  Totok Budi Santoso, Jakarta : Salemba Empat

Ghozali, Prof.Dr .H.Imam,M.Com, Akt, 2006, Aplikasi Analisis Multivariate

dengan Program SPSS , Semarang: Badan Penerbit Universitas Diponegoro

Govindarajan, V., (1986), “Impact of Participation in The Budgetary Process on

Managerial Attitudes and Performance: Universilistic and Contingency Perspectives”, Decision Sciences, 17: 496- 516. Greenberg, and R.H. Willis: 27-55, New York, NY: Plenum Press.

Hasibuan, H Malayu S.P, 2001, Organisasi dan Motivasi : Dasar Peningkatan

  Produktivitas, Jakarta : Bumi Aksara

  pengolahan kayu skala menengah di Jawa Timur”. Jurusan Ekonomi Manajemen, fakultas Ekonomi, Universitas Kristen Petra.

  Kren, L., (1992), “Budgetary Participation and Managerial Performance: The Impact of

  Information and Environmental Volatility”, The Accounting Review, July: 511-526.

  

Lind, E.A. and T. Tyler, (1988), The Social Psychology of Procedural Justice,

New York, NY: Plenum Press.

Munandar, M,, 1986, Budgeting : Perencanaan Kerja, Pengkoordinasian,

  Pengawasan , Yogyakarta : BPFE

Mulyadi dan Jhony Setiawan, 2001, Sistem Perencanaan dan Pengendalian

Masyarakat , Edisi Kedua, Cetakan Pertama, Jakarta : Salemba Empat.

  

Nafarin, 2000, Penganggaran Perusahaan, Edisi Pertama, Jakarta : Salemba

Empat

P. Agustinus Aryo. (2007). “Pengaruh Partisipasi Dalam Penganggaran terhadap

Kinerja Manajer dengan Motivasi Kerja Sebagai Variabel

  Moderating. Skripsi (tidak dipublikasikan) Program Sarjana Universitas Katolik Soegijapranata Semarang.

P, Agatha Dyah Rukmi. (2006). “ Peran Partisipasi Anggaran Dalam Hubungan

Antara Keadilan Prosedural dengan Kinerja Manajerial. Skripsi (tidak dipublikasikan) Program Sarjana Universitas Katolik Soegijapranata Semarang.

  Kerja (Studi Empiris pada Perusahaan Jasa Perhotelan). Skripsi (tidak dipublikasikan) Program Sarjana Universitas Katolik Soegijapranata Semarang.

Sumadiyah, SE, AK & Sri Susanta, SE, Msi, AK.2004. Job Relevant Information

dan Ketidakpastian Lingkungan dalam Hubungan antara Penyusunan

  Partisipasi Anggaran dan Kinerja Manajerial. SNA VII. Denpasar Bali, 23 Desember.

W. Veronika Imelda. (2005). “Peran Partisipasi Penganggaran dalam Hubungan Antara Keadilan Prosedural dan Keadilan Distributif dengan Kinerja

  Manajerial dan Kepuasan Kerja (Studi Empiris Pada Perusahaan Manufaktur di Semarang). Skripsi (tidak dipublikasikan) Program Sarjana Universitas Katolik Soegijapranata Semarang.

Yusfaningrum Kusnasriyanti & Imam Ghozali, 2007.Analisis Pengaruh

Partisipasi Anggaran terhadap Kinerja Manajerial melalui Komitmen

  Tujuan Anggaran dan Job Relevant Information (JRI) sebagai Variabel Intervening. SNA VIII. Solo,15-16 September.

Hipotesis awal (PA ke KM) Regression b Variables Entered/Removed

  Variables Variables Model Entered Removed Method

  a

  1 pa . Enter a. All requested variables entered.

  b. Dependent Variable: km

  b Model Summary

  Adjusted R Std. Error of the Model R R Square Square Estimate

  a

  1 .515 .266 .255 6.45851

  a. Predictors: (Constant), pa

  b. Dependent Variable: km

  b ANOVA Model Sum of Squares df Mean Square F Sig. a

  1 Regression 1010.516 1 1010.516 24.226 .000 Residual 2794.730 67 41.712 Total 3805.246

  68

  a. Predictors: (Constant), pa

  a

Residuals Statistics

  Minimum Maximum Mean Std. Deviation N Predicted Value 21.7040 37.1649 28.1594 3.85494

  69 Residual -1.58577E1 12.25246 .00000 6.41085

  69 Std. Predicted Value -1.675 2.336 .000 1.000

  69 Std. Residual -2.455 1.897 .000 .993

  69

  a. Dependent Variable: km

Hipotesis awal Normalitas NPar Tests

  

One-Sample Kolmogorov-Smirnov Test

  Unstandardized Residual

  N

  69 Normal Parameters

  a

  Mean .0000000 Std. Deviation 6.41084785

  Most Extreme Differences Absolute .078 Positive .051 Negative -.078

  Kolmogorov-Smirnov Z .649 Asymp. Sig. (2-tailed) .794 a. Test distribution is Normal.

Uji Heterokedastisitas Regression b Variables Entered/Removed

  Variables Variables Model Entered Removed Method

  a

  1 pa . Enter a. All requested variables entered.

  b. Dependent Variable: abs

  Model Summary

  Adjusted R Std. Error of the Model R R Square Square Estimate

  a

  1 .000 .000 -.015 3.61737

  a. Predictors: (Constant), pa

  b ANOVA Model Sum of Squares df Mean Square F Sig. a

  1 Regression .000 1 .000 .000 .997 Residual 876.720 67 13.085 Total 876.721

  68

  a. Predictors: (Constant), pa

Uji Hipotesis 1 MODEL 1 (PA ke KP) Regression b Variables Entered/Removed

  Variables Variables Model Entered Removed Method

  a

  1 pa . Enter a. All requested variables entered.

  b. Dependent Variable: kp

  b Model Summary

  Adjusted R Std. Error of the Model R R Square Square Estimate

  a

  1 .327 .107 .093 4.83312

  a. Predictors: (Constant), pa

  b. Dependent Variable: kp

  b ANOVA Model Sum of Squares df Mean Square F Sig. a

  1 Regression 186.858 1 186.858 7.999 .006 Residual 1565.056 67 23.359 pa .317 .112 .327 2.828 .006

  a. Dependent Variable: kp

  a Residuals Statistics

  Minimum Maximum Mean Std. Deviation N Predicted Value 18.0502 24.6986 20.8261 1.65768

  69 Residual -1.07990E1 8.00005 .00000 4.79745

  69 Std. Predicted Value -1.675 2.336 .000 1.000

  69 Std. Residual -2.234 1.655 .000 .993

  69

  a. Dependent Variable: kp

Uji Normalitas NPar Tests

  

One-Sample Kolmogorov-Smirnov Test

  Unstandardized Residual

  N

  69 Normal Parameters

  a

  Mean .0000000 Std. Deviation 4.79744958

  Most Extreme Differences Absolute .091 Positive .091 Negative -.090

  Kolmogorov-Smirnov Z .753 Asymp. Sig. (2-tailed) .622 a. Test distribution is Normal.

Uji Heterokedastisitas Regression b Variables Entered/Removed

  Variables Variables Model Entered Removed Method

  a

  1 pa . Enter a. All requested variables entered.

  b. Dependent Variable: abs_pakp

  Model Summary

  Adjusted R Std. Error of the Model R R Square Square Estimate

  a

  1 .108 .012 -.003 2.43902

  a. Predictors: (Constant), pa

  b

ANOVA

Model Sum of Squares df Mean Square F Sig.

  1 (Constant) 4.992 1.046 4.774 .000 pa -.050 .056 -.108 -.885 .379 a. Dependent Variable: abs_pakp

UJI HIPOTESIS 1 MODEL 2 (PA,KP,KM) Regression b Variables Entered/Removed

  Variables Variables Model Entered Removed Method

  a

  1 KP, PA . Enter a. All requested variables entered.

  b. Dependent Variable: KM

  b Model Summary

  Adjusted R Std. Error of the Model R R Square Square Estimate

  a

  1 .656 .431 .414 5.72803

  a. Predictors: (Constant), KP, PA

  b. Dependent Variable: KM

  Standardized Unstandardized Coefficients Coefficients Model B Std. Error Beta t Sig.

  1 (Constant) 5.439 3.298 1.649 .104 PA .535 .140 .375 3.815 .000 KP .634 .145 .430 4.379 .000

  a. Dependent Variable: KM

  a Residuals Statistics

  Minimum Maximum Mean Std. Deviation N Predicted Value 18.5018 39.2583 28.1594 4.91062

  69 Residual -1.34823E1 11.25764 .00000 5.64316

  69 Std. Predicted Value -1.967 2.260 .000 1.000

  69 Std. Residual -2.354 1.965 .000 .985

  69

  a. Dependent Variable: KM

  

One-Sample Kolmogorov-Smirnov Test

  Unstandardized Residual

  N

  69 Normal Parameters

  a

  Mean .0000000 Std. Deviation 5.64316460

  Most Extreme Differences Absolute .114 Positive .072 Negative -.114

  Kolmogorov-Smirnov Z .951 Asymp. Sig. (2-tailed) .327 a. Test distribution is Normal.

Regression b Variables Entered/Removed

  Variables Variables Model Entered Removed Method

  a

  1 KP, PA . Enter a. All requested variables entered.

  b. Dependent Variable: abs_pakpkm

  Model Summary

  Adjusted R Std. Error of the Model R R Square Square Estimate

  a

  1 .127 .016 -.014 3.65745

  a. Predictors: (Constant), KP, PA

  b ANOVA Model Sum of Squares df Mean Square F Sig. a

  1 Regression 14.472 2 7.236 .541 .585 Residual 882.879 66 13.377 Total 897.351

  68

  a. Predictors: (Constant), KP, PA

  b. Dependent Variable: abs_pakpkm

Regression b Variables Entered/Removed

  Variables Variables Model Entered Removed Method

  a

  1 KP, PA . Enter a. All requested variables entered.

  b. Dependent Variable: KM

  Model Summary

  Adjusted R Std. Error of the Model R R Square Square Estimate

  a

  1 .656 .431 .414 5.72803

  a. Predictors: (Constant), KP, PA

  b ANOVA Model Sum of Squares df Mean Square F Sig. a

  1 Regression 1639.766 2 819.883 24.989 .000 Residual 2165.481 66 32.810 Total 3805.246

  68

  a. Predictors: (Constant), KP, PA

  b. Dependent Variable: KM

  Variance Proportions Dimensi

  Model on Eigenvalue Condition Index (Constant) PA KP

  1 1 2.924 1.000 .01 .01 .01 2 .048 7.780 .08 .95 .26 3 .028 10.299 .92 .04 .73

  a. Dependent Variable: KM

Hipotesis 2 MODEL 1 (PA ke M) Regression b Variables Entered/Removed

  Variables Variables Model Entered Removed Method

  a

  1 PA . Enter a. All requested variables entered.

  b. Dependent Variable: M

  b Model Summary

  Adjusted R Std. Error of the Model R R Square Square Estimate

  a

  1 .521 .271 .260 5.25087

  a. Predictors: (Constant), PA

  a

Coefficients

  Standardized Unstandardized Coefficients Coefficients Model B Std. Error Beta t Sig.

  1 (Constant) 13.671 2.251 6.072 .000 PA .607 .122 .521 4.995 .000

  a. Dependent Variable: M

  a Residuals Statistics

  Minimum Maximum Mean Std. Deviation N Predicted Value 19.1378 31.8937 24.4638 3.18051

  69 Residual -1.64640E1 9.61023 .00000 5.21211

  69 Std. Predicted Value -1.675 2.336 .000 1.000

  69 Std. Residual -3.135 1.830 .000 .993

  69

  a. Dependent Variable: M

Uji Normalitas NPar Tests

  

One-Sample Kolmogorov-Smirnov Test

  Unstandardized Residual

  N

  69 Normal Parameters

  a

  Mean .0000000 Std. Deviation 5.21211341

  Most Extreme Differences Absolute .106 Positive .070 Negative -.106

  Kolmogorov-Smirnov Z .880 Asymp. Sig. (2-tailed) .421 a. Test distribution is Normal.

Uji Heterokedastisitas Regression b Variables Entered/Removed

  Variables Variables Model Entered Removed Method

  a

  1 PA . Enter a. All requested variables entered.

  b. Dependent Variable: abs_pam

  Model Summary

  Adjusted R Std. Error of the Model R R Square Square Estimate

  a

  1 .004 .000 -.015 3.05152

  a. Predictors: (Constant), PA

  Standardized Unstandardized Coefficients Coefficients Model B Std. Error Beta t Sig.

  1 (Constant) 4.250 1.308 3.248 .002 PA -.002 .071 -.004 -.031 .975

  a. Dependent Variable: abs_pam

HIPOTESIS 2 MODEL 2 (PA, M , KM) Regression b Variables Entered/Removed

  Variables Variables Model Entered Removed Method

  a

  1 M, PA . Enter a. All requested variables entered.

  b. Dependent Variable: KM

  b Model Summary

  Adjusted R Std. Error of the Model R R Square Square Estimate

  b ANOVA Model Sum of Squares df Mean Square F Sig. a

  1 Regression 1208.771 2 604.386 15.363 .000 Residual 2596.475 66 39.341 Total 3805.246

  68

  b. Dependent Variable: KM

  a

Coefficients

  Standardized Unstandardized Coefficients Coefficients Model B Std. Error Beta t Sig.

  1 (Constant) 10.599 3.348 3.165 .002 PA .537 .170 .376 3.157 .002 M .328 .146 .267 2.245 .028

  a. Dependent Variable: KM

  a Residuals Statistics

  Minimum Maximum Mean Std. Deviation N Predicted Value 19.6933 37.6453 28.1594 4.21617

  69 Residual -1.41011E1 10.97909 .00000 6.17928

  69 Std. Predicted Value -2.008 2.250 .000 1.000

  69 Std. Residual -2.248 1.750 .000 .985

  69

Uji Normalitas NPar Tests

  

One-Sample Kolmogorov-Smirnov Test

  Unstandardized Residual

  N

  69 Normal Parameters

  a

  Mean .0000000 Std. Deviation 6.17927645

  Most Extreme Differences Absolute .080 Positive .051 Negative -.080

  Kolmogorov-Smirnov Z .666 Asymp. Sig. (2-tailed) .767 a. Test distribution is Normal.

  

One-Sample Kolmogorov-Smirnov Test

  Unstandardized Residual

  N

  69 Normal Parameters

  a

  Mean .0000000 Std. Deviation 6.17927645

  Most Extreme Differences Absolute .080 Positive .051 Negative -.080

  Kolmogorov-Smirnov Z .666 Asymp. Sig. (2-tailed) .767

Uji Heterokedastisitas Regression b Variables Entered/Removed

  Variables Variables Model Entered Removed Method

  a

  1 M, PA . Enter a. All requested variables entered.

  b. Dependent Variable: abs_pamkm

  Model Summary

  Adjusted R Std. Error of the Model R R Square Square Estimate

  a

  1 .080 .006 -.024 3.34244

  a. Predictors: (Constant), M, PA

  a

Coefficients

  Standardized Unstandardized Coefficients Coefficients Model B Std. Error Beta t Sig.

  1 (Constant) 5.338 1.784 2.991 .004 PA .052 .091 .082 .574 .568

Uji Multikolinearitas Regression b Variables Entered/Removed

  Variables Variables Model Entered Removed Method

  a

  1 M, PA . Enter a. All requested variables entered.

  b. Dependent Variable: KM

  Model Summary

  Adjusted R Std. Error of the Model R R Square Square Estimate

  a

  1 .564 .318 .297 6.27220

  a. Predictors: (Constant), M, PA

  a

Coefficients

  Standardized Unstandardized Coefficients Coefficients Collinearity Statistics

  Model B Std. Error Beta t Sig. Tolerance

  VIF 1 (Constant) 10.599 3.348 3.165 .002 PA .537 .170 .376 3.157 .002 .729 1.372

Hipotesis 3 MODEL 1 (PA ke JRI) Regression b Variables Entered/Removed

  Variables Variables Model Entered Removed Method

  a

  1 PA . Enter a. All requested variables entered.

  b. Dependent Variable: JRI

  b Model Summary

  Adjusted R Std. Error of the Model R R Square Square Estimate

  a

  1 .363 .132 .119 3.52720

  a. Predictors: (Constant), PA

  b. Dependent Variable: JRI

  b

ANOVA

Model Sum of Squares df Mean Square F Sig.

  1 (Constant) 11.319 1.512 7.484 .000 PA .260 .082 .363 3.185 .002

  a. Dependent Variable: JRI

  a Residuals Statistics

  Minimum Maximum Mean Std. Deviation N Predicted Value 13.6606 19.1247 15.9420 1.36237

  69 Residual -6.56351 7.07917 .00000 3.50117

  69 Std. Predicted Value -1.675 2.336 .000 1.000

  69 Std. Residual -1.861 2.007 .000 .993

  69

  a. Dependent Variable: JRI

  

One-Sample Kolmogorov-Smirnov Test

  Unstandardized Residual

  N

  69 Normal Parameters

  a

  Mean .0000000 Std. Deviation 3.50116863

  Most Extreme Differences Absolute .094 Positive .078 Negative -.094

  Kolmogorov-Smirnov Z .781 Asymp. Sig. (2-tailed) .576 a. Test distribution is Normal.

  b Variables Entered/Removed

  Variables Variables Model Entered Removed Method

  a

  1 PA . Enter a. All requested variables entered.

  b. Dependent Variable: abs_pajri

  Model Summary

  Adjusted R Std. Error of the Model R R Square Square Estimate

  a

  1 .188 .035 .021 1.81195

  a. Predictors: (Constant), PA

  b ANOVA Model Sum of Squares df Mean Square F Sig. a

  1 Regression 8.057 1 8.057 2.454 .122 Residual 219.972 67 3.283 Total 228.028

  68

  a. Predictors: (Constant), PA

  b. Dependent Variable: abs_pajri

  a

Coefficients

Hipotesis 3 MODEL 1 (PA ke JRI) Regression b Variables Entered/Removed

  Variables Variables Model Entered Removed Method

  a

  1 PA . Enter a. All requested variables entered.

  b. Dependent Variable: JRI

  b Model Summary

  Adjusted R Std. Error of the Model R R Square Square Estimate

  a

  1 .363 .132 .119 3.52720

  a. Predictors: (Constant), PA

  b. Dependent Variable: JRI

  b ANOVA Model Sum of Squares df Mean Square F Sig. a

  1 Regression 126.212 1 126.212 10.145 .002 Residual 833.556 67 12.441

  a

Coefficients

  Standardized Unstandardized Coefficients Coefficients Model B Std. Error Beta t Sig.

  1 (Constant) 11.319 1.512 7.484 .000 PA .260 .082 .363 3.185 .002

  a. Dependent Variable: JRI

  a Residuals Statistics

  Minimum Maximum Mean Std. Deviation N Predicted Value 13.6606 19.1247 15.9420 1.36237

  69 Residual -6.56351 7.07917 .00000 3.50117

  69 Std. Predicted Value -1.675 2.336 .000 1.000

  69 Std. Residual -1.861 2.007 .000 .993

  69

  a. Dependent Variable: JRI

Uji Normalitas NPar Tests

  

One-Sample Kolmogorov-Smirnov Test

  Unstandardized Residual

  N

  69 Normal Parameters

  a

  Mean .0000000 Std. Deviation 3.50116863

  Most Extreme Differences Absolute .094 Positive .078 Negative -.094

  Kolmogorov-Smirnov Z .781 Asymp. Sig. (2-tailed) .576 a. Test distribution is Normal.

Uji Heterokedastisitas Regression b Variables Entered/Removed

  Variables Variables Model Entered Removed Method

  a

  1 PA . Enter a. All requested variables entered.

  b. Dependent Variable: abs_pajri

  Model Summary

  Adjusted R Std. Error of the Model R R Square Square Estimate

  a

  1 .188 .035 .021 1.81195

  a. Predictors: (Constant), PA

  b ANOVA Model Sum of Squares df Mean Square F Sig. a

  1 Regression 8.057 1 8.057 2.454 .122 Residual 219.972 67 3.283 Total 228.028

  68

  a. Predictors: (Constant), PA

Hipotesis 3 MODEL 1 (PA ke JRI) Regression b Variables Entered/Removed

  Variables Variables Model Entered Removed Method

  a

  1 PA . Enter a. All requested variables entered.

  b. Dependent Variable: JRI

  b Model Summary

  Adjusted R Std. Error of the Model R R Square Square Estimate

  a

  1 .363 .132 .119 3.52720

  a. Predictors: (Constant), PA

  b. Dependent Variable: JRI

  b

  Standardized Unstandardized Coefficients Coefficients Model B Std. Error Beta t Sig.

  1 (Constant) 11.319 1.512 7.484 .000 PA .260 .082 .363 3.185 .002

  a. Dependent Variable: JRI

  a Residuals Statistics

  Minimum Maximum Mean Std. Deviation N Predicted Value 13.6606 19.1247 15.9420 1.36237

  69 Residual -6.56351 7.07917 .00000 3.50117

  69 Std. Predicted Value -1.675 2.336 .000 1.000

  69 Std. Residual -1.861 2.007 .000 .993

  69

  a. Dependent Variable: JRI

NPar Tests

  

One-Sample Kolmogorov-Smirnov Test

  Unstandardized Residual

  N

  69 Normal Parameters

  a

  Mean .0000000 Std. Deviation 3.50116863

  Most Extreme Differences Absolute .094 Positive .078 Negative -.094

  Kolmogorov-Smirnov Z .781 Asymp. Sig. (2-tailed) .576 a. Test distribution is Normal.

Regression b Variables Entered/Removed

  Variables Variables Model Entered Removed Method

  a

  1 PA . Enter a. All requested variables entered.

  b. Dependent Variable: abs_pajri

  Model Summary

  Adjusted R Std. Error of the Model R R Square Square Estimate

  a

  1 .188 .035 .021 1.81195

  a. Predictors: (Constant), PA

  b ANOVA Model Sum of Squares df Mean Square F Sig. a

  1 Regression 8.057 1 8.057 2.454 .122 Residual 219.972 67 3.283 Total 228.028

  68

  a. Predictors: (Constant), PA

  b. Dependent Variable: abs_pajri

Hipotesis 3 MODEL 2 (PA, JRI, KM) Regression b Variables Entered/Removed

  Variables Variables Model Entered Removed Method

  a

  1 JRI, PA . Enter a. All requested variables entered.

  b. Dependent Variable: KM

  b Model Summary

  Adjusted R Std. Error of the Model R R Square Square Estimate

  a

  1 .700 .490 .475 5.42039

  a. Predictors: (Constant), JRI, PA

  b. Dependent Variable: KM

  b

ANOVA

  a

Coefficients

  Standardized Unstandardized Coefficients Coefficients Model B Std. Error Beta t Sig.

  1 (Constant) 3.610 3.149 1.146 .256 PA .473 .135 .331 3.509 .001 JRI 1.013 .188 .509 5.396 .000

  a. Dependent Variable: KM

  a Residuals Statistics

  Minimum Maximum Mean Std. Deviation N Predicted Value 17.9953 38.5923 28.1594 5.23861

  69 Residual -1.31613E1 11.57370 .00000 5.34008

  69 Std. Predicted Value -1.940 1.992 .000 1.000

  69 Std. Residual -2.428 2.135 .000 .985

  69

  a. Dependent Variable: KM

Uji Normalitas NPar Tests

  

One-Sample Kolmogorov-Smirnov Test

  Unstandardized Residual

  N

  69 Normal Parameters

  a

  Mean .0000000 Std. Deviation 5.34008039

  Most Extreme Differences Absolute .103 Positive .086 Negative -.103

  Kolmogorov-Smirnov Z .858 Asymp. Sig. (2-tailed) .454 a. Test distribution is Normal.

Uji Heterokedastisitas Regression b Variables Entered/Removed

  Variables Variables Model Entered Removed Method

  a

  1 JRI, PA . Enter a. All requested variables entered.

  b. Dependent Variable: abs_pajrikm

  Model Summary

  Adjusted R Std. Error of the Model R R Square Square Estimate

  a

  1 .142 .020 -.010 3.52809

  a. Predictors: (Constant), JRI, PA

  b

ANOVA B Std. Error Beta 1 (Constant) 4.032 2.050 1.967 .053 PA .092 .088 .137 1.046 .299 JRI -.105 .122 -.112 -.856 .395

  a. Dependent Variable: abs_pajrikm

Uji Multikolinearitas Regression b Variables Entered/Removed

  Variables Variables Model Entered Removed Method

  a

  1 JRI, PA . Enter a. All requested variables entered.

  b. Dependent Variable: KM

  Model Summary

  Adjusted R Std. Error of the Model R R Square Square Estimate

  a

  1 .700 .490 .475 5.42039

  a. Predictors: (Constant), JRI, PA

  b

  Standardized Unstandardized Coefficients Coefficients Collinearity Statistics

  Model B Std. Error Beta t Sig. Tolerance

  VIF 1 (Constant) 3.610 3.149 1.146 .256 PA .473 .135 .331 3.509 .001 .868 1.151 JRI 1.013 .188 .509 5.396 .000 .868 1.151

  a. Dependent Variable: KM

  a Collinearity Diagnostics

  Variance Proportions Dimensi

  Model on Eigenvalue Condition Index (Constant) PA JRI

  1 1 2.927 1.000 .00 .01 .01 2 .046 7.953 .12 .99 .20 3 .026 10.566 .87 .01 .80

  a. Dependent Variable: KM

Dokumen yang terkait

Pengaruh Partisipasi Dalam Penyusunan Anggaran Terhadap Kinerja Manajerial Perusahaan Melalui Kecukupan Anggaran, Komitmen Organisasi, Komitmen Tujuan Anggaran, Dan Job Relevant Information (JRI)

5 78 73

Pengaruh Partisipasi Anggaran Melalui Motivasi Kerja Sebagai Variabel Intervening Terhadap Kinerja Manajerial Pada Perusahaan Perkebunan Kelapa Sawit Di Sumatera Utara

0 50 100

Pengaruh Partisipasi Anggaran dan Job Relevant Information (JRI) terhadap Asimetri Informasi dan Kinerja Satuan Perangkat Daerah (SKPD) Dinas Pendidikan Pemerintah Kota Tanjung Balai

0 36 132

Pengaruh Partisipasi Anggaran Dan Kejelasan Sasaran Anggaran Terhadap Kinerja Manajerial Dengan Motivasi Sebagai Variabel Intervening pada Kawasan Industri Medan

2 63 137

Pengaruh Partisipasi Penyusunan Anggaran Terhadap Kinerja Manajerial Dengan Job Relevant Information (JRI) Dan Komunikasi Sebagai Variabel Moderating Pada PDAM Di Propinsi Sumatera Utara

1 84 157

Pengaruh Partisipasi Penyusunan Anggaran Terhadap Kinerja Manajerial dengan Voice sebagai Variabel Intervening (Studi Empiris pada Pemerintah Daerah Provinsi Lampung)

0 6 51

Pengaruh Partisipasi Anggaran, Komitmen Organisasi, Kecukupan Anggaran, dan Job Relevan Information Terhadap Kinerja Manajerial

1 7 12

2. Kerahasiaan Jawaban - Pengaruh Partisipasi Anggaran Melalui Motivasi Kerja Sebagai Variabel Intervening Terhadap Kinerja Manajerial Pada Perusahaan Perkebunan Kelapa Sawit Di Sumatera Utara

0 0 36

BAB II TINJAUAN PUSTAKA 2.1 Landasan Teori 2.1.1 Anggaran - Pengaruh Partisipasi Anggaran Melalui Motivasi Kerja Sebagai Variabel Intervening Terhadap Kinerja Manajerial Pada Perusahaan Perkebunan Kelapa Sawit Di Sumatera Utara

0 0 17

Pengaruh Partisipasi Anggaran Melalui Motivasi Kerja Sebagai Variabel Intervening Terhadap Kinerja Manajerial Pada Perusahaan Perkebunan Kelapa Sawit Di Sumatera Utara

0 0 11