SpearmanWilliams. 140KB Jun 04 2011 12:09:32 AM

Journal de Th´eorie des Nombres
de Bordeaux 16 (2004), 215–220

Normal integral bases for Emma Lehmer’s
parametric family of cyclic quintics
par Blair K. SPEARMAN et Kenneth S. WILLIAMS

´sume
´. Nous donnons des bases normales enti`eres explicites
Re
pour des extensions cycliques quintiques d´efinies par la famille
param´etr´ee de quintiques d’Emma Lehmer.
Abstract. Explicit normal integral bases are given for some
cyclic quintic fields defined by Emma Lehmer’s parametric family
of quintics.

1. Introduction
Let n ∈ Z. Emma Lehmer’s quintic polynomials fn (x) ∈ Z[x] are defined
by
(1.1) fn (x) = x5 + n2 x4 − (2n3 + 6n2 + 10n + 10)x3
+ (n4 + 5n3 + 11n2 + 15n + 5)x2 + (n3 + 4n2 + 10n + 10)x + 1,

see [4, p. 539]. Schoof and Washington [6, p. 548] have shown that fn (x)
is irreducible for all n ∈ Z. Let ρn ∈ C be a root of fn (x). Set Ln = Q(ρn )
so that [Ln : Q] = 5. It is known that Ln is a cyclic field [6, p. 548]. The
discriminant d(Ln ) of Ln has been determined by Jeannin [3, p. 76] and,
as a special case of a more general result, by Spearman and Williams [7,
Theorem 2], namely
(1.2)

d(Ln ) = f (Ln )4 ,

where the conductor f (Ln ) is given by
(1.3)

f (Ln ) = 5α

Y

p,

p ≡ 1 (mod 5)

p|
+ 5n3 + 15n2 + 25n + 25
4
3
vp (n + 5n + 15n2 + 25n + 25) 6≡ 0 (mod 5)
n4

Manuscrit re¸cu le 18 octobre 2002.
Both authors were supported by research grants from the Natural Sciences and Engineering
Research Council of Canada.

216

Blair K. Spearman, Kenneth S. Williams

where vp (k) denotes the exponent of the largest power of the prime p dividing the nonzero integer k and

0, if 5 ∤ n,
(1.4)
α=

2, if 5 | n.
Ga´
al and Pohst [2, p. 1690] have given an integral basis for Ln when
p2 ∤ n4 + 5n3 + 15n2 + 25n + 25 for any prime p 6= 5. They also discuss the
existence of a power integral basis for Ln [2, p. 1695]. It is known that
Ln has a normal integral basis (NIB)
2πi
⇐⇒ Ln ⊆ Q(e m ) for some squarefree integer m
⇐⇒ f (Ln ) | m for some squarefree integer m
⇐⇒ f (Ln ) squarefree
⇐⇒ 5 ∤ n,
see [5, p. 175]. From this point on we assume that 5 ∤ n so that n possesses
a normal integral basis. Acciaro and Fieker [1] have given an algorithm for
finding a normal integral basis (when it exists) for a cyclic field of prime
degree. Applying this algorithm to the 800 fields Ln with 1 ≤ n ≤ 1000
and (n, 5) = 1 they found that 766 of these fields had a normal integral
basis of the form


′′′′

a + ρn , a + ρ′n , a + ρ′′n , a + ρ′′′
n , a + ρn
′′′′
for some a ∈ Z, where ρn , ρ′n , ρ′′n , ρ′′′
n , ρn are the conjugates of ρn . We
explain this phenomenon by proving the following theorem in Section 2.

Theorem. Let n ∈ Z be such that 5 ∤ n. Then Ln has a normal integral
basis of the form


′′′′
(v, w ∈ Z)
v + wρn , v + wρ′n , v + wρ′′n , v + wρ′′′
n , v + wρn
if and only if

w  2  n 
n −
,

n4 + 5n3 + 15n2 + 25n + 25 is squarefree, w = ±1, v =
5
5
n
where
is the Legendre symbol modulo 5.
5
It is easy to check that there are exactly 766 values of n ∈ Z such that
1 ≤ n ≤ 1000, 5 ∤ n and n4 + 5n3 + 15n2 + 25n + 25 is squarefree.
2. Proof of Theorem.
We begin by determining a cyclic permutation of the roots of fn (x). This
was done by Schoof and Washington [6, p. 548] by means of a rational
function. For our purposes we require polynomial expressions for the roots.
The restriction 5 ∤ n is not needed in the Proposition below.

Normal integral bases

217

Proposition. Let n ∈ Z. Let y0 be any root of fn (x). Then the other four

roots of fn (x) are
y1 = ((n + 2)2 y04 + (n + 2)(n + 1)(n2 + n − 1)y03
+ (−2n5 − 14n4 − 43n3 − 76n2 − 80n − 39)y02
+ (n + 1)(n5 + 8n4 + 29n3 + 60n2 + 71n + 36)y0
+ (n + 2)(n3 + 6n2 + 14n + 11))/(n3 + 5n2 + 10n + 7),
y2 = ((−2n − 3)y04 − (2n3 + 4n2 + 3n + 2)y03
+ (3n4 + 14n3 + 31n2 + 41n + 24)y02
− (n + 3)(n4 + 4n3 + 9n2 + 9n + 2)y0
− (n + 2)(2n + 3))/(n3 + 5n2 + 10n + 7),
y3 = (−(n + 2)(n + 1)y04 − (n2 + n − 1)(n + 1)2 y03
+ (2n5 + 12n4 + 33n3 + 54n2 + 53n + 23)y02
− (n + 2)(n + 1)(n4 + 5n3 + 12n2 + 16n + 9)y0
− (n5 + 7n4 + 24n3 + 47n2 + 52n + 25))/(n3 + 5n2 + 10n + 7),
y4 = ((n + 1)y04 + (n3 + 2n2 + 3n + 3)y03
− (n + 2)(n + 1)(n2 + n + 4)y02
− (n4 + 7n3 + 19n2 + 29n + 19)y0
+ (n + 1)(n3 + 5n2 + 11n + 9))/(n3 + 5n2 + 10n + 7).
Let σ ∈ Gal(fn ) be such that
(2.1)


σ(y0 ) = y1 .

Then
(2.2)

σ j (y0 ) = yj ,

j = 0, 1, 2, 3, 4,

and the polynomial Pn (y) ∈ Q[y] given by
(2.3)

Pn (y) = ((n + 2)2 y 4 + (n + 2)(n + 1)(n2 + n − 1)y 3
+ (−2n5 − 14n4 − 43n3 − 76n2 − 80n − 39)y 2
+ (n + 1)(n5 + 8n4 + 29n3 + 60n2 + 71n + 36)y
+ (n + 2)(n3 + 6n2 + 14n + 11))/(n3 + 5n2 + 10n + 7),

Blair K. Spearman, Kenneth S. Williams

218


is such that
(2.3)

Pnj (y0 ) = σ j (y0 ),

j = 0, 1, 2, 3, 4.

Proof of Proposition. Using MAPLE we find that there exist polynomials gn (y), hn (y), kn (y), ln (y) ∈ Q[y] such that
fn (y1 ) = fn (y0 )gn (y0 ) = 0,
fn (y2 ) = fn (y0 )hn (y0 ) = 0,
fn (y3 ) = fn (y0 )kn (y0 ) = 0,
fn (y4 ) = fn (y0 )ln (y0 ) = 0,
where y1 , y2 , y3 , y4 are defined in the statement of the Proposition. Clearly
y0 , y1 , y2 , y3 , y4 are all distinct as y0 is a root of an irreducible quintic
polynomial. Thus y0 , y1 , y2 , y3 , y4 are the five distinct roots of fn (x).
With Pn (y) as defined in (2.3), we see from the definition of y1 that
(2.4)

y1 = Pn (y0 ).


Another MAPLE calculation shows that
Pn2 (y0 ) = Pn (y1 ) = y2 ,
Pn3 (y0 ) = Pn (y2 ) = y3 ,
Pn4 (y0 ) = Pn (y3 ) = y4 ,
so that
Pnj (y0 ) = yj ,

j = 0, 1, 2, 3, 4.

With σ ∈ Gal(fn ) defined in (2.1), we see from (2.5) that
Pn (y0 ) = σ(y0 ).
Finally, as σ ∈ Gal(fn ) and Pn (y) ∈ Q[y], we obtain
Pn2 (y0 ) = Pn (Pn (y0 )) = Pn (σ(y0 )) = σ(Pn (y0 )) = σ 2 (y0 )
and similarly Pn3 (y0 ) = σ 3 (y0 ) and Pn4 (y0 ) = σ 4 (y0 ).

Normal integral bases

219


Proof of Theorem. Let n ∈ Z be such that 5 ∤ n. Let v, w ∈ Z. Using
MAPLE we find that
′′′′
D(v + wρn , v + wρ′n , v + wρ′′n , v + wρ′′′
n , v + wρn )

= D(v + wy0 , v + wy1 , v + wy2 , v + wy3 , v + wy4 )
2

= det (v + wyi+j (mod 5) )i,j = 0,1,2,3,4
= w8 (5v − wn2 )2 (n4 + 5n3 + 15n2 + 25n + 25)4 .
Then, by (1.2) and (1.3), we have


′′′′
v + wρn , v + wρ′n , v + wρ′′n , v + wρ′′′
is a NIB for Ln
n , v + wρn
′′′′
⇐⇒ D(v + wρn , v + wρ′n , v + wρ′′n , v + wρ′′′

n , v + wρn ) = d(Ln )

⇐⇒ w8 (5v − wn2 )2 (n4 + 5n3 + 15n2 + 25n + 25)4
Y

=

p4

p ≡ 1 (mod 5)
p|
+ 5n3 + 15n2 + 25n + 25
4
3
vp (n + 5n + 15n2 + 25n + 25) 6≡ 0 (mod 5)
n4

⇐⇒ w8 = (5v − wn2 )2 = 1 and n4 + 5n3 + 15n2 + 25n + 25 squarefree
w  2  n 
⇐⇒ w = ±1, v =
n −
, n4 + 5n3 + 15n2 + 25n + 25 squarefree,
5
5
completing the proof of the Theorem.
The authors would like to thank Raylene Senger who did some computing
for them in connection with this work.
References
[1] V. Acciaro and C. Fieker, Finding normal integral bases of cyclic number fields of prime
degree. J. Symbolic Comput. 30 (2000), 239–252.
´l and M. Pohst, Power integral bases in a parametric family of totally real cyclic
[2] I. Gaa
quintics. Math. Comp. 66 (1997), 1689–1696.
[3] S. Jeannin, Nombre de classes et unit´
es des corps de nombres cycliques quintiques d’ E.
Lehmer. J. Th´
eor. Nombres Bordeaux 8 (1996), 75–92.
[4] E. Lehmer, Connection between Gaussian periods and cyclic units. Math. Comp. 50 (1988),
535–541.
[5] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers. Springer - Verlag,
Berlin 1990.

220

Blair K. Spearman, Kenneth S. Williams

[6] R. Schoof and L. C. Washington, Quintic polynomials and real cyclotomic fields with
large class numbers. Math. Comp. 50 (1988), 543–556.
[7] B. K. Spearman and K. S. Williams, The discriminant of a cyclic field of odd prime
degree. Rocky Mountain J. Math. To appear.
Blair K. Spearman
Department of Mathematics and Statistics
Okanagan University College
Kelowna, B.C. Canada V1V 1V7
E-mail : [email protected]
Kenneth S. Williams
School of Mathematics and Statistics
Carleton University
Ottawa, Ontario, Canada K1S 5B6
E-mail : [email protected]

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52