Paper-6-20-2009. 108KB Jun 04 2011 12:03:14 AM

ACTA UNIVERSITATIS APULENSIS

No 20/2009

SUBORDINATION RESULTS FOR CERTAIN CLASSES OF
ANALYTIC FUNCTIONS ASSOCIATED WITH THE
CONVOLUTION STRUCTURE

V. G. Gupta and Bhavna Shrama

Abstract. The main object of the present paper is to derive subordination
property of the class which was very recently PTg (λ, α, β, γ) introduced by Murugusundaramoorthy and Joshi (J. Math. Ineq., 3(1)(2009), pp. 293-303).
2000 Mathematics Subject Classification: 30C45.
Keywords: Univalent functions, Convolution, Subordination .

1. Introduction and Preliminaries
Let A be the class of analytic functions of the form
f (z) = z +


X


ak z k

(z ∈ ∆ := {z ∈ C| |z| < 1})

(1.1)

k=2

which are analytic and univalent in the open unit disk. If U = {z ∈ C : |z| < 1} is
given by (1.1) and g ∈ A is given by
g(z) = z +


X

bk z k

(1.2)


k=2

the Hadamard product (or convolution ) (f ∗ g) of f and g is given by
(f ∗ g)(z) = z +


X

k=2

49

ak bk z k , z ∈ U

(1.3)

V. G. Gupta, B. Shrama - Subordination results for certain classes of ...

Very recently, by using Hadamard product (or convolution) Murugusundaramoorthy
and Joshi [5], introduced the subclass Pg (λ, α, β, γ) of A consisting the functions of

the form (1.1) and satisfying the following inequality,




Jg,λ (z) − 1


< β, λ ≥ 0, 0 ≤ α < 1, 0 0

(z ∈ U)

(1.8)

k=1

To prove our main result, we shall required the following lemma due to Murusundaramoorthy and Joshi.
Lemma 1.2 (see [5]). Let the function f be defined by (1.4) then PTg (λ, α, β, γ) if
and only if


X

(1 + λ(k − 1))[1 + β(2γ − 1)]ak bk ≤ 2βγ(1 − α)

(1.9)

k=2

2. Subordination theorem
Theorem 2.1.Let the function f ∈ PTg (λ, α, β, γ) satisfy the inequality (1.8), and
K denote the familiar class of univalent and convex functions in U. Then for every
g ∈ K, we have
(1+λ)[1+β(2γ−1)]b2
[(1+λ)[1+β(2γ−1)]b2 +2βγ(1−α)] (f

∗ φ)(z) ≺ φ(z),
(z ∈ U, bk ≥ b2 > 0(k ≥ 2); γ ∈ C\ {0} ; 0 ≤ α < 1)

(2.1)


[(1 + λ)[1 + β(2γ − 1)]b2 + 2βγ(1 − α)]
2(1 + λ)[1 + β(2γ − 1)]b2

(2.2)

and
Re {f (z)} > −

(z ∈ U)

(1+λ)[1+β(2γ−1)]b2
The following constant factor 2[(1+λ)[1+β(2γ−1)]b
, in the subordination re2 +2βγ(1−α)]
sult (2.1) is the best dominant.

Proof. Let f (z) satisfy the inequality and let φ(z) = z +


P


ck z k ∈ K, then

k=2

(1 + λ)[1 + β(2γ − 1)]b2
(f ∗ φ)(z)
2[(1 + λ)[1 + β(2γ − 1)]b2 + 2βγ(1 − α)]
51

(2.3)

V. G. Gupta, B. Shrama - Subordination results for certain classes of ...

X
(1 + λ)[1 + β(2γ − 1)]b2
(z +
ak ck z k ).
2[(1 + λ)[1 + β(2γ − 1)]b2 + 2βγ(1 − α)]
k=2


=

By invoking definition (2.2), the subordination (2.1) our theorem will hold true if
the sequence


(1 + λ)[1 + β(2γ − 1)]b2
ak
2[(1 + λ)[1 + β(2γ − 1)]b2 + 2βγ(1 − α)]

∞

(2.4)

k=1

is a subordination factor sequence. By virtue of Lemma (1.1), this is equivalent to
the inequality

X


(

(1 + λ)[1 + β(2γ − 1)]b2
Re 1 +
ak z k
[(1
+
λ)[1
+
β(2γ

1)]b
+
2βγ(1

α)]
2
k=1


)

>0

(2.5)

Since bk ≥ b2 > 0 for k ≥ 2, we have


Re 1 +
≥1−

≥1−


P

(1+λ)[1+β(2γ−1)]b2
k
[(1+λ)[1+β(2γ−1)]b2 +2βγ(1−α)] ak z


k=1
(1+λ)[1+β(2γ−1)]b2
[(1+λ)[1+β(2γ−1)]b2 +2βγ(1−α)] r

P
1
(1
− (1+λ)[1+β(2γ−1)]b
+2βγ(1−α)]
2
k=2

(1+λ)[1+β(2γ−1)]b2
[(1+λ)[1+β(2γ−1)]b2 +2βγ(1−α)] r

P
1
(1
− (1+λ)[1+β(2γ−1)]b

2 +2βγ(1−α)]
k=2



+ λ)[1 + β(2γ − 1)]b2 ak rk

+ λ(k − 1))[1 + β(2γ − 1)]bk ak rk .

By using Lemma 1.2, we can easily seen that
≥1−

(1+λ)[1+β(2γ−1)]b2
[(1+λ)[1+β(2γ−1)]b2 +2βγ(1−α)] r
2βγ(1−α)
− [(1+λ)[1+β(2γ−1)]b
r
2 +2βγ(1−α)]

> 0,

(|z| = r < 1).

This establishes the inequality (2.5), and consequently the subordination relation
(2.1) of Theorem 2.1 is proved. The inequality (2.2) follows from (2.1), upon setting

X
z
φ(z) =
=
zn ∈ K
1 − z n=1

and
f0 (z) = z −

(z ∈ U),

2βγ(1 − α)
z2
[(1 + λ)[1 + β(2γ − 1)]b2 + 2βγ(1 − α)]

(2.6)

(z ∈ U),

(2.7)

which belongs to PTg (λ, α, β, γ). Using (2.1), we infer that
(1 + λ)[1 + β(2γ − 1)]b2
z
f0 (z) ≺
[(1 + λ)[1 + β(2γ − 1)]b2 + 2βγ(1 − α)]
1−z
52

(2.8)

V. G. Gupta, B. Shrama - Subordination results for certain classes of ...

It can be easily verified for the function f0 (z) defined by (2.7) that
M in Re
|z| −
[(1 + λ)[1 + β(2γ − 1)]b2 + 2βγ(1 − α)]
2


(2.9)

which completes the proof of theorem.
By substituting λ = 0 , in Theorem (2.1), we easily get
Corollary 2.2.Let the function f (z) ∈ PTg (0, α, β, γ) satisfy the inequality

X

[1 + β(2γ − 1)]ak bk ≤ 2βγ(1 − α)

(2.10)

k=2

and K denote the familiar class of univalent and convex functions in U. Then for
every φ ∈ K , we have
[1+β(2γ−1)]b2
[1+β(2γ−1)]b2 +2βγ(1−α)] (f

∗ φ)(z) ≺ φ(z)
(z ∈ U, bk ≥ b2 > 0(k ≥ 2); γ ∈ C/ {0} ; 0 ≤ α < 1)

and
Re {f (z)} > −

[1 + β(2γ − 1)]b2 + 2βγ(1 − α)]
2[1 + β(2γ − 1)]b2

(2.11)

(2.12)

[1+β(2γ−1)]b2 ]
, in the subordination result
The following constant factor 2[1+β(2γ−1)]b
2 +2βγ(1−α)
z
(2.11) is the best dominant. By setting φ(z) = 1−z
,β = 1 and λ = 0 ,
Corollary 2.3.Let the function f (z) ∈ PTg (0, α, 1, γ) satisfy the inequality

X

2γak ≤ 2(1 − α)

(2.13)

k=2

and K denote the familiar class of univalent and convex functions in U. Then for
every φ(z) ∈ K, we have
1
2−α (f

∗ φ)(z) ≺ φ(z)
(z ∈ U, bk ≥ b2 > 0(k ≥ 2); γ ∈ C/ {0} ; 0 ≤ α < 1)

and
Re {f (z)} >

α−2
2

(2.14)

(2.15)

2
The following constant factor α−2
, in the subordination result (2.14) is the best
dominant.

3. Further remarks and observation

53

V. G. Gupta, B. Shrama - Subordination results for certain classes of ...

Using Hadamard Product (or convolution) defined by (1.2) and using Wilf lemma,
we obtained the subordination results for the subclass PTg (λ, α, β, γ) of A. If we
replace g (z) in Theorem 2.1 defined by the functions in (1.5) and (1.6) , we get the
corresponding results of the Theorem 2.1.
References
[1] N. E. Cho, H. M. Srivastava, Argument estimates of certain analytic functions
defined by a class of multiplier transformations, Math. Comput. Modelling,37, 12(2003), 39-49.
[2] J. Dziok, H. M. Srivastava, Classes of analytic functions associated with the
generalized hypergeometric function, Appl. Math. Comput., 103, 1 (1999), 1-13
[3] J. Dziok, H. M. Srivastava, Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function, Adv.
Stud. Contemp. Math , 5 (2002), 115-125.
[4] J. Dziok, H. M. Srivastava, Certain subclasses of analytic functions associated
with the generalized hypergeometric function, Integral Transforms Spec. Funct., 14
(2003), 7-18.
[5] G. Murugusundaramoorthy, S.B. Joshi, Certain classes of analytic functions
with negative coefficients associated with a convolution structure, J. Math. Inq., 3(2)
(2009), 293-303.
[6] H. Silverman, Univalent functions with negative coefficients, Proc. Amer.
Math. Soc., 51 (1975), 109-116.
[7] H. S. Wilf, Subordinating factor sequence for convex maps of the unit circle,
Proc. Amer. Math. Soc., 12 (1961), 689-693.
V. G. Gupta
Department of Mathematics
University of Rajasthan
Jaipur (INDIA)- 302055
email:[email protected]

Bhavna Sharma
Department of Mathematics
University Rajasthan
Jaipur (INDIA) - 302055
email:vallabhi [email protected]

54

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52