vol20_pp506-518. 136KB Jun 04 2011 12:06:09 AM

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 506-518, August 2010

ELA

http://math.technion.ac.il/iic/ela

POLYNOMIAL INEQUALITIES FOR NON-COMMUTING
OPERATORS∗
JOHN E. MCCARTHY† AND RICHARD M. TIMONEY‡

Abstract. We prove an inequality for polynomials applied in a symmetric way to non-commuting
operators.

Key words. Ando inequality, Non-commuting, Symmetric functional calculus.

AMS subject classifications. 15A60.

1. Introduction. J. von Neumann [9] proved an inequality about the norm of
a polynomial applied to a contraction on a Hilbert space H. Let D be the unit disk

and T the unit circle in C, and for any polynomial p let kpkX be the supremum of
the modulus of p on the set X. The result is that
T ∈ B(H), kT k ≤ 1 ⇒ kp(T )k ≤ kpkD .

(1.1)

P
α
in n variables we use
For polynomials p(z) = p(z1 , z2 , . . . , zn ) =
|α|≤N cα z
the standard multi-index notation (where α = (α1 , α2 , . . . , αn ) has 0 ≤ αj ∈ Z for
Pn
Qn
α
1 ≤ j ≤ n, |α| = j=1 αj , z α = j=1 zj j ). There is an obvious way of applying p
to an n-tuple T = (T1 , T2 , . . . , Tn ) of commuting operators Tj ∈ B(H) (1 ≤ j ≤ n),
namely
X
cα T α

p(T ) = p(T1 , T2 , . . . , Tn ) =
|α|≤N

(with T α =

Qn

j=1

αj

Tj

and Tj0 = I).

T. Andˆo [2] proved an extension of von Neumann’s inequality to pairs of commuting contractions.
Theorem 1.1 (Andˆ
o). If T1 , T2 ∈ B(H), max(kT1 k, kT2 k) ≤ 1, T1 T2 = T2 T1
and p(z) = p(z1 , z2 ) is a polynomial, then
kp(T1 , T2 )k ≤ kpkD2 .

∗ Received

by the editors April 13, 2010. Accepted for publication August 8, 2010. Handling
Editor: Harm Bart.
† Washington University, St. Louis and Trinity College, Dublin ([email protected]). Partially
supported by National Science Foundation Grants DMS 0501079 and DMS 0966845.
‡ Trinity College, Dublin ([email protected]).
506

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 506-518, August 2010

ELA

http://math.technion.ac.il/iic/ela

507

Polynomial Inequalities


The purpose of this note is to look for analogues of Andˆo’s inequality that are
satisfied by non-commuting operators. For a polynomial p in n variables and an ntuple of operators T = (T1 , . . . , Tn ) we define psym (T ) to be a symmetrized version of
p applied to T (we make this precise in Section 2). We are looking for results of the
form:
For all n-tuples T of operators in a certain set, there is a set K1 in Cn such that
kpsym (T )k ≤ kpkK1 .

(1.2)

and
For all n-tuples T of operators in a certain set, there is a set K2 in Cn and a
constant M such that
kpsym (T )k ≤ M kpkK2 .

(1.3)

Our main result is:
Theorem 4.6 There are positive constants Mn and Rn such that, whenever
n

T = (T1 , T2 , . . . , Tn ) ∈ B(H) satisfies
k

n
X
i=1

ζi Ti k ≤ 1

∀ζi ∈ D,

and p is a polynomial in n variables, then
kpsym (T )k ≤ kpkRn Dn

(1.4)

kpsym (T )k ≤ Mn kpkD .
n

(1.5)


Moreover, one can choose R2 = 1.85, R3 = 2.6, M2 = 4.1 and M3 = 16.6.
2. Tuples of noncommuting contractions. There are several natural ways
one might apply a polynomial p(z1 , z2 ) in two variables to pairs T = (T1 , T2 ) ∈ B(H)2
of operators. A simple case is for polynomials of the form p(z1 , z2 ) = p1 (z1 ) + p2 (z2 )
where we could naturally consider p(T1 , T2 ) to mean p1 (T1 ) + p2 (T2 ).
A recent result of Drury [4] is that if p(z1 , z2 ) = p1 (z1 ) + p2 (z2 ), T1 , T2 ∈ B(H)
(no longer necessarily commuting), max(kT1 k, kT2k) ≤ 1, then

(2.1)
kp(T1 , T2 )k ≤ 2kpkD2 .

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 506-518, August 2010

ELA

http://math.technion.ac.il/iic/ela


508

J. E. McCarthy and R. M. Timoney

Moreover, Drury [4] shows that the constant



2 is best possible.
Pn
One way to apply a polynomial p(z1 , z2 ) = j,k=0 aj,k z1j z2k to two noncommuting
operators T1 and T2 is by mapping each monomial z1j z2k to the average over all possible
products of j number of T1 and k number of T2 , and then extend this map by linearity
to all polynomials. We use the notation psym (T1 , T2 ) and the formula
n
X
aj,k
psym (T1 , T2 ) =

j+k

j,k=0

j

X

j+k
Y

T2−χS (i)

S∈P(j+k,j) i=1

where P(j + k, j) denotes the subsets of {1, 2, . . . , j + k} of cardinality j. The empty
product, which arises for j = k = 0, should be taken as the identity operator. The
Qj+k
notation i=1
T2−χS (i) is intended to mean the ordered product
T2−χS (1) T2−χS (2) · · · T2−χS (j+k) ,


and χS (·) denotes the indicator function of S.
Remarks 2.1. The operation p 7→ psym (T1 , T2 ) is not an algebra homomorphism
(from polynomials to operators). It is a linear operation and does not respect squares
in general.
For example, if p(z1 , z2 ) = z12 + z22 , then
psym (T1 , T2 ) = T12 + T22
but for q(z1 , z2 ) = (p(z1 , z2 ))2 = z14 + z24 + 2z12 z22 we have
(psym (T1 , T2 ))2 = T14 + T24 + T12 T22 + T22 T12 6= qsym (T1 , T2 )
in general.
Similarly for p(z1 , z2 ) = 2z1 z2 and
q(z1 , z2 ) = (p(z1 , z2 ))2 = 4z12 z22 ,
psym (T1 , T2 ) = T1 T2 + T2 T1 ,
(psym (T1 , T2 ))2 = T1 T2 T1 T2 + T1 T22 T1 + T2 T12 T2 + T2 T1 T2 T1 6= qsym (T1 , T2 )
in general.
However in the very restricted situation that p(z1 , z2 ) = α+βz1 +γz2 and q = pm ,
then we do have qsym (T1 , T2 ) = (psym (T1 , T2 ))m .
The symmetrizing idea generalizes in the obvious way to n > 2 variables. We will
use the notation psym (T ) for n-tuples T ∈ B(H)n for n ≥ 2.

Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 20, pp. 506-518, August 2010

ELA

http://math.technion.ac.il/iic/ela

Polynomial Inequalities

509

3. Example. The analogue of Andˆ
o’s inequality for n ≥ 3 commuting Hilbert
space contractions and polynomials norms on Dn is known to fail (see Varopoulos [8],
Crabb & Davie [3], Lotto & Steger [6], Holbrook [5]).
The explicit counterexamples of Kaijser & Varopoulos [8], and Crabb & Davie
[3]) have p(T ) nilpotent (and so of spectral radius 0). While the examples of Lotto &
Steger [6] and Holbrook [5]) do not have this property, they are obtained by perturbing
examples where p(T ) is nilpotent (and so p(T ) has relatively small spectral radius).
It is not known whether there is a constant Cn so that the multi-variable inequality

kp(T )k = kp(T1 , T2 , . . . , Tn )k ≤ Cn kpkDn

(3.1)

holds for all polynomials p(z) in n variables and for all n-tuples T of commuting
Hilbert space contractions. However, it is well-known that a spectral radius version
of Andˆo’s inequality is true — indeed, it holds in any Banach algebra.
Proposition 3.1. If p is a polynomial in n variables and T = (T1 , T2 , . . . , Tn ) is
an n-tuple of commuting elements in a Banach algebra, each with norm at most one,
then
ρ(p(T )) = lim k(p(T ))m k1/m ≤ kpkDn
m→∞

(3.2)

(for ρ(·) the spectral radius).
Proof. We consider a fixed n. It follows from the Cauchy integral formula, that
if max1≤j≤n kTj k ≤ r < 1, then
kp(T )k = kp(T1 , T2 , . . . , Tn )k ≤ Cr kpkDn

(3.3)

for a constant Cr depending on r (and n).
To see this write
1
p(T ) =
(2πi)n

Z

n
Y

ζ∈Tn j=1

p(ζ)

n
Y

j=1

(ζj − Tj )−1 dζ1 dζ2 . . . dζn

and estimate with the triangle inequality. This shows that Cr = (1 − r)−n will work.
Applying (3.3) to powers of p and using the spectral radius formula, we get
ρ(p(T )) ≤ kpkDn ,
(provided max1≤j≤n kTj k ≤ r < 1). However, for the general case max1≤j≤n kTj k =
1, we can apply this to rT to get
ρ(p(T )) = lim− ρ(p(rT )) ≤ kpk∞ .
r→1

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 506-518, August 2010

ELA

http://math.technion.ac.il/iic/ela

510

J. E. McCarthy and R. M. Timoney

Example 3.2.
Let p(z, w) = (z − w)2 + 2(z + w) + 1 = z 2 + w2 − 2zw + 2(z + w) + 1,

 


1/2
cos(π/3)
sin(π/3)
3/2

=
T1 =
,
sin(π/3) − cos(π/3)
3/2 −1/2
T2 =


cos(π/3) − sin(π/3)
.
− sin(π/3) − cos(π/3)



Note that kpkD2 ≥ p(1, −1) = 5. To show that kpkD2 ≤ 5, consider the homogeneous polynomial
q(z1 , z2 , z3 ) = z12 + z22 + z32 − 2z1 z2 − 2z1 z3 − 2z2 z3
and observe first that p(z, w) = q(z, w, −1). Moreover
kpkD2 = kpkT2 = kqkT3 = kqkD3 ,
by homogeneity of q and the maximum principle. Holbrook [5, Proposition 2] gives a
proof that kqkD3 = 5.
We have
psym (T1 , T2 ) = (T1 − T2 )2 + 2(T1 + T2 ) + I
√ 2



0
3
1 0
= √
+I
+2
3 0
0 −1

 
 

1 0
2 0
3 0
+
+
=
0 1
0 −2
0 3


6 0
=
0 2
So kpsym (T1 , T2 )k = 6 > 5 = kpkD2 .
Remark 3.3. The example has hermitian T1 and T2 and a polynomial with real
coefficients and yet ρ(psym (T1 , T2 )) > kpkD2 . Thus even Proposition 3.1 does not hold
for non-commuting pairs.
The referee has provided an argument to show that for the polynomial p of Example 3.2, one has the inequality kpsym (T1 , T2 )k ≤ 6 for all contractions T1 and T2 (and
thus the example is optimal for that p). This inequality is a substantial improvement
over using the sum of the absolute values of the coefficients of p, so one is led to ask
how well can one bound kpsym (T )k for general p?

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 506-518, August 2010

ELA

http://math.technion.ac.il/iic/ela

511

Polynomial Inequalities

P
4. k ζi Ti k ≤ 1. In this section, we shall consider n-tuples T = (T1 , . . . , Tn ) of
operators, not assumed to be commuting, and we shall make the standing assumption:
k

n
X
i=1

ζi Ti k ≤ 1

∀ ζi ∈ D.

(4.1)

This will hold, for example, if the condition
n
X
i=1

kTi k ≤ 1

(4.2)

holds. We wish to derive bounds on kpsym (T )k. We start with the following lemma:
Lemma 4.1. If S ∈ B(H) and kSk < 1 then
ℜ((I + S)(I − S)−1 ) ≥ 0.

Proof.
2ℜ((I + S)(I − S)−1 )

= (I − S ∗ )−1 (I + S ∗ ) + (I + S)(I − S)−1


= (I − S ∗ )−1 (I + S ∗ )(I − S) + (I − S ∗ )(I + S) (I − S)−1
= 2(I − S ∗ )−1 [I − S ∗ S](I − S)−1
≥ 0.

If p(z) =

P

cα z α , define
Γp(z) =

X



α! α
z
|α|!

(4.3)

(as usual, α! means α1 ! · · · αn !). We let Λ denote the inverse of Γ:
Λ

X

dα z α =

X



|α|! α
z .
α!
n

Proposition 4.2. Let T = (T1 , T2 , . . . , Tn ) ∈ B(H) satisfy (4.1) and p(z) be a
polynomial in n variables. Then
kpsym (T )k ≤ kΓpkDn .

(4.4)

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 20, pp. 506-518, August 2010

ELA

http://math.technion.ac.il/iic/ela

512

J. E. McCarthy and R. M. Timoney

Proof. We first restrict to the case



X
n


n

ζj Tj
ζ = (ζ1 , ζ2 , . . . , ζn ) ∈ T ⇒ kζ · T k =

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52