06-21.2010. 113KB Jun 04 2011 12:07:14 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 21/2010
pp. 55-63

A NEW CLASS OF HARMONIC MULTIVALENT FUNCTIONS
DEFINED BY AN INTEGRAL OPERATOR

˘
Luminit
¸ a-Ioana Cotˆırla
Abstract. We define and investigate a new class of harmonic multivalent
functions defined by S˘al˘
agean integral operator. We obtain coefficient inequalities
and distortion bounds for the functions in this class.
2000 Mathematics Subject Classification: 30C45, 30C50, 31A05.
Keywords and phrases: Harmonic univalent functions, integral operator, distortion inequalities.
1. Introduction
For fixed positive integer p, denote by H(p) the set of all harmonic multivalent
functions f = h+g which are sense-preserving in the open unit disk U = {z : |z| < 1}

where h and g are of the form
p

h(z) = z +


X

ak+p−1 z

k+p−1

,

g(z) =

k=2


X


bk+p−1 z k+p−1 ,

|bp | < 1.

(1)

k=1

The integral operator I n was introduced by S˘
al˘
agean [9]. For fixed positive
integer n and for f = h + g given by (1) we define the modified S˘al˘
agean operator
n
I f as
(2)
I n f (z) = I n h(z) + (−1)n I n g(z); p > n, z ∈ U
where
I n h(z) = z p +



X
k=2

and
I n g(z) =


X
k=1

n
p
ak+p−1 z k+p−1
k+p−1

n
p
bk+p−1 z k+p−1 .

k+p−1
55

L.I. Cotˆırl˘a - A new class of harmonic multivalent functions defined by...

It is known that, (see[3]), the harmonic function f = h + g is sense- preserving
in U if |g ′ | < |h′ | in U. The class H(p) was studied by Ahuja and Jahangiri [1] and
the class H(p) for p = 1 was defined and studied by Jahangiri et al. in [6].
For fixed positive integers n, p, and for 0 ≤ α < 1, β ≥ 0 we let Hp (n+1, n, α, β)
denote the class of multivalent harmonic functions of the form (1) that satisfy the
condition

I n f (z)
 I n f (z)
+ α.

Re

1
(3)

>
β
I n+1 f (z)
I n+1 f (z)
The subclass Hp− (n + 1, n, α, β) consists of functions fn = h + gn in Hp (n, α, β)
so that h and g are of the form
p

h(z) = z −


X

ak+p−1 z

k+p−1

n−1

gn (z) = (−1)


,

k=2


X

bk+p−1 z k+p−1 ,

|bp | < 1. (4)

k=1

The families Hp (n + 1, n, α, β) and Hp− (n + 1, n, α, β) include a variety of wellknown classes of harmonic functions as well as many new ones. For example
H1− (1, 0, α, 0) ≡ HS(α) is the class of sense-preserving, harmonic univalent functions f which are starlike of order α in U, H1− (2, 1, α, 0) ≡ HK(α) is the class of
sense-preserving, harmonic univalent functions f which are convex of order α in U
and H1− (n + 1, n, α, 0) ≡ H − (n, α) is the class os S˘al˘
agean type harmonic univalent
functions.

For the harmonic functions f of the form (1) with b1 = 0, Avei and Zlotkiewicz
[2] showed that if

X
k(|ak | + bk |) ≤ 1,
k=2

then f ∈ HS(0) and if


X

k 2 (|ak | + |bk |) ≤ 1,

k=2

then f ∈ HK(0). Silverman [10] proved that the above two coefficient conditions are
also necessary if f = h + g has negative coefficients. Later, Silverman and Silvia[11]
improved the results of [6] and [9] to the case b1 not necessarily zero.
For the harmonic functions f of the form (4) with n = 1, Jahangiri [5] showed

that f ∈ HS(α) if and only if

X
k=2

(k − α)|ak | +


X

(k + α)|bk | ≤ 1 − α

k=1

56

L.I. Cotˆırl˘a - A new class of harmonic multivalent functions defined by...
and f ∈ H1− (2, 1, α, 0) if and only if

X


k(k − α)|ak | +

k=2


X

k(k + α)|bk | ≤ 1 − α.

k=1

In this paper, the coefficient conditions for the classes HS(α) and HK(α) are
extended to the class Hp (n + 1, n, α, β), of the form (3) above. Furthermore, we
determine distortion theorem for the functions in Hp− (n + 1, n, α, β).
2.Main results
In the first theorem, we introduce a sufficient coefficient bound for harmonic
functions in Hp (n + 1, n, α, β).
Theorem 2.1. Let f = h + g be given by (1). If


X

{Ψ(n + 1, n, p, α, β)|ak+p−1 | + Θ(n + 1, n, p, α, β)|bk+p−1 |} ≤ 2,

k=1

where
Ψ(n + 1, n, p, α, β) =
and
Θ(n + 1, n, p, α, β) =
ap = 1,

0 ≤ α < 1,

β ≥ 0,

n
p
k+p−1 (1


+ β) − (β + α)

n+1
p
k+p−1

1−α
n
p
k+p−1 (1

+ β) +

n+1
p

k+p−1

+ α)

1−α
n ∈ N. Then f ∈ Hp (n + 1, n, p, α, β).

Proof. According to (2) and (3) we only need to show that
Re

I n f (z) − αI n+1 f (z) − βeiΘ |I n f (z) − I n+1 f (z)| 
≥ 0.
I n+1 f (z)

The case r = 0 is obvious. For 0 < r < 1 it follows that
Re

I n f (z) − αI n+1 f (z) − βeiθ |I n f (z) − I n+1 f (z)| 
=
I n+1 f (z)
(1−α)z p +

= Re


zp +


X


X



ak+p−1 z k+p−1 Γn − αΓn+1

k=2

Γn+1 ak+p−1 z k+p−1 + (−1)n+1


X
k=1

k=2

57

Γn+1 bk+p−1 z k+p−1

,

,

(5)

L.I. Cotˆırl˘a - A new class of harmonic multivalent functions defined by...

X

(−1)n

+
zp +

βeiΘ |


X



bk+p−1 z k+p−1 Γn + αΓn+1

k=1
n+1

Γ

ak+p−1 z

k+p−1


X


n+1

Γ

bk+p−1 z

k+p−1

k=1


X




bk+p−1 z k+p−1 Γn + Γn+1 |
ak+p−1 z k+p−1 Γn − Γn+1 + (−1)n

zp +


X

k=1

X
n+1

Γn+1 ak+p−1 z k+p−1 + (−1)

k=2
1−α+

= Re




X

1+

n+1

Γ

(−1)n

X


X

ak+p−1 z


X

k=1

k−1

Γ


X

n+1

+ (−1)

Γn+1 bk+p−1 z k+p−1 z −p

k=1



bk+p−1 z k−1+p z −p Γn + αΓn+1

k=1
n+1

Γn+1 bk+p−1 z k+p−1





ak+p−1 z k−1 Γn − αΓn+1

k=2

k=2

1+

+ (−1)

k=2

X
k=2

+

n+1

ak+p−1 z

k−1

n+1

+ (−1)

k=2


X


n+1

Γ

bk+p−1 z

k+p−1 −p

z

k=1



X
X

 n

 n

n+1
k+p−1
n

−p

Γ + Γn+1 bk+p−1 z k+p−1
Γ −Γ
ak+p−1 z
+ (−1)
βe z
k=2
1+


X

Γn+1 ak+p−1 z k−1 + (−1)n+1

k=2


X

k=1

Γn+1 bk+p−1 z k+p−1 z −p



k=1

(1 − α) + A(z)
= Re
,
1 + B(z)
where
Γ=

p
.
k+p−1

For z = reiΘ we have


A(re ) =


X

(An − αAn+1 )ak+p−1 rk−1 e(k−1)Θi +

k=2

+(−1)n


X

(An + An+1 α)bk+p−1 rk−1 e−(k+2p−1)Θi − βe−(p−1)iΘ D(n + 1, n, p, α),

k=1

58

L.I. Cotˆırl˘a - A new class of harmonic multivalent functions defined by...

where

X
(An − An+1 )ak+p−1 rk−1 e−(k+p−1)iΘ
D(n + 1, n, p, α) = =
k=2

+ (−1)n


X
k=1


(An + An+1 )bk+p−1 rk−1 e−(k+p−1)iΘ ,

and
B(reiΘ ) =


X

An+1 ak+p−1 rk−1 e(k−1)Θi

k=2

+ (−1)n+1


X

An+1 bk+p−1 rk−1 e−(k+2p−1)Θi .

k=1

Setting
1 + w(z)
1 − α + A(z)
= (1 − α)
.
1 + B(z)
1 − w(z)
The proof will be complete if we can show that |w(z)| ≤ r < 1. This is the case
since, by the condition (5), we can write:

|w(z)| =

X

[(1 + β)(An − An+1 )|ak+p−1 | + (1 + β)(An + An+1 )|bk+p−1 |]rk−1

k=1

X

4(1−α)−

<
n

{[A (1 + β) − ΛA

k=1

X

<


A(z) − (1 − α)B(z)

A(z) + (1 − α)B(z) + 2(1 − z)

n+1

n

]|ak+p−1 | + [A (1 + β) + ΛA

n+1

]|bk+p−1 |}r

k−1

(1 + β)(An − An+1 )|ak+p−1 | + (Am + An+1 )(1 + β)|bk+p−1 |

k=1
4(1−α)−{


X


n

[A (1 + β) − ΛA

n+1

n

]|ak+p−1 | + [A (1 + β) + ΛA

n+1

]|bk+p−1 |}

k=1

≤ 1,
where Λ = β + 2α − 1.
The harmonic univalent functions
f (z) = z p +


X
k=2



X
1
1
yk z k+p−1 , (6)
xk z k+p−1 +
Ψ(n + 1, n, p, α, β)
Θ(n + 1, n, p, α, β)
k=1

59

L.I. Cotˆırl˘a - A new class of harmonic multivalent functions defined by...

where n ∈ N, 0 ≤ α < 1, β ≥ 0 and


X

|xk | +

k=2


X

|yk | = 1, show that the coefficient

k=1

bound given by (5) is sharp.
The functions of the form (6) are in Hp (n + 1, n, α, β) because

X

[Ψ(n + 1, n, p, α, β)|ak+p−1 | + Θ(n + 1, n, p, α, β)|bk+p−1 |] =

k=1

=1+


X

|xk | +

k=2


X

|yk | = 2.

k=1

In the following theorem it is show that the condition (5) is also necessary for
the function fn = h + g n , where h and gn are of the form (4).
Theorem 2.2. Let fn = h + g n be given by (4). Then fn ∈ Hp− (n + 1, n, α, β)
if and only if

X

[Ψ(n + 1, n, p, α, β)ak+p−1 + Θ(n + 1, n, p, α, β)bk+p−1 ] ≤ 2,

(7)

k=1

ap = 1, 0 ≤ α < 1, n ∈ N.
Proof. Since Hp− (n + 1, n, α, β) ⊂ Hp (n + 1, n, α, β), we only need to prove the
”only if” part of the theorem. For functions fn of the form (4), we note that the
condition

I n f (z)
 I n f (z)
Re
− 1 + α
> β n+1
n+1
I
f (z)
I
f (z)
is equivalent to
(1 −
Re

α)z p




X

(Γn − αΓn+1 )ak+p−1 z k+p−1

k=2


zp −


X

Γn+1 ak+p−1 z k+p−1 + (−1)2n

k=2


X

+
Γn+1 bk+p−1 z k+p−1

k=1

(−1)2n−1


X

(Γn + Γn+1 α)bk+p−1 z k+p−1

k=1

+
zp −


X

Γn+1 ak+p−1 z k+p−1 + (−1)2n

k=2


X
k=1

60

Γn+1 bk+p−1 z k+p−1

L.I. Cotˆırl˘a - A new class of harmonic multivalent functions defined by...





X

X
βeiΘ −
(Γn − Γn+1 )ak+p−1 z k+p−1 + (−1)2n−1
(Γn + Γn+1 )bk+p−1 z k+p−1
k=2

zp −


X

k=1

X
2n
n+1

Γn+1 ak+p−1 z k+p−1 + (−1)

Γ

k=2



bk+p−1 z k+p−1

k=1

(8)
≥ 0,
p
p+k−1 .

where Γ =
The above required condition (8) must hold for all values of z ∈ U. Upon choosing
the values of z on the positive real axis where 0 ≤ z = r < 1, we must have
(1 − α) −


X

[Γn (1 + β) − (β + α)Γn+1 ]ak+p−1 rk−1

k=2

1−


X

n+1

Γ

ak+p−1 r

k−1

+


X

1−


X

(9)
n+1

Γ

bk+p−1 r

k+p−1

k=1

k=2




X

[Γn (1 + β) + Γn+1 (β + α)]bk+p−1 rk−1

k=1

+

Γ

n+1

ak+p−1 r

k−1

+

k=2


X

≥ 0.
n+1

Γ

bk+p−1 r

k−1

k=1

If the condition (8) does not hold, then the expression in (9) is negative for r sufficiently close to 1. Hence there exist z0 = r0 in (0, 1) for which the quotient in (9) is
negative. This contradicts the required condition for fn ∈ Hp− (n + 1, n, α, β). And
so the proof is complete.
The following theorem gives the distortion bounds for functions in Hp− (n +
1, n, α, β) which yields a covering results for this class.
Theorem 2.3. Let fn ∈ Hp− (n + 1, n, α, β). Then for |z| = r < 1 we have
|fn (z)| ≤ (1 + bp )rp + [Φ(n + 1, n, p, α, β) − Ω(n + 1, n, p, α, β)bp ]rn+1+p
and
|fn (z)| ≥ (1 − bp )rp − {Φ(n + 1, n, p, α, β) − Ω(n + 1, n, p, α, β)bp }rn+p+1
where,
Φ(n + 1, n, p, α, β) =

1−α
p n
p+1 (1

61

+ β) −

p n+1

p+1

+ α)

,

L.I. Cotˆırl˘a - A new class of harmonic multivalent functions defined by...
(1 + β) + (α + β)
.
p n+1
+ β) − p+1
(β + α)

Ω(n + 1, n, p, α, β) =

p n
p+1 (1

Proof. We prove the right side inequality for |fn |. The proof for the left hand
inequality can be done using similar arguments. Let fn ∈ Hp− (n + 1, n, α, β). Taking
the absolute value of fn then by Theorem 2.2, we can obtain:
p

|fn (z)| = |z −


X

ak+p−1 z

k+p−1

n−1

+ (−1)

k=2

≤ rp +


X


X

bk+p−1 z k+p−1 | ≤

k=1

ak+p−1 rk+p−1 +

k=2


X

bk+p−1 rk+p−1 =

k=1

= r p + bp r p +


X

(ak+p−1 + bk+p−1 )rk+p−1 ≤

k=2

X

≤ r p + bp r p +

= (1 + bp )rp + Φ(n + 1, n, p, α, β)

(ak+p−1 + bk+p−1 )rp+1 =

k=2

X
k=2

1
(ak+p−1 + bk+p−1 )rp+1 ≤
Φ(n + 1, n, p, α, β)

p

≤ (1 + bp )r + Φ(n + 1, n, p, α, β)rn+p+1 ×

X
×[
Ψ(n + 1, n, p, α, β)ak+p−1 + Θ(n + 1, n, p, α, β)bk+p−1 ] ≤
k=2

≤ (1 + bp )rp + [Φ(n + 1, n, p, α, β) − Ω(n + 1, n, p, α, β)bp ]rn+1+p .
The following covering result follows from the left hand inequality in Theorem
2.3.
Corollary 2.4. Let fn ∈ Hp− (n + 1, n, α, β), then for |z| = r < 1 we have
{w : |w < 1 − bp − [Φ(n + 1, n, p, α, β) − Ω(n + 1, n, p, α, β)bp ] ⊂ fn (U)}.
For β = 0 we obtain the results given in [4].
For β = 0, p = 1 and using the differential S˘al˘
agean operator we obtain the
results given [7].
The beautiful results, for harmonic functions, was obtained by P. T. Mocanu in
[8].

62

L.I. Cotˆırl˘a - A new class of harmonic multivalent functions defined by...

References
[1]O.P. Ahuja, J.M. Jahangiri, Multivalent harmonic starlike functions, Ann.
Univ. Marie Curie-Sklodowska Sect. A, LV 1(2001), 1-13.
[2]Y. Avci, E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Marie
Crie-Sklodowska, Sect. A., 44(1991).
[3]J. Clunie, T. Scheil- Small, Harmonic univalent functions, Ann. Acad. Sci.
Fenn. Ser. A. I. Math., 9(1984), 3-25.
[4] L. I. Cotˆırl˘a, Harmonic univalent functions defined by an integral operator,
Acta Universitatis Apulensis, 17(2009), 95-105.
[5]J. M. Jahangiri, Harmonic functions starlike in the unit disc, J. Math. Anal.
Appl., 235(1999).
[6]J. M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, S˘
al˘
agean harmonic
univalent functions, South. J. Pure Appl. Math. , 2(2002), 77-82.
[7]A. R. S. Juma, L. I. Cotˆırl˘a, On harmonic univalent functions defined by
generalized S˘
al˘
agean derivatives, submitted for publications.
[8]P. T. Mocanu, Three-cornered hat harmonic functions, Complex Variables and
Elliptic Equation, 12(2009), 1079-1084.
[9]G.S. S˘al˘
agean, Subclass of univalent functions, Lecture Notes in Math. SpringerVerlag, 1013(1983), 362-372.
[10]H. Silverman, Harmonic univalent functions with negative coefficients, J.
Math. Anal. Appl. 220(1998), 283-289.
[11]H. Silverman, E. M. Silvia, Subclasses of harmonic univalent functions, New
Zealand J. Math. 28(1999), 275-284.
Luminita-Ioana Cotˆırl˘
a
Babe¸s-Bolyai University
Faculty of Mathematics and Computer Science
400084 Cluj-Napoca, Romania
E-mail: [email protected], [email protected]

63

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52