Paper-2-20-2009. 121KB Jun 04 2011 12:03:12 AM

ACTA UNIVERSITATIS APULENSIS

No 20/2009

UNIFORMLY STARLIKE AND CONVEX UNIVALENT
FUNCTIONS BY USING CERTAIN INTEGRAL OPERATORS

A. Ebadian, Sh. Najafzadeh
Abstract. An extension of k-uniformly starlike and convex functions are introduced by making use of an integral operator. Inclusion relations and coefficient
bounds for these classes are determined and consequently, some known results are
generalized.
2000 Mathematics Subject Classification: Primary 30C45; Secondary 30C50.
1. Introduction
n
Let H denote the class of functions of the form f (z) = z + ∞
n=2 an z which are
holomorphic (analytic) in the open unit disk U = {z : |z| < 1}. For α ≥ 1, 0 ≤ β <
1, 0 < k < 1, σ > 0, and for

P



I f (z) =
zΓ(σ)
σ

Z

0

z



log z
t

σ−1

f (t)dt = z +


∞ 
X

n=2

2
n+1



an z n ,

(1)

we define the following three classes of functions.
i) The class HPσ (k, α, β) consisting of functions f ∈ H satisfying
(I σ f (z))′
Re z σ
I f (z)







(I σ f (z))′


> k z σ
− α + β,
I f (z)

z ∈ U.

(2)

ii) The class KPσ (k, α, β) consisting of function f ∈ H such that zf ′ ∈ HPσ (k, α, β).
Therefore f ∈ KPσ (k, α, β) if and only if
z(I σ f (z))′′
Re 1 +

(I σ f (z))′







z(I σ f (z))′′

+ 1 − α + β, z ∈ U.
> k σ

(I f (z))

17

(3)

A. Ebadian, Sh. Najafzadeh - Uniformly starlike and convex univalent functions...


iii) The class LPσ (k, α, β) consisting of functions f ∈ H such that
I σ f (z)
R σ+1
I
f (z)





σ
I f (z)


> k σ+1
− α + β,
I
f (z)


z ∈ U.

(4)

It is easy to show that a function f ∈ H belongs to the respective classes HPσ (k, α, β),
σ (z))′
,
KP (k, α, β), and LP (k, α, β) if and only if the respective integral functions z(II σ ff(z)
1+

z(I σ f (z))′′
(I σ f (z))′ ,

D=

and





I σ f (z)
I σ+1 f (z)

u + iv :



belong to D where

β − αk 2
u−
1 − k2

!2




k2
k 2 (α − β)2

2

v
>
,
u
>
0

1 − k2
(1 − k 2 )2


(5)



is the hyperbolic domain in the right half plane with vertex at β+αk
1+k , 0 .
The above three classes include various new classes of analytic univalent functions as well as many well-known classes that have been studied earlier. For example, HP0 (k, 1, 0) consists of k-uniformly starlike functions studied by Kanas and

Wi´
sniowska [2,3,4]. In particular, HP0 (1, 1, 0) is the class of parabolic starlike functions studied by Rønning [7]. The special case KP0 (k, 1, 0) consists of k-uniformly
convex functions which also was studied in [2,3,4]. In particular, KP0 (1, 1, 0) is
the class of uniformly convex functions studied in [7]. In this paper we study various inclusion relations for the above three classes HPσ (k, α, β), KPσ (k, α, β), and
LPσ (k, α, β). We then introduce some coefficient bounds for the functions in these
classes. First we give an inclusion relation for the class
2.Inclusion Relations
To prove our main results, we shall need the following lemma which is due to
Eenigenburg, Miller, Mocanu, and Reade [1].
Lemma 2.1. Let β, γ ∈ C and h be an analytic function in U with h(0) = 1 and
P
zp′ (z)
n
Re{βh(z) + γ} > 0. If p(z) = 1 + ∞
n=1 pn z is analytic in U, then p(z) + βp(z)+γ ≺
h(z) implies p(z) ≺ h(z), where the symbol ≺ denotes the usual subordination.
Theorem 2.2. HPσ (k, α, β) ⊂ HPσ+1 (k, α, β).
Proof. For f ∈ H suppose that f ∈ HPσ (k, α, β). Then the function f needs to
satisfy the required condition (2). For the operator I σ acting on the function f we
note that

z(I σ f (z))′ = 2I σ f (z) − I σ+1 f (z).
(6)

18

A. Ebadian, Sh. Najafzadeh - Uniformly starlike and convex univalent functions...

Letting p(z) =

z(I σ+1 f (z))′
I σ+1 f (z)

and differentiating with respect to z we obtain

p(z) +

zp′ (z)
z(I σ f (z))′
=
.

p(z) + 1
I σ f (z)
n

σ+1



n

o

σ



o

(z))
(z))
⊂ D since z(II σ ff(z)
⊂ D,
Then, by Lemma 2.1, we obtain z(II σ+1 ff(z)
z∈U
z∈U
for D is a convex domain. This completes the proof.
In the next two theorems we examine the inclusion relations between the classes
of functions defined by the conditions (2), (3), and (4).
Theorem 2.3. KPσ (k, α, β) ⊂ HPσ (k, α, β).
z(I σ f (z))′
I σ f (z)

Proof. Let f ∈ KPσ (k, α, β). For p(z) =

yields p(z) +
the fact that

a logarithmic differentiation

σ f (z))′′
= 1 + z(I
σ f (z))′ . Now the theorem follows from Lemma 2.1 and
(Io
σ f (z))′′
1 + z(I
⊂ D, for D is a convex domain.
(I σ f (z)′
z∈U
2.4. If 12 ≤ β < 1 then LPσ (k, α, β) ⊂ HPσ+1 (k, 2α − 1, 2β − 1).

zp′ (z)
np(z)

Theorem

Proof. Let f ∈ LPσ (k, α, β). Then by applying the fact (6) in (3) we can write
1
Re
2

(

)

z(I σ+1 f (z))′
I σ+1 f (z)



1
1

+ > k
2
2

z(I σ+1 f (z))′
I σ+1 f (z)

With a simple manipulation we obtain
Re

(

z(I σ+1 f (z))′
I σ+1 f (z)

)

!




1

+ − α + β.

2



z(I σ+1 f (z))′



> k σ+1
− (2α − 1) + 2β − 1.
I

f (z)

Therefore, according to the condition (2), f ∈ HPσ+1 (k, 2α − 1, 2β − 1).
3.Coefficient Bounds
In this section we give coefficient bounds for function series expansion in the
classes HPσ (k, α, β), KPσ (k, α, β) and LPσ (k, α, β). For the Caratheodory class P
of functions p ∈ P we define P(pk ), k ≥ 0, by p ≺ pk in U, where the function pk
maps the unit disk conformally onto the region Ωk = {w ∈ C : Re(w) > k|w − 1|}
such that 1 ∈ Ωk .
For 0 < k < 1, Ωk is a hyperbolic domain and the corresponding map has the
form,
(
√ )
1
k2
1+ z

pk (z) =

cos
Ai
log
(7)
1 − k2
1− z
1 − k2



2n
X
1 X

= 1+
2j
1 − k 2 n=1 j=1

19

A
j

!

2n − 1
2n − j

!
 zn,

A. Ebadian, Sh. Najafzadeh - Uniformly starlike and convex univalent functions...


where A = π2 cos−1 k and the branch of z is chosen such that Im z ≥ 0.
The family P(pk ) and its extremal functions are studied in [3]. Note that the
function pk in (7) has non-negative coefficients. According to (2), a function f is in
σ (z))′
= p(z) is so that p(0) = 1, and p(U) ⊂ D for D a
HPσ (k, α, β) if and only if z(II σ ff(z)
convex domain. By using the
domains for functions

n properties
o of the hyperbolic
√ f ∈
σ (z))′

z(I σ f (z))′
−1 1−k2 .
and
> αk+β
HPσ (k, α, β), we have Re z(II σ ff(z)
arg
<
tan


1+k
k
I σ f (z)
Now we are ready to state and prove the following lemma, which we shall need to
prove our results in this section.
1−β
Lemma 3.1. Let α ≥ 1, 0 ≤ β < 1, α + β ≥ 2, and 0 < k < α−1
. Then the
function
(
!)
p
α−β
1 + ψ(z)
β − αk 2
p
+
cos Ai log
Q(z) =
1 − k2
1 − k2
1 − ψ(z)
is so that Q(0) = 1, Q′ (0) > 0, and Q(U) ⊂ D where
ψ(z) =
and
N=






A
A
( N +1)2 z+( N −1)2


A
A
( N +1)2 +( N −1)2 z

 z

1 − β + k 2 (α − 1) +

; α>1
; α=1

q

[(1 − ) + k 2 (α − 1)]2 − (α − β)2
¯
.
α−β

Proof. By making use of the properties of conformal mappings it is easy to see
that
(
√ )
β − αk 2
α−β
1+ z

p(z) =
, z∈U
+
cos Ai log
1 − k2
1 − k2
1− z
is analytic and univalent with p(U) ⊂ D and p(0) = α. Let µ be the real number
z+µ
such that µ ∈ U and p(µ) = 1. So the function Q(z) = (poψ)(z) where ψ(z) = 1+µz
is the M¨
obius transformation function which maps the open unit disk U onto itself
and satisfies the conditions Q(0) = 1, Q′ (0) > 0, and Q(U) ⊆ D. For finding the
value of µ, since p(µ) = 1, therefore we have
√ !−A
1+ µ
+

1− µ

√ !A
1+ µ
2[1 − β + k 2 (α − 1)]
=
.

1− µ
α−β

After an easy computation, without loss of generality, we can write
p
√ !A
1+ µ
1 − β + k 2 (α − 1) + [(1 − β) + k 2 (α − 1)]2 − (α − β)2
=
= N.

1− µ
α−β

20

A. Ebadian, Sh. Najafzadeh - Uniformly starlike and convex univalent functions...

It is easy to see that if α > 1 then 0 < N < 1 so µ =
N = 1 and so µ = 0. Therefore we have
ψ(z) =



A
A
( N +1)2 z+( N −1)2


A
A
( N +1)2 +( N −1)2 z




 z




A


A

N −1
N +1

2

. Also if α = 1 then

; α>1
; α = 1.

n



o

1+√z


and Q′ (0) =
So for α = 1 we have Q′ (z) = (1−k(1−β)Ai
2 ) z(1− z) sin Ai log 1− z
0.
For α > 1, after an easy computation, we have

A
A(α − β)(1 − N 2 )(1 + N 2 )


Q (0) =
> 0.
A
N (1 − k 2 )(1 − N 2 )

This completes the proof.
Theorem 3.2. Let f ∈ HPσ (k, 1, β) and

X

n=1

|tn |2 ≤



1−β
1 − k2

2 

3+

z(I σ f (z))′
I σ f (z)

=1+

P∞

n=1 tn z

n

2A2 (1−β)
1−k2

>

then

4
2
+
.
cos(Aπ) cos(Aπ/2)


Proof. According to Lemma 3.1, the function which maps U conformally onto
the region D is given by
(
√ )
β − k2
1−β
1+ z

Q(z) =
.
+
cos Ai log
1 − k2
1 − k2
1− z
Obviously we have
#
"
(
√ )

X
1+ z
1−β
z(I σ f (z))′

Tn z n , z ∈ U.

1
=
cos
Ai
log

1

I σ f (z)
1 − k2
1− z
n=1

Now by the well known results of Littlewood [6, p. 35] and Lang [5, p.200] we obtain

X


X

1
|tn | ≤
|Tn | =

n=1
n=1
2

2

Z

0




2


Q(eiθ ) − 1 dθ

2
√ !
Z 2π

(1 − β)2
1 + eiθ




1
=
cosh
A
log



2π(1 − k 2 )2 0
1 − eiθ
2
Z 2π
2

A
(1 − β)
i (cot θ )A + (−i)A (tan θ )A − 1 dθ
=


2
2
2π(1 − k ) 0
4
4

21

A. Ebadian, Sh. Najafzadeh - Uniformly starlike and convex univalent functions...
(1 − β)2

2π(1 − k 2 )2

Z



0

3(1 − β)2
4(1 − β)2
=
+
(1 − k 2 )2
π(1 − k 2 )2

"Z



0

x2A
dx + 2
1 + x2

"

=

1−β
1 − k2




Z

0

xA
dx
1 + x2

eAπi − e3Aπi
2i

4(1 − β)2 −πe−2Aπi
3(1 − β)2
+
=
(1 − k 2 )2
π(1 − k 2 )2 sin(2Aπ)


2

θ
θ
(cot )A + (tan )A + 1
4
4



2 

!

#

2πe−Aπi

sin(Aπ)

π

eA 2

i

− eA
2i


i
2

4
2
+
.
3+
cos(Aπ) cos(Aπ/2)


1−β
} and f ∈ H. If
Theorem 3.3. Let 0 < k < min{1, α−1

X

n=2

[(k + 1)|n − α| + α − β]



2
n+1



|an | < 1 − β − k(α − 1)

(8)

then f ∈ HPσ (k, α, β).
Proof. According to the condition (2), it is sufficient to show that

z(I σ f (z))′

k

I σ f (z)




− α − Re



z(I σ f (z)′
− α < α − β.
I σ f (z)


(9)

The left hand side in the inequality in (9) can be written as




z(I σ f (z))′

z(I σ f (z))′


k σ
− α − Re
−α
I f (z)
I σ f (z)



z(I σ f (z))′

− α
≤(k + 1) σ
I f (z)


P

≤(k + 1)

α−1+

1−

On the other hand, by (8), we have
(k + 1)

α−1+

n=2



− α|

n=2 |n

− α|

2
n+1



|an |



|an |

2
n+1

2
n+1


σ
P∞
2
|an |
n=2 n+1

P∞

1−


n=2 |n
∞ 
P

|an |

.

< α − β.

Therefore the required condition (9) follows and so the proof is complete.
Similar coefficient bounds can be obtained for the classes KPσ (k, α, β) and
σ (z))′
P
z(I σ f (z))′′
n
LPσ (k, α, β) by replacing z(II σ ff(z)
= 1+ ∞
n=1 tn z with 1 + (I σ f (z))′ = 1 +
22

!#

A. Ebadian, Sh. Najafzadeh - Uniformly starlike and convex univalent functions...
σ

I f (z)
= 1+
and I σ+1
f (z)
we omit the trivial details.

P∞

n=1 tn z

n

P∞

n=1 tn z

n

respectively. For the sake of simplicity,

References
[1] P. J. Eenigenburg, S. S. Miller, P. T. Mocanu and M. O. Reade, On a BriotBouquet Differential Subordination, General Inequalities 3, (Oberwolfach 1981), 339
- 348.
[2] S. Kanas and A. Wi´
sniowska, Conic regions and k-uniform convexity, J.
Comput. Appl. Math. 105 (1-2)(1999), 327-336.
[3] S. Kanas and A. Wi´
sniowska, Conic regions and k-uniform convexity, II,
Zeszyty Nauk. Politech. Rzeszowskiej Mat. (22)(1998), 65-78.
[4] S. Kanas and A. Wi´
sniowska, Conic domains and starlike functions, Rev.
Roumaine Math. Pures Appl. 45(4) (2000), 647-657.
[5] S. Lang, Complex Analysis Ed.4, Springer-Verlag, New York Inc., 1999.
[6] Chr. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, G¨ottingen,
1975.
[7] F. Rønning, Uniformly convex functions and a corresponding class of starlike
functions, Proc. Amer. Math. Soc. 118 (1)(1993), 189-196.
A. Ebadian
Department of mathematics,
Faculty of Science, Urmia University,
Urmia, Iran,
email:a.ebadian@urmia.ac.ir

Sh. Najafzadeh
Department of Mathematics,Maragheh
University of Maragheh, Iran
email:najafzadeh1234@yahoo.ie

23

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52