Paper3-Acta25-2011. 127KB Jun 04 2011 12:03:17 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 25/2011
pp. 41-52

ON SOME CLASSES OF MEROMORPHIC FUNCTIONS DEFINED
BY A MULTIPLIER TRANSFORMATION

Alina Totoi

Abstract. For p ∈ N∗ let Σp denote the class of meromorphic functions of the
a−p
form g(z) = p + a0 + a1 z + · · · , z ∈ U̇ , a−p 6= 0. In the present paper we introduce
z
n (α) and ΣS n (α, δ), which
some new subclasses of the class Σp , denoted by ΣSp,λ
p,λ
are defined by a multiplier transformation, and we study some properties of these
subclasses.
2010 Mathematics Subject Classification: 30C45.

Keywords: meromorphic functions, multiplier transformations.
1. Introduction and preliminaries
Let U = {z ∈ C : |z| < 1} be the unit disc in the complex plane, U̇ = U \ {0},
H(U ) = {f : U → C : f is holomorphic in U }, Z = {. . .−1, 0, 1, . . .}, N = {0, 1, 2, . . .}
and N∗ = N \ {0}.
For p ∈ N∗ let Σp denote the class of meromorphic functions in U̇ of the form
g(z) =

a−p
+ a0 + a1 z + · · · , z ∈ U̇ , a−p 6= 0.
zp

We will also use the following notations:
Σp,0 = {g∈ Σp : a−p =1},


zg ′ (z)

Σp (α) = g ∈ Σp : Re −
> α, z ∈ U , where α < p,

g(z)




zg ′ (z)

Σp (α, δ) = g ∈ Σp : α < Re −
< δ, z ∈ U , where α < p < δ,
g(z)
H[a, n] = {f ∈ H(U ) : f (z) = a + an z n + an+1 z n+1 + . . .} for a ∈ C, n ∈ N∗ ,
An = {f ∈ H(U ) : f (z) = z + an+1 z n+1 + an+2 z n+2 + . . .}, n ∈ N∗ , and for n = 1
we denote A1 by A and this set is called the class of analytic functions normalized
at the origin.
41

A. Totoi - Meromorphic functions defined by a multiplier transformation

We know that Σ∗1 (α) is the class of meromorphic starlike functions of order α,
when 0 ≤ α < 1.

n on Σ be defined
For n ∈ Z, p ∈ N∗ , λ ∈ C with Re λ > p, let the operator Jp,λ
p
as

∞ 

a−p X λ − p n
a−p X
k
n
Jp,λ g(z) = p +
ak z , where g(z) = p +
ak z k .
z
k+λ
z
k=0

Let p ∈


N∗ ,

k=0

λ ∈ C with Re λ > p. We have:

−1
1. Jp,λ
g(z) =

λ
1
zg ′ (z) +
g(z), g ∈ Σp ,
λ−p
λ−p

0 g(z) = g(z), g ∈ Σ ,
2. Jp,λ

p
Z z
1 g(z) = λ − p
3. Jp,λ
tλ−1 g(t)dt = Jp,λ (g)(z), g ∈ Σp ,

0
n g ∈ Σ , then J m (J n g) = J n+m g, for m, n ∈ Z.
4. If g ∈ Σp with Jp,λ
p
p,λ p,λ
p,λ

Remark 1. Let p ∈ N∗ and λ ∈ C with Re λ > p. We know from [7] that if g ∈ Σp ,
then Jp,λ (g) ∈ Σp , hence, using item 4 and the induction, we obtain
n
Jp,λ
g ∈ Σp for all n ∈ N∗ .
−1
We notice from item 1 that for g ∈ Σp we have Jp,λ

g ∈ Σp , so
−n
Jp,λ
g ∈ Σp for all n ∈ N∗ .
n :Σ →Σ .
Therefore, for n ∈ Z, p ∈ N∗ , λ ∈ C with Re λ > p, we have Jp,λ
p
p
n , when Re λ > p :
Now it is easy to see that we have the next properties for Jp,λ
n (J m g(z)) = J n+m g(z), n, m ∈ Z, g ∈ Σ ,
1. Jp,λ
p
p,λ
p,λ
n (J m g(z)) = J m (J n g(z)), n, m ∈ Z, g ∈ Σ , Re γ > p,
2. Jp,γ
p
p,λ
p,λ p,γ

n (g + g )(z) = J n g (z) + J n g (z), for g , g ∈ Σ , n ∈ Z,
3. Jp,λ
1
2
1 2
p
p,λ 1
p,λ 2
n (cg)(z) = cJ n g(z), c ∈ C∗ , n ∈ Z,
4. Jp,λ
p,λ
n (zg ′ (z)) = z(J n g(z))′ = (λ − p)J n−1 g(z) − λJ n g(z), n ∈ Z, g ∈ Σ .
5. Jp,λ
p
p,λ
p,λ
p,λ

42


A. Totoi - Meromorphic functions defined by a multiplier transformation

Remark 2.

1. When λ = 2 and p = 1, we have


n
g(z) =
J1,2

a−1 X
+
(k + 2)−n ak z k ,
z
k=0

and this operator was studied by Cho and Kim [1] for n ∈ Z and by Uralegaddi
and Somanatha [8] for n < 0.
2. We also have

n
z 2 J1,2
g(z) = Dn (z 2 g(z)), g ∈ Σ1,0 ,

where Dn is the well-known Sǎlǎgean differential operator of order n [5], de∞

X
X
n
k
n
k ak z , f (z) = z +
ak z k .
fined by D f (z) = z +
k=2

k=2

n is an extension to the meromorphic functions of the operator K n , defined
3. Jp,λ

p
(
)

X
on A(p) = f ∈ H(U ) : f (z) = z p +
ap+n z p+n , introduced in [6]. Also,
n=1

for n ≥ 0 we find that Kpn is the Komatu linear operator, defined in [2].

n is an integral operator while J −n is a
4. It is easy to see that for n > 0, Jp,λ
p,λ
−n n
differential operator with the property Jp,λ
(Jp,λ g(z)) = g(z).

Lemma 1. [7] Let n ∈ N∗ , α, β ∈ R, γ ∈ C with Re γ − αβ > 0. If P ∈ H[P (0), n]
with P (0) ∈ R and P (0) > α, then we have



zP ′ (z)
> α ⇒ Re P (z) > α, z ∈ U.
Re P (z) +
γ − βP (z)
Definition 1. [3, pg. 46], [4, pg. 228] Let c ∈ C with Re c > 0 and n ∈ N∗ . We
consider
" r
#
n
2Re c
|c| 1 +
+ Im c .
Cn = Cn (c) =
Re c
n
If the univalent function R : U → C is given by R(z) =

2Cn z
, then we denote
1 − z2

by Rc,n the ”Open Door” function, defined as
!
z+b
(z + b)(1 + b̄z)
Rc,n (z) = R
= 2Cn
,
1 + b̄z
(1 + b̄z)2 − (z + b)2
where b = R−1 (c).
43

A. Totoi - Meromorphic functions defined by a multiplier transformation

Theorem 1. [7] Let p ∈ N∗ , Φ, ϕ ∈ H[1, p] with Φ(z)ϕ(z) 6= 0, z ∈ U . Let
α, β, γ, δ ∈ C with β 6= 0, δ + pβ = γ + pα and Re (γ − pβ) > 0. Let g ∈ Σp
and suppose that
zg ′ (z) zϕ′ (z)
α
+
+ δ ≺ Rδ−pα,p (z).
g(z)
ϕ(z)
Φ,ϕ
If G = Jp,α,β,γ,δ
(g) is defined by

G(z) =

Φ,ϕ
Jp,α,β,γ,δ
(g)(z)



γ − pβ
= γ
z Φ(z)

Z

z

α

g (t)ϕ(t)t

δ−1

0

1

β

dt

,

(1)

then G ∈ Σp with z p G(z) 6= 0, z ∈ U, and


zG′ (z) zΦ′ (z)
Re β
+
+ γ > 0, z ∈ U.
G(z)
Φ(z)
All powers in (1) are principal ones.
Taking β = α = 1, δ = γ, Φ = ϕ ≡ 1, in the above theorem, and using the
1,1
notation Jp,γ instead of Jp,1,1,γ,γ
, we obtain the corollary:
Corollary 1. Let p ∈ N∗ , γ ∈ C with Re γ > p and let the function g ∈ Σp satisfying
the condition
zg ′ (z)
+ γ ≺ Rγ−p,p (z), z ∈ U.
g(z)
Then
Z
γ−p z
G(z) = Jp,γ (g)(z) =
g(t)tγ−1 dt ∈ Σp ,

0


′ (z)
zG
> 0, z ∈ U.
with z p G(z) 6= 0, z ∈ U, and Re γ +
G(z)
2. Main results

Definition 2. For p ∈ N∗ , n ∈ Z, λ ∈ C, Re λ > p and α < p < δ we define




′ 


n g(z)


z
J
p,λ


n
,
>
α,
z

U
ΣSp,λ (α) = g ∈ Σp : Re −

n g(z)


Jp,λ






′ 


n


 z Jp,λ g(z) 
n
ΣSp,λ (α, δ) = g ∈ Σp : α < Re −
.
<
δ,
z

U

n g(z)


Jp,λ


44

A. Totoi - Meromorphic functions defined by a multiplier transformation

n (α) if and only if J n g ∈ Σ∗ (α), respectively
Remark 3.
1. We have g ∈ ΣSp,λ
p
p,λ
n
n g ∈ Σ∗ (α, δ).
g ∈ ΣSp,λ (α, δ) if and only if Jp,λ
p
n g(z))′ = (λ − p)J n−1 g(z) − λJ n g(z), we can easy see
2. Using the equality z(Jp,λ
p,λ
p,λ
that for Re λ > p the condition


′ 
n
 z Jp,λ g(z) 
α < Re −
 < δ, z ∈ U,
n g(z)
Jp,λ

is equivalent to

"

Re λ − δ < Re (λ − p)

n−1
Jp,λ
g(z)
n g(z)
Jp,λ

#

< Re λ − α, z ∈ U.

(2)

3. We have
0
ΣSp,λ
(α, δ) = Σ∗p (α, δ),


Z
λ − p z λ−1

1
t g(t)dt ∈ Σp (α, δ) .
ΣSp,λ (α, δ) = g ∈ Σp : G(z) =

0
n (α) and
The following theorem gives us a connection between the sets ΣSp,λ
n−1
n (α, δ) and ΣS n−1 (α, δ).
ΣSp,λ
(α), respectively between ΣSp,λ
p,λ

Theorem 2. Let p ∈ N∗ , n ∈ Z, λ ∈ C with Re λ > p, α < p < δ and g ∈ Σp . Then
n−1
n
g ∈ ΣSp,λ
(α) ⇔ Jp,λ (g) ∈ ΣSp,λ
(α),

respectively
n−1
n
g ∈ ΣSp,λ
(α, δ) ⇔ Jp,λ (g) ∈ ΣSp,λ
(α, δ),
Z z
λ−p
where Jp,λ (g)(z) =
tλ−1 g(t)dt.

0

n (α, δ) is equivalent to J n g ∈ Σ∗ (α, δ). Since
Proof . We know that g ∈ ΣSp,λ
p
p,λ
n−1 1
n−1 1
n

Jp,λ g = Jp,λ (Jp,λ g), we have Jp,λ (Jp,λ g) ∈ Σp (α, δ), which is equivalent to
n−1
1
Jp,λ
(g) ∈ ΣSp,λ
(α, δ).

45

A. Totoi - Meromorphic functions defined by a multiplier transformation
n−1
1 (g) = J
Since Jp,λ
p,λ (g), we obtain Jp,λ (g) ∈ ΣSp,λ (α, δ). Therefore,
n−1
n
g ∈ ΣSp,λ
(α, δ) ⇔ Jp,λ (g) ∈ ΣSp,λ
(α, δ).

The proof for the first equivalence is similar, so we omit it.

A corollary presented in [7] holds that:
Corollary 2. [7] Let p ∈ N∗ , γ ∈ C and α < p < δ ≤ Re γ. If g ∈ Σ∗p (α, δ), then
G = Jp,γ (g) ∈ Σ∗p (α, δ).

Theorem 3. Let p ∈ N∗ , n ∈ Z, λ, γ ∈ C with Re λ > p and α < p < δ ≤ Re γ.
Then
n
n
g ∈ ΣSp,λ
(α, δ) ⇒ Jp,γ (g) ∈ ΣSp,λ
(α, δ).

n (α, δ) we have J n (g) ∈ Σ∗ (α, δ), hence, from Corollary 2,
Proof . Because g ∈ ΣSp,λ
p
p,λ
we obtain
n
Jp,γ (Jp,λ
(g)) ∈ Σ∗p (α, δ).
1 (J n (g)) = J n (J 1 (g)), where J 1 (g) = J (g), we obtain
Using the fact that Jp,γ
p,γ
p,γ
p,λ
p,λ p,γ
n
Jp,λ
(Jp,γ (g)) ∈ Σ∗p (α, δ),
n (α, δ).
which is equivalent to Jp,γ (g) ∈ ΣSp,λ

Corollary 3. Let n ∈ Z, p ∈ N∗ , λ ∈ C and α < p < δ ≤ Re λ. Then we have
n+1
n
ΣSp,λ
(α, δ) ⊂ ΣSp,λ
(α, δ).

n (α, δ). Taking γ = λ in Theorem 3 we have J
n
Proof . Let g ∈ ΣSp,λ
p,λ (g) ∈ ΣSp,λ (α, δ),
n+1
which, from Theorem 2, is equivalent to g ∈ ΣSp,λ
(α, δ). And the result follows.

46

A. Totoi - Meromorphic functions defined by a multiplier transformation

A theorem presented in [7] holds that:
Theorem 4. [7] Let p ∈ N∗ , β > 0, γ ∈ C and α < p <

Re γ
≤ δ.
β

If g ∈ Σ∗p (α, δ), with
β

zg ′ (z)
+ γ ≺ Rγ−pβ,p (z), z ∈ U,
g(z)

then G = Jp,β,γ (g) ∈ Σ∗p (α, δ).
Using this theorem, for β = 1, we get the next result.
Theorem 5. Let n ∈ Z, p ∈ N∗ , λ, γ ∈ C with Re λ > p and α < p < Re γ ≤ δ. If
n
g ∈ ΣSp,λ
(α, δ) and satisfies the condition
h
i′
n (g)(z)
z Jp,λ
n (g)(z)
Jp,λ

+ γ ≺ Rγ−p,p (z), z ∈ U,

n (α, δ).
then Jp,γ (g) ∈ ΣSp,λ

We omit the proof because it is similar with that of Theorem 3.
If we consider in Theorem 5 that δ → ∞ we get:
Theorem 6. Let n ∈ Z, p ∈ N∗ , λ, γ ∈ C with Re λ > p and α < p < Re γ. If
n
g ∈ ΣSp,λ
(α) and satisfies the condition
h
i′
n (g)(z)
z Jp,λ
n (g)(z)
Jp,λ

+ γ ≺ Rγ−p,p (z), z ∈ U,

n (α).
then Jp,γ (g) ∈ ΣSp,λ

Theorem 7. Let n ∈ N, p ∈ N∗ , λ, γ ∈ C and α < p < Re γ ≤ Re λ ≤ δ. If
n
h ∈ ΣSp,λ
(α, δ) and satisfies the condition
zh′ (z)
+ γ ≺ Rγ−p,p (z), z ∈ U,
h(z)
n (α, δ).
then Jp,γ (h) ∈ ΣSp,λ

47

A. Totoi - Meromorphic functions defined by a multiplier transformation

Proof . Let us denote H = Jp,γ (h). Because the conditions of Corollary 1 are fullfilled, we have H ∈ Σp with z p H(z) 6= 0, z ∈ U, and


zH ′ (z)
Re
+ γ > 0, z ∈ U.
(3)
H(z)


zH ′ (z)
+ λ > 0, z ∈ U.
Since Re γ ≤ Re λ, we obtain from (3) that Re
H(z)
Using now Corollary 1, we have Jp,λ H ∈ Σp with z p Jp,λ H(z) 6= 0, z ∈ U , and


z(Jp,λ H)′ (z)
+ λ > 0, z ∈ U.
Re
Jp,λ H(z)
n H(z) 6= 0, z ∈ U , and
By induction, we obtain z p Jp,λ

Re

"

n H)′ (z)
z(Jp,λ
n H(z)
Jp,λ

#

+ λ > 0, z ∈ U.

Since Re λ ≤ δ , we get from (4) that
"
#
n H)′ (z)
z(Jp,λ
Re −
< δ, z ∈ U.
n H(z)
Jp,λ

(4)

(5)

From the definition of H we have
γH(z) + zH ′ (z) = (γ − p)h(z), z ∈ U̇ .

(6)

n to (6) and after using the properties of J n , we obtain
We apply the operator Jp,λ
p,λ
n
n
n
(γ − p)Jp,λ
h(z) = γJp,λ
H(z) + z(Jp,λ
H(z))′ .

(7)

n
From h ∈ ΣSp,λ
(α, δ), we have

"

α < Re −

n h(z))′
z(Jp,λ
n h(z)
Jp,λ

#

< δ,

which is equivalent to (see Remark 3, item 2)
"
#
n−1
Jp,λ
h(z)
Re λ − δ < Re (λ − p) n
< Re λ − α.
Jp,λ h(z)

48

(8)

A. Totoi - Meromorphic functions defined by a multiplier transformation

From (7), we have
(λ − p)

n−1
Jp,λ
h(z)
n h(z)
Jp,λ

Let us denote P (z) = −

= (λ − p)

n H(z))′
z(Jp,λ
n H(z)
Jp,λ

n−1
n−1
γJp,λ
H(z) + z(Jp,λ
H(z))′
n H(z) + z(J n H(z))′
γJp,λ
p,λ

(9)

.

. Using the fact that

n−1
n
n
H(z),
z(Jp,λ
H(z))′ = (λ − p)Jp,λ
H(z) − λJp,λ

we obtain
P (z) = (p − λ)
Hence

n−1
Jp,λ
H(z)
n H(z)
Jp,λ

n−1
Jp,λ
H(z)
n H(z)
Jp,λ

=

+ λ, z ∈ U.

P (z) − λ
.
p−λ

(10)

If we apply the logarithmic differential to (10), we get
n−1
z(Jp,λ
H(z))′
n−1
Jp,λ
H(z)

so,



n−1
z(Jp,λ
H(z))′
n−1
Jp,λ
H(z)

n H(z))′
z(Jp,λ

=

n H(z)
Jp,λ

= −P (z) +

zP ′ (z)
,
P (z) − λ

zP ′ (z)
.
P (z) − λ

(11)

Using (10) and (11) we obtain from (9),

(λ − p)

= (λ − p)

n−1
h(z)
Jp,λ
n h(z)
Jp,λ

P (z) − λ
·
p−λ

= (λ − p)

n−1
H(z)
Jp,λ
n H(z)
Jp,λ

γ+
·
γ+

n−1
z(Jp,λ
H(z))′
n−1
Jp,λ
H(z)
n H(z))′
z(Jp,λ

=

n H(z)
Jp,λ

zP ′ (z)
zP ′ (z)
P (z) − λ
= λ − P (z) +
.
γ − P (z)
P (z) − γ

γ − P (z) +

From (8) and (12), we get


zP ′ (z)
< Re λ − α,
Re λ − δ < Re λ − P (z) +
P (z) − γ
49

(12)

A. Totoi - Meromorphic functions defined by a multiplier transformation

which is equivalent to


zP ′ (z)
< δ.
α < Re P (z) +
γ − P (z)

(13)

Because we know from (5) that Re P (z) < δ, z ∈ U, we have only to verify that
Re P (z) > α, z ∈ U. To show this we will use Lemma 1.
n H ∈ Σ and since we have proved that z p J n H(z) 6= 0, z ∈ U ,
We know that Jp,λ
p
p,λ
we get that P is analytic in U . We also have Re γ − α > 0 and P (0) = p > α. Since
the hypothesis of Lemma 1 is fulfilled for β = 1, we obtain Re P (z) > α, z ∈ U ,
which is equivalent to
"
#
n H(z))′
z(Jp,λ
Re −
> α, z ∈ U.
(14)
n H(z)
Jp,λ
n (α, δ).
Since H ∈ Σp , we get from (5) and (14) that H ∈ ΣSp,λ

If we consider γ = λ, in the above theorem, we obtain:
n (α, δ) with α < p < Re λ ≤ δ.
Corollary 4. Let n ∈ N, p ∈ N∗ , λ ∈ C and h ∈ ΣSp,λ
If
zh′ (z)
+ λ ≺ Rλ−p,p (z), z ∈ U.
h(z)
n (α, δ).
Then Jp,λ (h) ∈ ΣSp,λ

Taking n = 0 in Corollary 4, we get:
Corollary 5. Let p ∈ N∗ , λ ∈ C and α < p < Re λ ≤ δ. If h ∈ Σ∗p (α, δ) with
zh′ (z)
+ λ ≺ Rλ−p,p (z), z ∈ U,
h(z)
then Jp,λ (h) ∈ Σ∗p (α, δ).
If in Corollary 5 we consider δ 7→ ∞ we have the next result:

50

A. Totoi - Meromorphic functions defined by a multiplier transformation

Corollary 6. Let p ∈ N∗ , λ ∈ C and α < p < Re λ. If h ∈ Σ∗p (α) with
zh′ (z)
+ λ ≺ Rλ−p,p (z), z ∈ U,
h(z)
then Jp,λ (h) ∈ Σ∗p (α).
We remark that Corollary 5 and Corollary 6 were also obtained in [7].
Theorem 8. Let n ∈ Z, p ∈ N∗ , λ, γ ∈ C with Re λ > p and α < p < Re γ. If
n (α) with J (J n (g)(z)) 6= 0, z ∈ U̇ , then
g ∈ ΣSp,λ
p,γ p,λ
n
Jp,γ (g) ∈ ΣSp,λ
(α).

Proof . Let G = Jp,γ (g). We know from Remark 1 that if g ∈ Σp and Re γ > p,
then G ∈ Σp .
Let
n G(z))′
z(Jp,λ
P (z) = −
n G(z) , z ∈ U.
Jp,λ
n (G) = J n (J (g)) = J (J n (g)) 6= 0 ı̂n U̇ . So P ∈ H(U ).
We have Jp,λ
p,γ p,λ
p,λ p,γ
Making some calculations, similar to those from the proof of Theorem 7, we get:



n g(z))′
z(Jp,λ
n g(z)
Jp,λ

= P (z) +

zP ′ (z)
, z ∈ U.
γ − P (z)

n (α) we have
From g ∈ ΣSp,λ

"

Re −

n g(z))′
z(Jp,λ
n g(z)
Jp,λ

#

> α, z ∈ U,

which is equivalent to


zP ′ (z)
Re P (z) +
> α, z ∈ U.
γ − P (z)
Since P ∈ H(U ) with P (0) = p > α and Re γ > α, we have from Lemma 1 (when
β = 1) that Re P (z) > α, z ∈ U, hence
n
G = Jp,γ (g) ∈ ΣSp,λ
(α).

51

A. Totoi - Meromorphic functions defined by a multiplier transformation

Taking n = 0 and λ = γ in the above theorem we get the next corollary, which
was also obtained in [7].
Corollary 7. Let p ∈ N∗ , γ ∈ C and α < p < Re γ.
If g ∈ Σ∗p (α) with z p Jp,γ (g)(z) 6= 0, z ∈ U , then Jp,γ (g) ∈ Σ∗p (α).

References
[1] N.E. Cho, Ji A. Kim, On certain classes of meromorphically starlike functions,
Internat. J. Math. & Math. Sci., vol. 18, no. 3 (1995), 463-468.
[2] Y. Komatu, Distorsion theorems in relation to linear integral transforms,
Kluwer Academic Publishers, Dordrecht, Boston and London, 1996.
[3] S.S. Miller, P.T. Mocanu, Differential subordinations. Theory and applications, Marcel Dekker Inc. New York, Basel, 2000.
[4] P.T. Mocanu, T. Bulboacă, Gr. Şt. Sălăgean, The geometric theory of
univalent functions, Casa Cărţii de Ştiinţă, Cluj-Napoca, 2006 (in Romanian).
[5] Gr. Şt. Sălăgean, Subclasses of univalent functions, Lectures Notes in Math.,
1013, 362-372, Springer-Verlag, Heideberg, 1983.
[6] S. Shams, S.R. Kulkarni, J.M. Jahangiri, Subordination properties of p-valent
functions defined by integral operators, Int. J. Math. Math. Sci., Article ID 94572
(2006), 1-3.
[7] A. Totoi, On integral operators for meromorphic functions, General Mathematics, Vol. 18, No. 3 (2010), 91-108.
[8] B.A. Uralegaddi, C. Somanatha, Certain differential operators for meromorphic functions, Houston J. Math., 17 (1991), 279-284.
Alina Totoi
Department of Mathematics
”Lucian Blaga” University of Sibiu
Str. I. Raţiu, no. 5-7, Sibiu, România
email:[email protected]

52

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52