pages125-150. 275KB Jun 04 2011 12:06:58 AM

Journal de Th´eorie des Nombres
de Bordeaux 17 (2005), 125–150

The joint distribution of Q-additive functions on
polynomials over finite fields
par Michael DRMOTA et Georg GUTENBRUNNER

´sume
´. Soient K un corps fini et Q ∈ K[T ] un polynˆome de
Re
degr´e au moins ´egal `
a 1. Une fonction f sur K[T ] est dite (compl`etement) Q-additive si f (A + BQ) = f (A) + f (B) pour tous
A, B ∈ K[T ] tels que deg(A) < deg(Q). Nous montrons que les
vecteurs (f1 (A), . . . , fd (A)) sont asymptotiquement ´equir´epartis
dans l’ensemble image {(f1 (A), . . . , fd (A)) : A ∈ K[T ]} si les Qj
sont premiers entre eux deux `
a deux et si les fj : K[T ] → K[T ]
sont Qj -additives. En outre, nous ´etablissons que les vecteurs
(g1 (A), g2 (A)) sont asymptotiquement ind´ependants et gaussiens
si g1 , g2 : K[T ] → R sont Q1 - resp. Q2 -additives.
Abstract. Let K be a finite field and Q ∈ K[T ] a polynomial

of positive degree. A function f on K[T ] is called (completely)
Q-additive if f (A + BQ) = f (A) + f (B), where A, B ∈ K[T ] and
deg(A) < deg(Q). We prove that the values (f1 (A), . . . , fd (A))
are asymptotically equidistributed on the (finite) image set
{(f1 (A), . . . , fd (A)) : A ∈ K[T ]} if Qj are pairwise coprime and
fj : K[T ] → K[T ] are Qj -additive. Furthermore, it is shown
that (g1 (A), g2 (A)) are asymptotically independent and Gaussian
if g1 , g2 : K[T ] → R are Q1 - resp. Q2 -additive.

1. Introduction
Let g > 1 be a given integer. A function f : N → R is called (completely)
g-additive if
f (a + bg) = f (a) + f (b)
for a, b ∈ N and 0 ≤ a < g. In particular, if n ∈ N is given in its g-ary
expansion

This research was supported by the Austrian Science Foundation FWF, grant S8302-MAT.

126


Michael Drmota, Georg Gutenbrunner

n=

X

εg,j (n)g j

X

f (εg,j (n)).

j≥0

then
f (n) =

j≥0

g-additive functions have been extensively discussed in the literature, in

particular their asymptotic distribution, see [1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14,
15]. We cite three of these results (in a slightly modified form). We want to
emphasise that Theorems A and C also say that different g-ary expansions
are (asymtotically) independent if the bases are coprime.
Theorem A. (Kim [13]) Suppose that g1 , . . . , gd ≥ 2 are pairwise coprime
integers, m1 , . . . , md positive integers, and let fj , 1 ≤ j ≤ d, be completely
gj -additive functions. Set
H := {(f1 (n) mod m1 , . . . , fd (n) mod md ) : n ≥ 0}.

Then H is a subgroup of Zm1 × · · · × Zmd and for every (a1 , . . . , ad ) ∈ H
we have


f1 (n) mod m1 = a1 , 





1

1
.
.
.
.
=
# n 0 such that

min{k1 (i + 1), k2 (j + 1)} + c ≤ n
for all i, j with 0 ≤ i ≤
X

n
k1

A∈Pn

− c′ and 0 ≤ j ≤

E


A

n
k2

H1
H2
+ j+1
i+1
Q1
Q2

− c′ . Hence, by Lemma 5.2
!!

= 0.

This completes the proof for the case m1 = m2 = 1.


Michael Drmota, Georg Gutenbrunner

146

Next suppose that m1 = m2 = 2. Here we have
1 n
# A ∈ Pn : DQ1 ,i1 (A) = D1 , DQ1 ,i2 (A) = D2 ,
qn
o
DQ2 ,j1 (A) = E1 , DQ2 ,j2 (A) = E2

!
X
X
1
H11

cQ1 ,H11 ,D1 E
= n
A ×

i1 +1
q
Q
1
A∈Pn H11 ∈Pk1

!
X
H12

cQ1 ,H12 ,D2 E
A ×
i2 +1
Q
1
H12 ∈Pk1

!
X
H21


A ×
cQ2 ,H21 ,E1 E
j1 +1
Q
2
H21 ∈Pk2

!
X
H
22

cQ2 ,H22 ,E2 E
A 
j2 +1
Q
2
H22 ∈Pk2
X

cQ1 ,H11 ,D1 cQ1 ,H12 ,D2 cQ2 ,H21 ,E1 cQ2 ,H22 ,E2
=
H11 ,H12 ∈Pk1 ,H21 ,H22 ∈Pk2

1 X
× n
E
q
A∈Pn

A

H11
H12
H21
H22
+ i2 +1 + j1 +1 + j2 +1
i1 +1
Q1
Q1

Q2
Q2

!!

Of course, if H11 = H12 = H21 = H22 = 0 then we obtain the main term
q1−2k1 q2−2k2 .
For the remaining cases we will distinguish between four cases. Note
that we only consider the case where all polynomials H11 , H12 , H21 , H22 are
non-zero. If some (but not all) of them are zero the considerations are still
easier.
Case 1. i2 − i1 ≤ c1 , j2 − j1 ≤ c2 for properly chosen constants c1 , c2 > 0.
In this case we proceed as in the case m1 = m2 = 1 and obtain

ν

H12
H21
H22
H11

+ i2 +1 + j1 +1 + j2 +1
i1 +1
Q1
Q1
Q2
Q2


!

(H11 Qi12 −i1 + H12 )Qj22 +1 + (H21 Qj22 −j1 + H22 )Qi12 +1
Qi12 +1 Qj22 +1

!

The joint distribution of Q-additive functions on polynomials

147

≤ k1 (i2 + 1) + k2 (j2 + 1)

− max{deg(H11 Qi12 −i1 + H12 ) + k2 (j2 + 1),

deg(H21 Qj22 −j1 + H22 ) + k1 (i2 + 1)} + c(c1 , c2 )
≤ min{k1 (i1 + 1), k2 (j1 + 1)} + c˜(c1 , c2 )

for some suitable constants c(c1 , c2 ) and c˜(c1 , c2 ).

Case 2. i2 − i1 > c1 , j2 − j1 > c2 for properly chosen constants c1 , c2 > 0
First we recall that
ν

H11
H21
+ j1 +1
i1 +1
Q1
Q2

Furthermore
ν

ν

H12
Qi12 +1
H22
Qj22 +1

!
!

!

≤ min{k1 (i1 + 1), k2 (j1 + 1)} + c.

≥ k1 (i2 + 1) − deg H12
≥ k1 (i2 − i1 ) + k1 i1 > k1 (i1 + c1 )
> k2 (j1 + c2 )

Thus, if c1 and c2 are chosen that (c1 − 1)k1 > c and (c2 − 1)k2 > c then
!
(
!
!)
H21
H11
H12
H22
ν
+
< min ν

Qi11 +1 Qj21 +1
Qi12 +1
Qj22 +1
and consequently by Lemma 5.1
ν

H11
H12
H21
H22
+ i2 +1 + j1 +1 + j2 +1
i1 +1
Q1
Q1
Q2
Q2

!



H11
H21
+ j1 +1
i1 +1
Q1
Q2

!

≤ min(k1 (i1 + 1), k2 (j1 + 1)) + c
Case 3. i2 − i1 ≤ c1 , j2 − j1 > c2 for properly chosen constants c1 , c2 > 0

First we have
ν

H11
H12
H21
+ i2 +1 + j1 +1
i1 +1
Q1
Q1
Q2


!

(H11 Qi12 −i1 + H12 )Qj21 +1 + H21 Qi12 +1
Qi12 +1 Qj21 +1

≤ k1 (i2 + 1) + k2 (j1 + 1)

!

− max{k1 (i2 − i1 ) + k2 (j1 + 1), k1 (i2 + 1)} + c(c1 )

= min{k1 (i1 + 1), k2 (j1 + 1)} + c(c1 ).

Michael Drmota, Georg Gutenbrunner

148

Furthermore,
ν

H22
Qj22 +1

!

≥ k2 (j2 + 1) − deg(H22 )
≥ k2 (j2 − j1 ) + k2 j1 > k2 (j1 + c2 ).

Hence, if c2 is sufficiently large then
ν

H11
H12
H21
H22
+ i2 +1 + j1 +1 + j2 +1
i1 +1
Q1
Q1
Q2
Q2

!



H11
H12
H21
+ i2 +1 + j1 +1
i1 +1
Q1
Q1
Q2

!

< min(k1 (i1 + 1), k2 (j1 + 1))
+ c(c1 )
Case 4. i2 − i1 > c1 , j2 − j1 ≤ c2 for properly chosen constants c1 , c2 > 0
This case is completely symmetric to case 3.

Putting these four cases together they show that (with suitably chosen
constants c1 , c2 ) there exists a constant c˜ such that for all polynomials
(H11 , H12 , H21 , H22 ) 6= (0, 0, 0, 0) we have
!
H22
H12
H21
H11
+
≤ min(k1 (i1 + 1), k2 (j1 + 1)) + c˜.
+
+
ν
Qi11 +1 Qi12 +1 Qj21 +1 Qj22 +1
Thus, there exists a constant c′ > 0 such that
min{k1 (i1 + 1), k2 (j1 + 1)} + c˜ ≤ n
for all i1 , j1 with 0 ≤ i1 ≤
X

A∈Pn

E

A

n

k1 −c

and 0 ≤ j1 ≤

n

k2 −c .

Hence, by Lemma 5.2
!!

H22
H11
H12
H21
+ i2 +1 + j1 +1 + j2 +1
i1 +1
Q1
Q1
Q2
Q2

= 0.

This completes the proof for the case m1 = m2 = 2.
As in the proof of Theorem 2.2 we can rewrite Lemma 5.5 as
1 
# A ∈ Pn : DQ1 ,i1 (A) = D1 , . . . , DQ1 ,im1 (A) = Dm1 ,
qn

DQ2 ,j1 (A) = E1 , . . . , DQ2 ,jm2 (A) = Em2

= P[Yi1 = D1 , . . . , Yim1 = Dm1 , Zj1 = E1 , . . . , Zjm2 = Em2 ],

where Yi and Zj are independent random variables that are uniformly distributed on Pk1 resp. on Pk2 .

The joint distribution of Q-additive functions on polynomials

If we define
ge1 (A) :=

ge2 (A) :=

X

149

g1 (DQ1 ,j1 (A)),

j1 ≤ kn −c′
1

X

g2 (DQ2 ,j2 (A))

j2 ≤ kn −c′
2

then Lemma 5.5 immediately translates to
Lemma 5.6. For all positive integers m1 , m2 we have for sufficiently
large n

m1 
m2
1 X
n
n
ge1 (A) − µg1
ge2 (A) − µg2
qn
k1
k2
A∈Pn
m1 
m2

X
X




(g1 (Yj1 ) − µg1 ) E 
(g2 (Zj2 ) − µg2 ) .
= E
j2 ≤ kn −c′

j1 ≤ kn −c′
1

2

Of course this implies that the joint distribution of g˜1 and g˜2 is asymptotically Gaussian (after normalization). Since the differences g1 (A) − g˜1 (A)
and g2 (A) − g˜2 (A) are bounded the same is true for the joint distribution
of g1 and g2 . This completes the proof of Theorem 2.3.
References
´tai, Distribution of the values of q-additive functions on polynomial
[1] N. L. Bassily, I. Ka
sequences. Acta Math. Hung. 68 (1995), 353–361.
[2] Mireille Car, Sommes de puissances et d’irr´
eductibles dans Fq [X]. Acta Arith. 44 (1984),
7–34.
[3] J. Coquet, Corr´
elation de suites arithm´
etiques. S´
emin. Delange-Pisot-Poitou, 20e Ann´
ee
1978/79, Exp. 15, 12 p. (1980).
[4] H. Delange Sur les fonctions q-additives ou q-multiplicatives. Acta Arith. 21 (1972), 285298.
[5] H. Delange Sur la fonction sommatoire de la fonction ”Somme de Chiffres”.
L’Enseignement math. 21 (1975), 31–77.
[6] M. Drmota, The joint distribution of q-additive functions. Acta Arith. 100 (2001), 17–39.
[7] M. Drmota, J. Gajdosik, The distribution of the sum-of-digits function. J. Theor. Nombres
Bordx. 10 (1998), 17–32.
[8] J. M. Dumont, A. Thomas, Gaussian asymptotic properties of the sum-of-digits functions.
J. Number Th. 62 (1997), 19–38.
[9] P. J. Grabner, P. Kirschenhofer, H. Prodinger, R. F. Tichy, On the moments of the
sum-of-digits function. in: Applications of Fibonacci Numbers 5 (1993), 263–271
[10] G.W. Effinger, D. R. Hayes, Additive number theory of polynomials over a finite field.
Oxford University Press, New York, 1991.
´tai, Distribution of q-additive function. Probability theory and applications, Essays
[11] I. Ka
to the Mem. of J. Mogyorodi, Math. Appl. 80 (1992), Kluwer, Dortrecht, 309–318.
[12] R. E. Kennedy, C. N. Cooper, An extension of a theorem by Cheo and Yien concerning
digital sums. Fibonacci Q. 29 (1991), 145–149.
[13] D.-H. Kim, On the joint distribution of q-additive functions in residue classes . J. Number
Theory 74 (1999), 307 – 336.

150

Michael Drmota, Georg Gutenbrunner

[14] P. Kirschenhofer, On the variance of the sum of digits function. Lecture Notes Math.
1452 (1990), 112–116.
˘ius, Probabilistic theory of additive functions related to systems of numera[15] E. Manstavic
tions. Analytic and Probabilistic Methods in Number Theory, VSP, Utrecht 1997, 413–430.
[16] R. C. Mason, Diophantine Equations over Function Fields. London Math. Soc. Lecture
Notes 96, Cambridge University Press, 1984.
[17] W. Steiner, On the joint distribution of q-additive functions on polynomial sequences,
Theory of Stochastic Processes 8 (24) (2002), 336–357.
Michael Drmota
Inst. of Discrete Math. and Geometry
TU Wien
Wiedner Hauptstr. 8–10
A-1040 Wien, Austria
E-mail : [email protected]
URL: http://www.dmg.tuwien.ac.at/drmota/
Georg Gutenbrunner
Inst. of Discrete Math. and Geometry
TU Wien
Wiedner Hauptstr. 8–10
A-1040 Wien, Austria
E-mail : [email protected]

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52