vol17_pp445-457. 170KB Jun 04 2011 12:06:00 AM

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 445-457, September 2008

ELA

http://math.technion.ac.il/iic/ela

FURTHER RESULTS ON THE CRAIG-SAKAMOTO EQUATION∗
JOHN MAROULAS†

Abstract. In this paper, necessary and sufficient conditions are stated for the Craig-Sakamoto
equation det(I − sA − tB) = det(I − sA) det(I − tB) to hold for all scalars s, t ∈ C. Moreover,
spectral properties for matrices A and B that satisfy this equation are investigated.

Key words. Determinant, Characteristic polynomial, Craig-Sakamoto equation, Bilinear form.

AMS subject classifications. 15A15, 15A18, 15A63.

1. Introduction. Let Mn (C) be the set of n × n matrices with elements in C.
For A and B ∈ Mn (C), the equation

(1.1)

det(I − sA − tB) = det(I − sA) det(I − tB)

for all scalars s, t ∈ C is known as the Craig-Sakamoto (CS) equation. Matrices A
and B satisfying (1.1) are said to have the CS property. The CS equation is encountered in multivariate statisticts [1] and has drawn the interest of several researchers.
Specifically, O. Taussky proved in [6] that the CS equation is equivalent to AB = O
when A, B are normal matrices. Several proofs of this result in [1] are known, most
recently by Olkin in [5] and by Li in [2]. Moreover, Matsuura in [4] refined Olkin’s
method using another type of determinantal result. The present author, together
with M. Tsatsomeros and P. Psarrakos investigated in [3] the CS equation for general matrices and in relation to the eigenspaces of A, B and sA + tB. Being more
specific, if σ(X) denotes the spectrum for a matrix X, mX (λ) the algebraic multiplicity of λ ∈ σ(X), and EX (λ) = N ul ((X − λI)µ ) , where µ = indλ (X) is the size
of the largest Jordan block associated with λ in the Jordan canonical form of X, the
following three propositions were shown in [3]:
Proposition 1.1. For n × n matrices A and B, the following statements are
equivalent:
I.

The CS equation holds.




Received by the editors September 3, 2007. Accepted for publication September 11, 2008.
Handling Editor: Michael Tsatsomeros.
† Department of Mathematics, National Technical University, Zografou Campus, Athens 15780,
Greece (maroulas@math.ntua.gr). Research supported by a grant of the EPEAEK, project Pythagoras II. The project is co-funded by the European Social Fund (75%) and Greek National Resources
(25%).
445

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 445-457, September 2008

ELA

http://math.technion.ac.il/iic/ela

446
II.
III.


Further Results on the Craig-Sakamoto Equation

For every s, t ∈ C, σ(sA ⊕ tB) = σ ((sA + tB) ⊕ On ) , where On denotes
the n × n zero matrix.
σ(sA + tB) = { sµi + tνi : µi ∈ σ(A), νi ∈ σ(B) } , where the pairing of
eigenvalues requires either µi = 0 or νi = 0.

Proposition 1.2. Let n×n matrices A, B satisfy the Craig-Sakamoto equation.
Then,
I.
II.
III.

mA (0) + mB (0) ≥ n.
If A is nonsingular, then B must be nilpotent.
If λ = 0 is a semisimple eigenvalue of A and B, then rank(A)+rank(B) ≤ n.

Proposition 1.3. Let λ = 0 be a semisimple eigenvalue of n × n matrices A
and B such that BEA (0) ⊂ EA (0). Then the following are equivalent.

I.
II.
III.

The CS equation holds.
Cn = EA (0) + EB (0).
AB = O.

The remaining results in [3] are based on the basic assumption that λ = 0 is a
semisimple eigenvalue of A and B. Relaxing this restriction, we shall attempt here
to investigate the CS equation by focusing on the factorization of the two variable
polynomial f (s, t) = det(I − sA − tB).
In section 2, considering the determinants in (1.1), new necessary and sufficient
conditions for CS to hold are stated. The first criterion refers to the coefficients of
the polynomials in (1.1). The second criterion refers to certain determinants defined
via the rows of A and B. In section 3, the main result is related to the algebraic
multiplicity of the eigenvalue λ = 0 of A and B and sufficient conditions such that
mA (0) + mB (0) = n are presented
2. Criteria for CS property. In this section we consider the polynomial in
two variables

(2.1)

f (s, t) = det(I − sA − tB) =

n


mpq sp tq .

p, q = 0
p+q ≤ n

By denoting x =
be written as



1

s


s2

· · · sn

T

and y =



1 t

t2

· · · tn

f (s, t) = xT M y,
n


where M = [mpq ]p,q=0 is an (n + 1) × (n + 1) matrix, with m00 = 1.

T

, (2.1) can

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 445-457, September 2008

ELA

http://math.technion.ac.il/iic/ela

447

J. Maroulas

Proposition 2.1. Let A, B ∈ Mn (C). The CS equation holds for the pair of
matrices A and B if and only if rankM = 1.

Proof. Let A and B have the CS property. Then the equation (1.1) can be
formulated as
xT M y = xT a bT y,

(2.2)
where
a=



1

an−1

· · · a0

T

,


b=



1 bn−1

· · · b0

and ai , bi are the coefficients of the characteristic polynomials

T

det(λI − A) = λn + an−1 λn−1 + . . . + a0 , det(λI − B) = λn + bn−1 λn−1 + . . . + b0 .
Hence, by (2.2), for all distinct s1 , s2 , . . . , sn+1 and all distinct t1 , t2 , . . . , tn+1 we
have that


V T M − a bT W = O,

(2.3)

where




V =


1
s1
..
.

···
1
· · · sn+1
..
.

sn1


· · · snn+1





,






W =


1
t1
..
.

···
1
· · · tn+1
..
.

tn1

· · · tnn+1





.


By (2.3), due to the invertibility of V and W, we have that M = a bT , i.e., rankM =
1.
Conversely, if rankM = 1, then M = k ℓT , where the vectors k, ℓ ∈ Cn+1 .
Therefore,
f (s, t) = xT M y = xT k ℓT y = k(s)ℓ(t),
where k(s) and ℓ(t) are polynomials. Since, f (0, 0) = 1 = k(0)ℓ(0), and
det(I − sA) = f (s, 0) = k(s)ℓ(0),
det(I − tB) = f (0, t) = k(0)ℓ(t),
we have
f (s, t) = k(s)ℓ(0)k(0)ℓ(t) = det(I − sA) det(I − tB).

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 445-457, September 2008

ELA

http://math.technion.ac.il/iic/ela

448

Further Results on the Craig-Sakamoto Equation

Example 2.2. Consider the matrices


0
0
0
A= 0 1−γ
1 ,
0
0
1−γ



0
B =  1/γ
0

γ
0
0


0
0 .
0

We have
f (s, t) = det(I − sA − tB) = 1 + 2(γ − 1)s + (γ − 1)2 s2 − t2 + (1 − γ)t2 s


1
0
1
0
 2(γ − 1) 0 1 − γ 0 
y
= xT 
 (γ − 1)2 0
0
0 
0
0
0
0
and
2

det(I − sA) = (1 + (γ − 1)s) , det(I − tB) = 1 − t2 .
By Proposition 2.1 we recognize that A, B have the CS property if and only if γ = 1.


ai1 ,..., ip
the determinant of order p + q (≤
In the following we denote by C
bj1 ,..., jq
n) defined by the i1 , . . . , ip rows of A and j1 , . . . , jq rows of B; all indices are assume
to be in increasing order. For example, when i1 < i2 < j1 < i3 < · · · < jq < · · · < ip ,
then


ai1 i1 ai1 i2 ai1 j1 ai1 i3 · · · ai1 jq · · · ai1 ip
 ai i ai i ai j ai i · · · ai j · · · ai i 
2 p 
2 q
2 3
2 1
2 2
 21
 b

 j1 i1 bj1 i2 bj1 j1 bj1 i3 · · · bj1 jq · · · bj1 ip 


 ai3 i1 ai3 i2 ai3 j1 ai3 i3



 .

ai1 ,..., ip
.
.
.

..
..
.. 
C
= det  ..
.
bj1 ,..., jq


.. 

 bjq i1 bjq i2
bjq jq
. 


 ..

..
..
 .

.
.
aip i1

aip i2

···

aip ip

Recall that the coefficient of λn−ρ in the characteristic polynomial det(λI − sA−
tB) is equal to (−1)ρ times the sum of all principal minors of order ρ of sA + tB.
Using the multilinearity of the determinant, we can thus deduce that for ρ = p + q,
this coefficient is

p+q
(−1)p+q
det [s aiℓ ih + t biℓ ih ]ℓ,h=1 =
(2.4)
1≤i1 ≤i2 ≤···≤ip+q ≤n

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 445-457, September 2008

ELA

http://math.technion.ac.il/iic/ela

449

J. Maroulas



= (−1)p+q

p+q

sp+q det [ aiℓ ih ]ℓ,h=1

1≤i1 ≤i2 ≤···≤ip+q ≤n

+sp+q−1 t

p+q


C

k=1

+s

p+q


p+q−2 2

t

C

k, τ = 1
k = τ





ai1 ,..., ik−1 ,ik+1 ,...,ip+q
bik



ai1 ,..., ik−1 ,ik+1 ,...,iτ −1 ,iτ +1 ,...,ip+q
bik ,iτ



p+q
· · · + tp+q det [ biℓ ih ]ℓ,h=1
).

Hence, we have established that for λ = 1, the coefficient mpq of the monomial sp tq
in (2.1) is given by


p+q


ai1 ,...,ip+q
p+q
mpq = (−1)
C
bik1 ,..., ikq
1≤i1 ≤i2 ≤...≤ip+q ≤n k1 ,...,kq =1



ai1 ,..., ip
= (−1)p+q
(2.5)
,
m00 = 1.
C
bj1 ,..., jq
1≤ i1 ,..., ip , j1 ,..., jq ≤ n

Note that in (2.5) the summands are constructed for all ordered subsets of p + q
indices of i’s and j’s from {1, · · · , n}, corresponding to p rows of A and q rows of
B, respectively.
For example, for n × n matrices A and B the coefficients of t, st, s2 and s2 t
are, respectively, equal to
m01 = −

X

C(bj ) = − (b11 + b22 + · · · + bnn ) = −trB

1≤j≤n

X

m11 =

C

1≤i

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52