pilehrood2. 241KB Jun 04 2011 12:09:21 AM

1

2
3

47

6

Journal of Integer Sequences, Vol. 13 (2010),
Article 10.7.3

23 11

Vacca-Type Series for Values of the
Generalized Euler Constant Function
and its Derivative
Khodabakhsh Hessami Pilehrood1 and Tatiana Hessami Pilehrood2
Institute for Studies in Theoretical Physics and Mathematics
Tehran, Iran
[email protected]

[email protected]
[email protected]
[email protected]
Abstract
We generalize well-known Catalan-type integrals for Euler’s constant to values of
the generalized Euler constant function and its derivatives. Using generating functions
appearing in these integral representations, we give new Vacca and Ramanujan-type
series for values of the generalized Euler constant function and Addison-type series for
values of the generalized Euler constant function and its derivative. As a consequence,
ζ ′ (2)
we get base-B rational series for log π4 , G
π (where G is Catalan’s constant), π 2 and
also for logarithms of the Somos and Glaisher-Kinkelin constants.

1

Introduction

J. Sondow [24] proved the following two formulas:
γ=



X
N1,2 (n) + N0,2 (n)

2n(2n + 1)

n=1

1

Author’s current address: Mathematics Department, Faculty of
Shahrekord, P.O. Box 115, Iran. Research was in part supported by
2
Author’s current address: Mathematics Department, Faculty of
Shahrekord, P.O. Box 115, Iran. Research was in part supported by

1

,


(1)

Basic Sciences, Shahrekord University,
a grant from IPM (No. 87110018).
Basic Sciences, Shahrekord University,
a grant from IPM (No. 87110019).



4 X N1,2 (n) − N0,2 (n)
log =
,
π
2n(2n + 1)
n=1

(2)

where γ is Euler’s constant and Ni,2 (n) is the number of i’s in the binary expansion of n (see

sequences A000120 and A023416 in Sloane’s database [23]). The series (1) is equivalent to
the well-known Vacca series [28]




n
n
X
X
n N1,2 ⌊ 2 ⌋ + N0,2 ⌊ 2 ⌋
n ⌊log2 n⌋
=
(3)
(−1)
γ=
(−1)
n
n
n=1

n=1
and both series (1) and (3) may be derived from Catalan’s integral [8]
γ=

Z

1

0



1 X 2n −1
x
dx.
1 + x n=1

(4)

To see this it suffices to note that





1 X 2n X
G(x) =
x =
(N1,2 (n) + N0,2 (n))xn
1 − x n=0
n=1
is a generating function of the sequence N1,2 (n) + N0,2 (n), (see A070939), which is the binary
length of n, rewrite (4) as
Z 1
G(x2 )
γ=
dx
(1 − x)
x
0
and integrate the power series termwise. In view of the equality

Z

1=

0


1X

n −1

x2

dx,

n=1

which is easily verified by termwise integration, (4) is equivalent to the formula
γ =1−


Z

0

1



1 X 2n
x dx
1 + x n=1

(5)

obtained independently by Ramanujan (see [5, Corollary 2.3]). Catalan’s integral (5) gives
the following rational series for γ :
γ =1−

Z


0

1

(1 − x)G(x2 ) dx = 1 −


X
N1,2 (n) + N0,2 (n)
n=1

(2n + 1)(2n + 2)

.

Averaging (1), (6) and (4), (5), respectively, we get Addison’s series for γ [1]


γ=


1 X N1,2 (n) + N0,2 (n)
+
2 n=1 2n(2n + 1)(2n + 2)
2

(6)

and its corresponding integral
1 1
γ= +
2 2

Z

1

0




1 − x X 2n −1
x
dx,
1 + x n=1

(7)

respectively. Integrals (5), (4) were generalized to an arbitrary integer base B > 1 by
S. Ramanujan and by B. C. Berndt and D. C. Bowman (see [5]):
γ =1−
γ=

Z

0

1



Z

1

0



1
BxB−1

1 − x 1 − xB

1
B

B
1−x
1−x

X


X


n

xB dx

(Ramanujan),

(8)

n=1

xB

n −1

dx

(Berndt-Bowman).

(9)

n=1

Formula (9) implies the generalized Vacca series for γ (see [5, Theorem 2.6]) proposed by
L. Carlitz [7]:

X
ε(n)
⌊logB n⌋,
(10)
γ=
n
n=1
where

ε(n) =

(

B − 1, if B divides n;
−1,
otherwise;

(11)

and the averaging integral of (8) and (9) produces the generalized Addison series for γ found
by Sondow [24]:

1 X
⌊logB Bn⌋PB (n)
γ= +
,
(12)
2 n=1 Bn(Bn + 1) · · · (Bn + B)
where PB (x) is a polynomial of degree B − 2 defined by

PB (x) = (Bx + 1)(Bx + 2) · · · (Bx + B − 1)

B−1
X

m(B − m)
.
Bx
+
m
m=1

(13)

In this paper, we consider the generalized Euler constant function
γa,b (z) =

∞ 
X
n=0

1
− log
an + b



an + b + 1
an + b



zn,

a, b ∈ N,

|z| ≤ 1,

(14)

which is related to the constants in (1), (2) as γ1,1 (1) = γ, γ1,1 (−1) = log π4 . Basic properties
of a special case of this function, γ1,1 (z), were studied earlier in [25, 14]. In Section 2, we
show that γa,b (z) admits an analytic continuation to the domain C \ [1, +∞) in terms of the
Lerch transcendent. In Sections 3–4, we generalize Catalan-type integrals (8), (9) to values
of the generalized Euler constant function and its derivatives. Using generating functions
appearing in these integral representations, we give new Vacca- and Ramanujan-type series
for values of γa,b (z) and Addison-type series for values of γa,b (z) and its derivative. In Section
3



5, we get base-B rational series for log π4 , Gπ , (where G is Catalan’s constant), ζ π(2)
and also
2
for logarithms of the Somos and Glaisher-Kinkelin constants. We also mention a connection
of our approach to summation of series of the form

X

Nω,B (n)Q(n, B) and

n=1


X
n=1

Nω,B (n)PB (n)
,
Bn(Bn + 1) · · · (Bn + B)

where Q(n, B) is a rational function of B and n
Q(n, B) =

1
2
B−1
+
+ ··· +
,
Bn(Bn + 1) Bn(Bn + 2)
Bn(Bn + B − 1)

(15)

and Nω,B (n) is the number of occurrences of a word ω over the alphabet {0, 1, . . . , B − 1} in
the B-ary expansion of n, considered in [2]. Moreover, we answer some questions posed in
[2] concerning possible generalizations of the series (1) and (2) to any integer base B > 1.
Note that in the above notation, the generalized Vacca series (10) can be written as follows:
γ=


X

LB (k)Q(k, B),

(16)

k=1

P
where LB (k) := ⌊logB Bk⌋ = B−1
α=0 Nα,B (k) is the B-ary length of k. Indeed, representing
n = Bk + r, 0 ≤ r ≤ B − 1 and summing in (10) over k ≥ 1 and 0 ≤ r ≤ B − 1 we get
 X



X
1
1
B−1

− ··· −
=
γ=
⌊logB Bk⌋
⌊logB Bk⌋Q(k, B).
Bk
Bk
+
1
Bk
+
B

1
k=1
k=1
Using the same notation, the generalized Addison series (12) gives another base-B expansion
of Euler’s constant




1 X
1 X
B−1
LB (n)PB (n)
= +
γ= +
LB (n) Q(n, B) −
(17)
2 n=1 Bn(Bn + 1) · · · (Bn + B)
2 n=1
2Bn(n + 1)
which converges faster than (16) to γ. Here we used the fact that
∞ B−1
X
X Nα,B (n)
B
=
,
n(n + 1)
B−1
n=1 α=0

which can be easily checked by [3, Section 3]. On the other hand,

B−1 
1X 1
2
1
B−1
=

+
Q(n, B) −
2Bn(n + 1)
2 m=1 Bn Bn + m Bn + B

B−1
X
PB (n)
2m(B − m)
1
=
2m − B +
.
=
Bn(Bn + B) m=1
Bn + m
Bn(Bn + 1) · · · (Bn + B)
Finally, we give a brief description of some other generalized Euler constants that have
appeared in the literature in Section 6.
4

2

Analytic continuation

We consider the generalized Euler constant function γa,b (z) defined in (14), where a, b are
positive real numbers, z ∈ C, and the series converges when |z| ≤ 1. We show that γa,b (z)
admits an analytic continuation to the domain C \ [1, +∞). The following theorem is a slight
modification of [25, Theorem 3].
Theorem 1. Let a, b be positive real numbers, z ∈ C, |z| ≤ 1. Then


Z 1 b−1
Z 1Z 1
1
1
x (1 − x)
(xy)b−1 (1 − x)
dxdy =
+
dx. (18)
γa,b (z) =
a a
1 − zxa
1 − x log x
0
0
0 (1 − zx y )(− log xy)
The integrals converge for all z ∈ C \ (1, +∞) and give the analytic continuation of the
generalized Euler constant function γa,b (z) for z ∈ C \ [1, +∞).
Proof. Denoting the double integral in (18) by I(z) and for |z| ≤ 1, expanding (1 − zxa y a )−1
in a geometric series we have
Z 1Z 1

X
(xy)ak+b−1 (1 − x)
k
I(z) =
z
dxdy
(−
log
xy)
0
0
k=0
Z 1 Z 1 Z +∞

X
k
=
z
(xy)t+ak+b−1 (1 − x) dxdydt
=

k=0

X
k=0

0

z

k

Z

0

0

+∞ 

0



1
1
1


dt = γa,b (z).
(t + ak + b)2
t + ak + b t + ak + b + 1

On the other hand, making the change of variables u = xa , v = y a in the double integral we
get
Z Z
1
b
1 1 1 (uv) a −1 (1 − u a )
I(z) =
dudv.
a 0 0 (1 − zuv)(− log uv)
Now by [12, Corollary 3.3], for z ∈ C \ [1, +∞) we have
1 
b  ∂Φ 
b  ∂Φ 
b + 1
I(z) = Φ z, 1,

z, 0,
+
z, 0,
,
a
a
∂s
a
∂s
a

where Φ(z, s, u) is the Lerch transcendent, a holomorphic function in z and s, for z ∈
C \ [1, +∞) and all complex s (see [12, Lemma 2.2]), which is the analytic continuation of
the series

X
zn
Φ(z, s, u) =
,
u > 0.
(n + u)s
n=0

To prove the second equality in (18), make the change of variables X = xy, Y = y and
integrate with respect to Y.
Corollary 2. Let a, b be positive real numbers, l ∈ N, z ∈ C \ [1, +∞). Then for the l-th
derivative we have


Z 1Z 1
Z 1 la+b−1
(xy)al+b−1 (x − 1)
1
1
x
(1 − x)
(l)
γa,b (z) =
dx.
dxdy =
+
a a l+1 log xy
(1 − zxa )l+1
1 − x log x
0
0 (1 − zx y )
0
5

From Corollary 2, [12, Cor.3.3, 3.8, 3.9] and [2, Lemma 4] we get
Corollary 3. Let a, b be positive real numbers, z ∈ C\[1, +∞). Then the following equalities
hold:
b + 1
b 1 b
γa,b (1) = log Γ
− log Γ
− ψ
,
a
a
a a
b  ∂Φ 
b  ∂Φ 
b + 1
1 

z, 0,
+
z, 0,
,
γa,b (z) = Φ z, 1,
a
a
∂s
a
∂s
a

γa,b
(z) = −


 ∂Φ 

b 
1
b ∂Φ 
b
b
b
+
1
+
+
+
1

+
1

Φ
z,
1,
z,
0,
z,
−1,
a2
a
a(1 − z) a ∂s
a
∂s
a

 ∂Φ 

b+1
b+1
b + 1 ∂Φ 
z, 0,
+1 +
z, −1,
+1 ,
a ∂s
a
∂s
a

where Φ(z, s, u) is the Lerch transcendent and ψ(x) =
of the gamma function.

3

d
dx

log Γ(x) is the logarithmic derivative

(l)

Catalan-type integrals for γa,b(z).

Berndt and Bowman [5] demonstrated that for x > 0 and any integer B > 1,
1



2

X (B − 1) + (B − 2)x Bk + (B − 3)x Bk + · · · + x
1
1
+
=
B−1
1
2
1 − x log x k=1
B k (1 + x Bk + x Bk + · · · + x Bk )

B−2
Bk

.

(19)

The special cases B = 2, 3 of this equality can be found in Ramanujan’s third note book [21,
p. 364]. Using this key formula we prove the following generalization of the integral (9).
Theorem 4. Let a, b, B be positive integers with B > 1, l a non-negative integer. If either
z ∈ C \ [1, +∞) and l ≥ 1, or z ∈ C \ (1, +∞) and l = 0, then

Z 1
B
1
(l)
γa,b (z) =
Fl (z, x) dx
(20)

1 − xB 1 − x
0
where
Fl (z, x) =

k
k

X
x(b+al)B −1 (1 − xB )

k=1

(1 − zxaB k )l+1

.

(21)

Proof. First we note that the series of variable x on the right-hand side of (19) converges
B−1
uniformly on [0, 1], since the absolute value of its general term does not exceed 2B
k−1 . Then
la+b−1
x
(1−x)
for l ≥ 0, multiplying both sides of (19) by (1−zxa )l+1 and integrating over 0 ≤ x ≤ 1 we
get
B−2
1
∞ Z 1 la+b−1
X
x
(1 − x) (B − 1) + (B − 2)x Bk + · · · + x Bk
(l)
dx.
γa,b (z) =
·
B−1
1
2
a )l+1
(1

zx
k (1 + x B k + x B k + · · · + x B k )
0
B
k=1
6

k

Replacing x by xB in each integral we find
k
∞ Z 1 (la+b)B k −1
X
x
(1 − xB ) (B − 1) + (B − 2)x + · · · + xB−2
(l)
γa,b (z) =
dx
·
1 + x + x2 + · · · + xB−1
(1 − zxaB k )l+1
k=1 0

Z 1
1
B
Fl (z, x) dx,

=
1 − xB 1 − x
0
as required.
From Theorem 4 we readily get a generalization of Ramanujan’s integral.
Corollary 5. Let a, b, B be positive integers with B > 1, l a non-negative integer. If either
z ∈ C \ [1, +∞) and l ≥ 1, or z ∈ C \ (1, +∞) and l = 0, then

Z 1 b+al−1
Z 1
x
(1 − x)
x
BxB
(l)
γa,b (z) =
Fl (z, x) dx.
(22)
dx +

(1 − zxa )l+1
1 − xB 1 − x
0
0
Proof. First we note that the series (21), considered as a sum of functions of the variable x
converges uniformly on [0, 1 − ε] for any ε > 0. Then integrating termwise we have
Z 1−ε
k
∞ Z 1−ε (b+al)B k −1
X
x
(1 − xB )
Fl (z, x) dx =
dx.
(1 − zxaB k )l+1
0
k=1 0
k

Making the change of variable y = xB in each integral we get
Z

0

1−ε

Z (1−ε)Bk b+al−1

X
y
(1 − y)
1
dy.
Fl (z, x) dx =
k
B 0
(1 − zy a )l+1
k=1

Since the last series, considered as a series in the variable ε, converges uniformly on [0, 1],
letting ε tend to zero we get
Z 1
Z 1 b+al−1
1
y
(1 − y)
dy.
(23)
Fl (z, x) dx =
B − 1 0 (1 − zy a )l+1
0
Now from (20) and (23) it follows that

Z 1 b+al−1
Z 1
y
(1 − y)
x
BxB
(l)
γa,b (z) −
dy =

Fl (z, x) dx,
(1 − zy a )l+1
1 − xB 1 − x
0
0
and the proof is complete.
Averaging the formulas (20) and (22), we get the following generalization of the integral
(7).
Corollary 6. Let a, b, B be positive integers with B > 1, l a non-negative integer. If either
z ∈ C \ [1, +∞) and l ≥ 1, or z ∈ C \ (1, +∞) and l = 0, then

Z
Z 
1 1 xb+al−1 (1 − x)
1 1 B(1 + xB ) 1 + x
(l)
γa,b (z) =
Fl (z, x) dx.
dx +

2 0 (1 − zxa )l+1
2 0
1 − xB
1−x
7

4


Vacca-type series for γa,b(z) and γa,b
(z).

Theorem 7. Let a, b, B be positive integers with B > 1, z ∈ C, |z| ≤ 1. Then for the
generalized Euler constant function γa,b (z), the following expansion is valid:
γa,b (z) =


X

ak Q(k, B) =

k=1


X
k=1

a⌊ k ⌋
B

ε(k)
,
k

where Q(k, B) is a rational function given by (15), {ak }∞
k=0 is a sequence defined by the
generating function




1 X xbB (1 − xB ) X
=
ak x k
G(z, x) =
1 − x k=0 1 − zxaB k
k=0
k

k

(24)

and ε(k) is defined in (11).
Proof. For l = 0, rewrite (20) in the form


Z 1
1
1 − xB
B
G(z, xB ) dx

γa,b (z) =
B
x
1

x
1

x
0
where G(z, x) is defined in (24). Then, since a0 = 0, we have
Z 1

X
2
B−1
γa,b (z) =
(B − 1 − x − x − · · · − x
)
ak xBk−1 dx.
0

(25)

k=1

Expanding G(z, x) in a power series of x,
G(z, x) =


∞ X
X

k=0 m=0

k

z m x(am+b)B (1 + x + · · · + xB

k −1

),

we see that ak = O(lnB k). Therefore, by termwise integration in (25), which can be easily
justified by the same way as in the proof of Corollary 5, we get
Z 1

X
γa,b (z) =
ak
[(xBk−1 − xBk ) + (xBk−1 − xBk+1 ) + · · · + (xBk−1 − xBk+B−2 )] dx
=

k=1

X

0

ak Q(k, B).

k=1

Theorem 8. Let a, b, B be positive integers with B > 1, z ∈ C, |z| ≤ 1. Then for the
generalized Euler constant function, the following expansion is valid:
Z 1 b−1

X
x (1 − x)
e B),
γa,b (z) =
dx

ak Q(k,
1 − zxa
0
k=1
8

where
B−1
− Q(k, B)
Bk(k + 1)
B−2
1
B−1
+
+ ··· +
=
(Bk + B)(Bk + 1) (Bk + B)(Bk + 2)
(Bk + B)(Bk + B − 1)

e B) =
Q(k,

and the sequence {ak }∞
k=1 is defined in Theorem 7.
Proof. From Corollary 5 with l = 0, using the same method as in the proof of Theorem 7,
we get



Z 1
Z 1
BxB
x
x
1 − xB
BxB


F0 (z, x) =
G(z, xB ) dx
B
B
1

x
1

x
x
1

x
1

x
0
0
Z 1

X
B−1
B−1
=
(Bx
− (1 + x + · · · + x
))
ak xBk dx
0

=


X

ak

k=1

X

=−

k=1

Z

k=1

1

0

[(xBk+B−1 − xBk+B−2 ) + · · · + (xBk+B−1 − xBk+1 ) + (xBk+B−1 − xBk )] dx

e B).
ak Q(k,

Theorem 9. Let a, b, B be positive integers with B > 1, z ∈ C, |z| ≤ 1. Then for the
generalized Euler constant function γa,b (z) and its derivative, the following expansion is valid:
(l)
γa,b (z)

1
=
2

Z

0

1


X
xb+al−1 (1 − x)
PB (k)
dx +
,
ak,l
a
l+1
(1 − zx )
Bk(Bk + 1) · · · (Bk + B)
k=1

l = 0, 1,

where PB (k) is a polynomial of degree B − 2 given by (13), z 6= 1 if l = 1, and the sequence
{ak,l }∞
k=0 is defined by the generating function




1 X x(b+al)B (1 − xB ) X
Gl (z, x) =
=
ak,l xk ,
1 − x k=0 (1 − zxaB k )l+1
k=0
k

k

l = 0, 1.

(26)

Proof. Expanding Gl (z, x) in a power series of x,
Gl (z, x) =


∞ 
∞ X
X
m+l
k=0 m=0

l

k

z m x(b+al+am)B (1 + x + x2 + · · · + xB

9

k −1

),

we see that ak,l = O(k l lnB k). Therefore, for l = 0, 1, by termwise integration we get



Z 1
Z 1
B(1 + xB ) 1 + x
1 − xB B(1 + xB ) 1 + x
Fl (z, x)dx =
Gl (z, xB )dx


B
B
1

x
1

x
x
1

x
1

x
0
0
Z 1

X
2
B−1
B
=
[(B − 1) − 2x − 2x − · · · − 2x
+ (B − 1)x ]
ak,l xBk−1 dx
0

=


X

ak,l

k=1

X

=2

k=1



ak,l

k=1

2
2
2
B−1
B−1


− ··· −
+
Bk
Bk + 1 Bk + 2
Bk + B − 1 Bk + B

PB (k)
,
Bk(Bk + 1) · · · (Bk + B)

where PB (k) is defined in (13) and the last series converges since
Now our theorem easily follows from Corollary 6.

5



PB (k)
Bk(Bk+1)···(Bk+B)

= O(k −3 ).

Examples of rational series

It is easily seen that the generating function (26) satisfies the following functional equation:
Gl (z, x) −

xb+al
1 − xB
Gl (z, xB ) =
,
1−x
(1 − zxa )l+1

(27)

which is equivalent to the following identity for series:

X
k=0

k

ak,l x − (1 + x + · · · + x

B−1

)


X

ak,l x

Bk

k=0

=

∞  
X
k
k=l

l

z k−l xak+b .

Comparing coefficients of powers of x we get an alternative definition of the sequence {ak,l }∞
k=0
by means of the recursion
a0,l = a1,l = · · · = aal+b−1,l = 0
and for k ≥ al + b,
ak,l =

(
a⌊ k ⌋,l ,
B

a⌊ k ⌋,l +
B

(k−b)/a
l

 k−b −l
z a ,

if
if

k 6≡ b

k≡b

(mod a);
(mod a).

(28)


On the other hand, in view of Corollary 3, γa,b (z) and γa,b
(z) can be explicitly expressed
in terms of the Lerch transcendent, ψ-function and logarithm of the gamma function. This
allows us to sum the series in Theorems 7–9 in terms of these functions.

Example 10. Suppose that ω is a non-empty word over the alphabet {0, 1, . . . , B − 1}.
Then obviously ω is uniquely defined by its length |ω| and its size vB (ω) which is the value
of ω when interpreted as an integer in base B. Let Nω,B (k) be the number of (possibly
overlapping) occurrences of the block ω in the B-ary expansion of k. Note that for every
B and ω, Nω,B (0) = 0, since the B-ary expansion of zero is the empty word. If the word
10

ω begins with 0, but vB (ω) 6= 0, then in computing Nω,B (k) we assume that the B-ary
expansion of k starts with an arbitrary long prefix of 0’s. If vB (ω) = 0 we take for k the
usual shortest B-ary expansion of k.
Now we consider equation (27) with l = 0, z = 1
G(1, x) −

1 − xB
xb
G(1, xB ) =
1−x
1 − xa

(29)

and for a given non-empty word ω, set a = B |ω| in (29) and
(
B |ω| ,
if vB (ω) = 0;
b=
vB (ω),
if vB (ω) 6= 0.
Then by (28), it is easily seen that ak := ak,0 = Nω,B (k), k = 1, 2, . . . , and by Theorem 7,
we get another proof of the following statement (see [2, Sections 3, 4.2]).
Corollary 11. Let ω be a non-empty word over the alphabet {0, 1, . . . , B − 1}. Then
(

X
γB |ω| ,vB (ω) (1),
if vB (ω) 6= 0;
Nω,B (k)Q(k, B) =
γB |ω| ,B |ω | (1),
if vB (ω) = 0.
k=1
By Corollary 3, the right-hand side of the last equality can be calculated explicitly and
we have






(

vB (ω)+1
vB (ω)
vB (ω)
1
X
log Γ
− log Γ B |ω| − B |ω| ψ B |ω| , if vB (ω) 6= 0;
B |ω|
Nω,B (k)Q(k, B) =

γ
1
log Γ B |ω| + B |ω| − |ω| log B,
if vB (ω) = 0.
k=1
(30)
Corollary 12. Let ω be a non-empty word over the alphabet {0, 1, . . . , B − 1}. Then

X

Nω,B (k)PB (k)
Bk(Bk + 1) · · · (Bk + B)
k=1

 



vB (ω)
γB |ω| ,v (ω) (1) − 1|ω| ψ vB (ω)+1
− ψ B |ω|
,
|ω|
B
2B
B

=
γB |ω| ,B |ω | (1) − 1|ω| ψ 1|ω| − γ|ω| − 1 ,
2
2B
B
2B

if vB (ω) 6= 0;
if vB (ω) = 0.

Proof. The required statement easily follows from Theorem 9, Corollary 11 and the equality
Z

0

1



X
xb−1 (1 − x)
dx
=
1 − xa
k=0



1
1

ak + b ak + b + 1



1
=
a

 
 b 
b + 1
.
ψ
−ψ
a
a

From Theorem 7, (27) and (28) with a = 1, l = 0 we have

11

Corollary 13. Let b, B be positive integers with B > 1, z ∈ C, |z| ≤ 1. Then
γ1,b (z) =


X

ak Q(k, B) =

k=1


X

a⌊ k ⌋
B

k=1

ε(k)
,
k

where a0 = a1 = · · · = ab−1 = 0, ak = a⌊ k ⌋ + z k−b , k ≥ b.
B

Similarly, from Theorem 9 we have
Corollary 14. Let b, B be positive integers with B > 1, z ∈ C, |z| ≤ 1. Then




X
zk
1X
PB (k)
+
,
γ1,b (z) =
ak
2 k=0 (k + b)(k + b + 1) k=1 Bk(Bk + 1) · · · (Bk + B)
where a0 = a1 = · · · = ab−1 = 0, ak = a⌊ k ⌋ + z k−b , k ≥ b.
B

Example 15. If in Corollary 13 we take z = 1, then we get that ak is equal to the B-ary
length of ⌊ kb ⌋, i. e.,
j k
j k 
B−1
X
k
k
ak =
Nα,B
= LB
.
b
b
α=0
On the other hand,

γ1,b (1) = log b − ψ(b) = log b −
and hence we get

b−1
X
1
k=1

k



j k
k
log b − ψ(b) =
Q(k, B).
LB
b
k=1

X

If b = 1, formula (31) gives (16). If b > 1, then from (31) and (16) we get
j k

b−1
∞ 
X
k
1 X
LB
− LB (k) Q(k, B),
log b =
+
k k=1
b
k=1

(31)

(32)

which is equivalent to [5, Theorem 2.8]. Similarly, from Corollary 14 we obtain (17) and

b−1

X
1 b − 1 X LB (⌊ kb ⌋) − LB (k) PB (k)
log b =

+
.
(33)
k
2b
Bk(Bk + 1) · · · (Bk + B)
k=1
k=1
Example 16. Using the fact that for any integer B > 1,
j k
k
− LB (k) = −1,
LB
B

from (30), (16) and (32) we get the following rational series for log Γ(1/B) :
  B−1
∞ 

X1 X
1
1
=
+
log Γ
N0,B (k) − LB (k) − 1 Q(k, B).
B
k k=1
B
k=1
12

Example 17. Substituting b = 1, z = −1 in Corollary 13 we get the generalized Vacca
series for log π4 .
Corollary 18. Let B ∈ N, B > 1. Then




X
4 X
ε(k)
log =
,
ak Q(k, B) =
a⌊ k ⌋
B
π
k
k=1
k=1
where
a0 = 0,

ak = a⌊ k ⌋ + (−1)k−1 ,
B

k ≥ 1.

(34)

In particular, if B is even, then



X
Nodd,B (⌊ Bk ⌋) − Neven,B (⌊ Bk ⌋)
4 X
ε(k), (35)
(Nodd,B (k) − Neven,B (k))Q(k, B) =
log =
π
k
k=1
k=1
where Nodd,B (k) (respectively Neven,B (k)) is the number of occurrences of the odd (respectively
even) digits in the B-ary expansion of k.
Proof. To prove (35), we notice that if B is even, then the sequence e
ak := Nodd,B (k) −
Neven,B (k) satisfies recurrence (34).

Substituting b = 1, z = −1 in Corollary 14 with the help of (33) we get the generalized
Addison series for log π4 .

Corollary 19. Let B > 1 be a positive integer. Then


1 X LB (⌊ k2 ⌋) − LB (k) + ak PB (k)
4
,
log = +
π
4 k=1
Bk(Bk + 1) · · · (Bk + B)
where the sequence ak is defined in Corollary 18. In particular, if B is even, then


1 X LB (⌊ k2 ⌋) − 2Neven,B (k) PB (k)
4
.
log = +
π
4 k=1
Bk(Bk + 1) · · · (Bk + B)
Example 20. For t > 1, the generalized Somos constant σt is defined by
r q

Y

t
t
2
3
n
t
n1/t
σt = 1 2 3 · · · = 11/t 21/t 31/t · · · =
n=1

(see [25, Section 3]). In view of the relation [25, Theorem 8]
 
t
1
= t log
γ1,1
,
t
(t − 1)σtt−1
by Corollary 13 and formula (32) we get
13

(36)

Corollary 21. Let B ∈ N, B > 1, t ∈ R, t > 1. Then
∞ 
j k k
j k k a 
1
1 X
k
log σt =
+
Q(k, B),
LB
− LB

2
(t − 1)
t − 1 k=1
t
t−1
t
where a0 = 0, ak = a⌊ k ⌋ + t1−k , k ≥ 1.
B

In particular, setting B = t = 2 we get the following rational series for Somos’s quadratic
recurrence constant:

bk
1X
log σ2 = 1 −
,
2 k=1 2k(2k + 1)

1
where b1 = 3, bk = b⌊ k ⌋ + 2k−1
, k ≥ 2.
2
From (36), (33) and Theorem 9 we find

Corollary 22. Let B ∈ N, B > 1, t ∈ R, t > 1. Then
3t − 1
4t(t − 1)2

∞ 
j k k
j k k
PB (k)
t+1 X
2ak
LB
+
,
− LB

2(t − 1) k=1
t
t−1
t(t + 1) Bk(Bk + 1) · · · (Bk + B)

log σt =

where the sequence ak is defined in Corollary 21.
In particular, if B = t = 2 we get


ck
5 1X
,
log σ2 = −
8 2 k=1 2k(2k + 1)(2k + 2)
where c1 = 4, ck = c⌊ k ⌋ +
2

1
,
2k−1

k ≥ 2.

Example 23. The Glaisher-Kinkelin constant is defined by the limit [11, p.135]
A := lim

n→∞

n

12 22 · · · nn

n2 +n
1
+ 12
2

e−

n2
4

= 1.28242712 · · · .

Its connection to the generalized Euler constant function γa,b (z) is given by the formula [25,
Corollary 4]
211/6 A6

γ1,1
(−1) = log 3/2 .
(37)
π e
By Theorem 9, since
Z 1
x(1 − x)
dx = 3 log 2 − 2,
2
0 (1 + x)
we have



log A =

4
PB (k)
1
4 1X
ak,1
log 2 − log +
,
9
4
π 6 k=1
Bk(Bk + 1) · · · (Bk + B)
14

where the sequence ak,1 is defined by the generating function (26) with a = b = l = 1,
z = −1, or using the recursion (28):
ak,1 = a⌊ k ⌋,1 + (−1)k (k − 1),

a0,1 = a1,1 = 0,

B

k ≥ 2.

Now by Corollary 19 and (33) we get
Corollary 24. Let B > 1 be a positive integer. Then

∞ 
j k k
13
PB (k)
1 X
log A =
7LB (k) − 7LB

,
+ bk
48 36 k=1
2
Bk(Bk + 1) · · · (Bk + B)
where b0 = 0, bk = b⌊ k ⌋ + (−1)k−1 (6k + 3), k ≥ 1.
B

In particular, if B = 2 we get


log A =

ck
1 X
13

,
48 36 k=1 2k(2k + 1)(2k + 2)

where c1 = 16, ck = c⌊ k ⌋ + (−1)k−1 (6k + 3), k ≥ 2.
2

Using the formula expressing

ζ ′ (2)
π2

in terms of the Glaisher-Kinkelin constant [11, p. 135],

log A = −

ζ ′ (2) log 2π + γ
+
,
π2
12

by Corollaries 14, 19 and 24, we get
Corollary 25. Let B > 1 be a positive integer. Then

∞ 
j k k
1 X
1
ζ ′ (2)
PB (k)
4LB (k) − LB
,
=− +
+ ck
2
π
16 36 k=1
2
Bk(Bk + 1) · · · (Bk + B)
where c0 = 0, ck = c⌊ k ⌋ + (−1)k−1 6k, k ≥ 1.
B

(l)

Example 26. First we evaluate γ2,1 (−1) for l = 0, 1. From Corollaries 2, 3 and [12, Examples
3.9, 3.15] we have
Z 1Z 1
1

π
(x − 1) dxdy
=

2
log
Γ
+
log
γ2,1 (−1) =
2π 3
2 2
4
4
0 (1 + x y ) log xy
0
and
1
1
1 ∂Φ

γ2,1
(−1) = − Φ(−1, 1, 3/2) + Φ(−1, 0, 3/2) +
(−1, 0, 3/2)
4
2
2 ∂s
∂Φ
∂Φ
∂Φ

(−1, −1, 3/2) −
(−1, 0, 2) +
(−1, −1, 2).
∂s
∂s
∂s
15

The last expression can be evaluated explicitly (see [12, Section 2]) and we get

γ2,1
(−1)

or

1
G π
1
= + − log Γ
− 3 log A + log π + log 2,
π
8
4
3

1
1
4
7
G

= γ2,1
(−1) − γ2,1 (−1) + log + 3 log A −
log 2.
π
2
4
π
12
On the other hand, by Theorem 9 and (28) we have
γ2,1 (−1) =


X
PB (k)
π 1
− log 2 +
,
ak,0
8 4
Bk(Bk
+
1)
·
·
·
(Bk
+
B)
k=1

(38)

(39)

where a0,0 = 0, a2k,0 = a⌊ 2k ⌋,0 , k ≥ 1, a2k+1,0 = a⌊ 2k+1 ⌋,0 + (−1)k , k ≥ 0, and
B


γ2,1
(−1)

B


X
1
π
PB (k)
− log 2 +
,
=
ak,1
16 4
Bk(Bk + 1) · · · (Bk + B)
k=1

(40)

where a0,1 = 0, a2k,1 = a⌊ 2k ⌋,1 , k ≥ 1, a2k+1,1 = a⌊ 2k+1 ⌋,1 + (−1)k−1 k, k ≥ 0. Now from (38) –
B
B
(40), (33) and Corollary 19 we get the following expansion for G/π.
Corollary 27. Let B > 1 be a positive integer. Then


11 X
G
=
+
π
32 k=1



1 j k k 1
LB
− LB (k) + ck
8
2
8



where c0 = 0, c2k = c⌊ 2k ⌋ + k, k ≥ 1, c2k+1 = c⌊ 2k+1 ⌋ +
B

B

PB (k)
,
Bk(Bk + 1) · · · (Bk + B)

(−1)k−1 −1
(2k
2

+ 1), k ≥ 0.

In particular, if B = 2 we get


11 X
bk
G
=
+
,
π
32 k=1 2k(2k + 1)(2k + 2)
where b1 = − 89 , b2k = bk + k, b2k+1 = bk +

6

(−1)k−1 −1
(2k
2

+ 1), k ≥ 1.

Other generalized Euler constants

The purpose of this section is to draw attention to different generalizations of Euler’s constant
for which many interesting results remain to be discovered.
The simplest way to generalize Euler’s constant
!
n
X
1
− log n ,
(41)
γ = lim
n→∞
k
k=1
16

which is related to the digamma function by the equality γ = −ψ(1), is to consider for
0 < α ≤ 1,
!
!
n
n
X
X
1
1
γ(α) = lim
− log n = lim
− log(n + α) .
n→∞
n→∞
k
+
α
k
+
α
k=1
k=1
Tasaka [27] proved that γ(α) = −ψ(α). Its connection to the generalized Euler constant
function γa,b (z) is given by the formula
γ(α) + log α = γ1,α (1).
Briggs [6] and Lehmer [20] studied the analog of γ corresponding to the arithmetical progression of positive integers r, r + m, r + 2m, . . . , (r ≤ m) :


1
γ(r, m) = lim H(n, r, m) − log n ,
n→∞
m
P
P
1
1
. Since H(n, r, m) =
, it is easily seen that
where H(n, r, m) =
k
r+mk
0

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52