Paper-27-20-2009. 90KB Jun 04 2011 12:03:13 AM

ACTA UNIVERSITATIS APULENSIS

No 20/2009

A SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY
DIFFERENTIAL SĂLĂGEAN OPERATOR
Alina Alb Lupaş
Abstract. By means of the Sălăgean differential operator we define a new class
BS(p, m, µ, α) involving functions f ∈ A (p, n). Parallel results, for some related
classes including the class of starlike and convex functions respectively, are also
obtained.
2000 Mathematics Subject Classification: 30C45
1. Introduction and definitions
Denote by U the unit disc of the complex plane, U = {z ∈ C : |z| < 1} and
H(U ) the space of holomorphic functions in U .
Let

P
aj z j , z ∈ U },
(1)
A (p, n) = {f ∈ H(U ) : f (z) = z p +

j=p+n

with A (1, n) = An and

H[a, n] = {f ∈ H(U ) : f (z) = a + an z n + an+1 z n+1 + . . . , z ∈ U },
where p, n ∈ N, a ∈ C.
Let S denote the subclass of functions that are univalent in U .
By Sn∗ (p, α) we denote a subclass of A (p, n) consisting of p-valently starlike
functions of order α, 0 ≤ α < p which satisfies
 ′ 
zf (z)
Re
> α, z ∈ U.
(2)
f (z)

Further, a function f belonging to S is said to be p-valently convex of order α
in U , if and only if

 ′′

zf (z)
+ 1 > α, z ∈ U
(3)
Re
f ′ (z)
for some α, (0 ≤ α < p) . We denote by Kn (p, α) the class of functions in S which
are p-valently convex of order α in U and denote by Rn (p, α) the class of functions
in A (p, n) which satisfy
Re f ′ (z) > α, z ∈ U.
(4)
259

A. Alb Lupaş - A subclass of analytic functions defined by differential...

It is well known that Kn (p, α) ⊂ Sn∗ (p, α) ⊂ S.
If f and g are analytic functions in U , we say that f is subordinate to g, written
f ≺ g, if there is a function w analytic in U , with w(0) = 0, |w(z)| < 1, for all z ∈ U
such that f (z) = g(w(z)) for all z ∈ U . If g is univalent, then f ≺ g if and only if
f (0) = g(0) and f (U ) ⊆ g(U ).
Let Dm be the Sălăgean differential operator [7], Dm : A (p, n) → A (p, n), n ∈ N,

m ∈ N ∪ {0}, defined as
D0 f (z) = f (z)
D1 f (z) = Df (z) = zf ′ (z)
′
Dm f (z) = D(Dm−1 f (z)) = z Dm−1 f (z) ,

z ∈ U.

We note that if f ∈ A (p, n), then

Dm f (z) = z p +


P

j m aj z j , z ∈ U.

j=n+p

To prove our main theorem we shall need the following lemma.

Lemma 1 [6] Let u be analytic in U with u(0) = 1 and suppose that


zu′ (z)
3α − 1
Re 1 +
>
, z ∈ U.
u(z)

Then Re u(z) > α for

(5)

z ∈ U and 1/2 ≤ α < 1.
2. Main results

Definition 1 We say that a function f ∈ A (p, n) is in the class BS(p, m, µ, α),
p, n ∈ N, m ∈ N ∪ {0}, µ ≥ 0, α ∈ [0, 1) if



Dm+1 f (z)  z p µ




p
z ∈ U.
(6)

< p − α,


zp
Dm f (z)

Remark 1 The family BS(p, m, µ, α) is a new comprehensive class of analytic functions which includes various new classes of analytic univalent functions as well as
some very well-known ones. For example, BS(1, 0, 1, α)≡Sn∗ (1, α) , BS(1, 1, 1, α)≡Kn (1, α)
and BS(1, 0, 0, α)≡Rn (1, α). Another interesting subclass is the special case BS(1, 0, 2, α)≡B (α)
which has been introduced by Frasin and Darus [5] and also the class BS(1, 0, µ, α) ≡

B(µ, α) which has been introduced by Frasin and Jahangiri [6].

260

A. Alb Lupaş - A subclass of analytic functions defined by differential...

In this note we provide a sufficient condition for functions to be in the class
BS(p, m, µ, α). Consequently, as a special case, we show that convex functions of
order 1/2 are also members of the above defined family.
Theorem 2 For the function f ∈ A (p, n) , p, n ∈ N, m ∈ N ∪ {0}, µ ≥ 0, 1/2 ≤
α < 1 if
Dm+2 f (z)
Dm+1 f (z)

µ
+ p (µ − 1) + 1 ≺ 1 + βz, z ∈ U,
Dm+1 f (z)
Dm f (z)
where
β=


3α − 1
,


(7)

(8)

then f ∈ BS(p, m, µ, α).
Proof. If we consider
Dm+1 f (z)
u(z) =
zp



zp
Dm f (z)




,

(9)

then u(z) is analytic in U with u(0) = 1. A simple differentiation yields
Dm+2 f (z)
Dm+1 f (z)
zu′ (z)
= m+1
−µ m
+ p (µ − 1) .
u(z)
D
f (z)
D f (z)

(10)


Using (7) we get

zu′ (z)
3α − 1
>
.
Re 1 +
u(z)

Thus, from Lemma 1 we deduce that
(

µ )
Dm+1 f (z)
zp
Re
> α.
zp
Dm f (z)



(11)

(12)

Therefore, f ∈ BS(p, m, µ, α), by Definition 1.
As a consequence of the above theorem we have the following interesting corollaries.
Corollary 3 If f ∈ An and


2zf ′′ (z) + z 2 f ′′′ (z) zf ′′ (z)
1
Re

>− ,
f ′ (z) + zf ′′ (z)
f ′ (z)
2
then




1
zf ′′ (z)
> ,
Re 1 + ′
f (z)
2

That is, f is convex of order 12 .

261

z ∈ U.

z ∈ U,

(13)

(14)

A. Alb Lupaş - A subclass of analytic functions defined by differential...

Corollary 4 [1] If f ∈ An and

 2 ′′
1
2z f (z) + z 3 f ′′′ (z)
>− ,
Re

2
′′
zf (z) + z f (z)
2
then


1
Re f ′ (z) + zf ′′ (z) > ,
2

Corollary 5 [1] If f ∈ An and


1
zf ′′ (z)
Re 1 + ′
> ,
f (z)
2

z ∈ U,

z ∈ U.

z ∈ U,

(15)

(16)

(17)

then

1
Re f ′ (z) > , z ∈ U.
2
In another
 words, if the function f is convex of order
Rn 1, 12 .
Corollary 6 [1] If f ∈ An and

 ′′
3
zf (z) zf ′ (z)

>− ,
Re

f (z)
f (z)
2

(18)
1
2,

then f ∈ BS(1, 0, 0, 12 ) ≡

z ∈ U,

(19)

then f is starlike of order 12 .

References
[1] A. Alb Lupaş, A subclass of analytic functions defined by Ruscheweyh derivative, Acta Universitatis Apulensis, nr. 19/2009, 31-34.
[2] A. Cătaş and A. Alb Lupaş, On a subclass of analytic functions defined by differential Sălăgean operator, Analele Universităţii din Oradea, Fascicola Matematica,
(to appear).
[3] A. Cătaş and A. Alb Lupaş, A note on a subclass of analytic functions defined by differential Sălăgean operator, Buletinul Academiei de Ştiinţe a Republicii
Moldova, (to appear).
[4]A. Cătaş and A. Alb Lupaş, On sufficient conditions for certain subclass of
analytic functions defined by differential Sălăgean operator, International Journal of
Open Problem in Complex Analysis, Vol. 1, No. 2, 14-18.
[5] B.A. Frasin and M. Darus, On certain analytic univalent functions, Internat.
J. Math. and Math. Sci., 25(5), 2001, 305-310.
262

A. Alb Lupaş - A subclass of analytic functions defined by differential...

[6] B.A. Frasin and Jay M. Jahangiri, A new and comprehensive class of analytic
functions, Analele Universităţii din Oradea, Tom XV, 2008, 61-64.
[7] G. St. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math.,
Springer Verlag, Berlin, 1013(1983), 362-372.
Alb Lupaş Alina
Department of Mathematics
University of Oradea
str. Universităţii nr. 1, 410087, Oradea, Romania
email: [email protected]

263

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52