sigma10-084. 280KB Jun 04 2011 12:10:44 AM

Symmetry, Integrability and Geometry: Methods and Applications

SIGMA 6 (2010), 084, 16 pages

Hypergeometric τ Functions
of the q-Painlev´
e Systems of Type (A2 + A1)(1)
Nobutaka NAKAZONO
Graduate School of Mathematics, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan
E-mail: n-nakazono@math.kyushu-u.ac.jp
URL: http://researchmap.jp/nakazono/
Received August 17, 2010, in final form October 08, 2010; Published online October 14, 2010
doi:10.3842/SIGMA.2010.084
Abstract. We consider a q-Painlev´e III equation and a q-Painlev´e II equation arising from
a birational representation of the affine Weyl group of type (A2 + A1 )(1) . We study their
hypergeometric solutions on the level of τ functions.
Key words: q-Painlev´e system; hypergeometric function; affine Weyl group; τ function
2010 Mathematics Subject Classification: 33D05; 33D15; 33E17; 39A13

1


Introduction

We consider a q-analog of the Painlev´e III equation (q-PIII ) [8, 12, 13, 32]
gn+1 =

q 2N +1 c2 1 + a0 q n fn
,
fn gn a0 q n + fn

fn+1 =

q 2N +1 c2 1 + a2 a0 q n−m gn+1
,
fn gn+1 a2 a0 q n−m + gn+1

(1.1)

and that of the Painlev´e II equation (q-PII ) [12, 30, 20]
Xk+1 =


q 2N +1 c2 1 + a0 q k/2 Xk
,
Xk Xk−1 a0 q k/2 + Xk

(1.2)

for the unknown functions fn = fn (m, N ), gn = gn (m, N ), and Xk = Xk (N ) and the independent variables n, k ∈ Z. Here m, N ∈ Z and a0 , a2 , c, q ∈ C× are parameters. These equations
arise from a birational representation of the (extended) affine Weyl group of type (A2 + A1 )(1) .
Note that substituting
m = 0,

a2 = q 1/2 ,

and putting
fk (0, N ) = X2k (N ),

gk (0, N ) = X2k−1 (N ),

in (1.1) yield (1.2). This procedure is called a symmetrization of (1.1), which comes from the
terminology used for Quispel–Roberts–Thompson (QRT) mappings [28, 29].

It is well known that the τ functions play a crucial role in the theory of integrable systems [19],
and it is also possible to introduce them in the theory of Painlev´e systems [5, 6, 7, 13, 21, 22,
24, 25, 26, 27]. A representation of the affine Weyl groups can be lifted on the level of the
τ functions [10, 11, 33], which gives rise to various bilinear equations of Hirota type satisfied
the τ functions.
The hypergeometric solutions of various Painlev´e and discrete Painlev´e systems are expressible in the form of ratio of determinants whose entries are given by hypergeometric type functions.

2

N. Nakazono

Usually, they are derived by reducing the bilinear equations to the Pl¨
ucker relations by using the
contiguity relations satisfied by the entries of determinants [2, 3, 4, 8, 9, 13, 14, 15, 16, 20, 23, 31].
This method is elementary, but it encounters technical difficulties for Painlev´e systems with large
symmetries. In order to overcome this difficulty, Masuda has proposed a method of constructing
hypergeometric solutions under a certain boundary condition on the lattice where the τ functions
live (hypergeometric τ functions), so that they are consistent with the action of the affine Weyl
groups. Although this requires somewhat complex calculations, the merit is that it is systematic
and that it can be applied to the systems with large symmetries. Masuda has carried out the

(1)
(1)
calculations for the q-Painlev´e systems with E7 and E8 symmetries [17, 18] and presented
explicit determinant formulae for their hypergeometric solutions.
The purpose of this paper is to apply the above method to the q-Painlev´e systems with the
affine Weyl group symmetry of type (A2 + A1 )(1) and present the explicit formulae of the hypergeometric τ functions. The hypergeometric τ functions provide not only determinant formulae
but also important information originating from the geometry of lattice of the τ functions. The
result has been already announced in [12] and played an essential role in clarifying the mechanism
of reduction from hypergeometric solutions of (1.1) to those of (1.2).
This paper is organized as follows: in Section 2, we first review hypergeometric solutions of
q-PIII and then those of q-PII . We next introduce a representation of the affine Weyl group of
type (A2 + A1 )(1) . In Section 3, we construct the hypergeometric τ functions of q-PIII and those
of q-PII . We find that the symmetry of the hypergeometric τ functions of q-PIII are connected
with Heine’s transform of the basic hypergeometric series 2 ϕ1 .
We use the following conventions of q-analysis throughout this paper [1].
q-Shifted factorials:
(a; q)k =

k
Y

i=1


1 − aq i−1 .

Basic hypergeometric series:

 X

1+r−s n
(a1 , . . . , as ; q)n 
a1 , . . . , as
z ,
; q, z =
(−1)n q n(n−1)/2
s ϕr
b1 , . . . , br
(b1 , . . . , br ; q)n (q; q)n
n=0


where

(a1 , . . . , as ; q)n =

s
Y
(ai ; q)n .
i=1

Jacobi theta function:
Θ(a; q) = (a; q)∞ qa−1 ; q
Elliptic gamma function:
Γ(a; p, q) =





.


(pqa−1 ; p, q)∞
,
(a; p, q)∞

where
(a; p, q)k =

k−1
Y

i,j=0


1 − pi q j a .

It holds that
Θ(qa; q) = −a−1 Θ(a; q),

Γ(qa; q, q) = Θ(a; q)Γ(a; q, q).


Hypergeometric τ Functions of the q-Painlev´e Systems of Type (A2 + A1 )(1)

2

3

q-PIII and q-PII

2.1

Hypergeometric solutions of q-PIII and q-PII

First, we review the hypergeometric solutions of q-PIII and q-PII . The hypergeometric solutions
of q-PIII have been constructed as follows:
Proposition 2.1 ([8]). The hypergeometric solutions of q-PIII , (1.1), with c = 1 are given by
fn = −a0 q

n

n,m−1 n,m

ψN
+1 ψN
n,m n,m−1
ψN
+1 ψN

,

gn = a0

n,m
where ψN
(N ∈ Z≥0 ) is an N × N

Fn,m
Fn+1,m

Fn−1,m
Fn,m


n,m
ψN
=
..
..

.
.

Fn−N +1,m Fn−N +2,m

−1

a2 q

−n−m+1

n,m n−1,m−1
ψN
+1 ψN

n−1,m−1 n,m
ψN
ψN
+1

,

determinant defined by

· · · Fn+N −1,m
· · · Fn+N −2,m
ψ0n,m = 1,
,
..
..

.
.

···
Fn,m

and Fn,m is an arbitrary solution of the systems
Fn+1,m − Fn,m = −a0 2 q 2n Fn,m−1 ,
Fn,m+1 − Fn,m = −a2

−2 2m+2

q

Fn−1,m .

(2.1)
(2.2)

The general solution of (2.1) and (2.2) is given by
Fn,m



An,m
0
2
2 2 2n−2m
=
; q , a2 a0 q
1 ϕ1
a2 2 q −2m
(a2 −2 q 2m+2 ; q 2 )∞


Θ(a0 2 a2 2 q 2n−2m−2 ; q 2 )
0
2
2 2n+2
,
; q , a0 q
+ Bn,m
1 ϕ1
a2 −2 q 2m+4
(a2 2 q −2m−2 ; q 2 )∞ Θ(a0 2 q 2n ; q 2 )

(2.3)

where An,m and Bn,m are periodic functions of period one with respect to n and m, i.e.,
An,m = An+1,m = An,m+1 ,

Bn,m = Bn+1,m = Bn,m+1 .

The explicit form of the hypergeometric solutions of q-PII are given as follows:
Proposition 2.2 ([20]). The hypergeometric solutions of q-PII , (1.2), with c = 1 are given by
Xk = −a0 q

k/2+N

φkN +1 φk−1
N
k
φk−1
N +1 φN

,

where φkN (N ∈ Z≥0 ) is an N × N determinant defined by


Gk
Gk−1
· · · Gk−N +1

Gk+2
Gk+1
· · · Gk−N +3

φkN =
φk0 = 1,
,
..
..
..
..


.
.
.
.


Gk+2N −2 Gk+2N −3 · · · Gk+N −1

(2.4)

(2.5)

and Gk is an arbitrary solution of the system
Gk+1 − Gk + a0 −2 q −k Gk−1 = 0.

(2.6)

4

N. Nakazono
The general solution of (2.6) is given by


0
1/2
(3+2k)/4
(2k+1)/4 1/2
; q , −ia0 q
Gk = Ak Θ(ia0 q
; q ) 1 ϕ1
−q 1/2


0
1/2
(3+2k)/4
(2k+1)/4 1/2
; q , ia0 q
,
+ Bk Θ(−ia0 q
; q ) 1 ϕ1
−q 1/2

(2.7)

where Ak and Bk are periodic functions of period one, i.e.,
Ak = Ak+1 ,

2.2

Bk = Bk+1 .

Projective reduction from q-PIII and q-PII

We formulate the family of B¨
acklund transformations of q-PIII and q-PIV as a birational representation of the affine Weyl group of type (A2 + A1 )(1) . Here, q-PIV is a q-analog of the
Painlev´e IV equation discussed in [13]. We refer to [21] for basic ideas of this formulation.
We define the transformations si (i = 0, 1, 2) and π on the variables fj (j = 0, 1, 2) and
parameters ak (k = 0, 1, 2) by
!uij
a
+
f
i
i
si (fj ) = fj
si (aj ) = aj ai −aij ,
,
1 + ai fi
π(ai ) = ai+1 ,

π(fi ) = fi+1 ,

for i, j ∈ Z/3Z. Here the symmetric 3 × 3 matrix


2 −1 −1
A = (aij )2i,j=0 =  −1 2 −1  ,
−1 −1 2
(1)

is the Cartan matrix of type A2 , and the skew-symmetric one


0
1 −1
1 ,
U = (uij )2i,j=0 =  −1 0
1 −1 0

represents an orientation of the corresponding Dynkin diagram. We also define the transformations wj (j = 0, 1) and r by
ai ai+1 (ai−1 ai + ai−1 fi + fi−1 fi )
,
fi−1 (ai ai+1 + ai fi+1 + fi fi+1 )
1 + ai fi + ai ai+1 fi fi+1
,
w1 (fi ) =
ai ai+1 fi+1 (1 + ai−1 fi−1 + ai−1 ai fi−1 fi )
1
r(fi ) = ,
fi

w0 (fi ) =

w0 (ai ) = ai ,
w1 (ai ) = ai ,
r(ai ) = ai ,

for i ∈ Z/3Z.
Proposition 2.3 ([13]). The group of birational transformations hs0 , s1 , s2 , π, w0 , w1 , ri forms
f ((A2 + A1 )(1) ). Namely, the transforthe affine Weyl group of type (A2 + A1 )(1) , denoted by W
mations satisfy the fundamental relations
si 2 = (si si+1 )3 = π 3 = 1,

w0 2 = w1 2 = r2 = 1,

πsi = si+1 π

(i ∈ Z/3Z),

rw0 = w1 r,

f (A(1) ) = hs0 , s1 , s2 , πi and that of W
f (A(1) ) = hw0 , w1 , ri commute with each
and the action of W
2
1
other.

Hypergeometric τ Functions of the q-Painlev´e Systems of Type (A2 + A1 )(1)

5

f ((A2 + A1 )(1) ) act as
In general, for a function F = F (ai , fj ), we let an element w ∈ W
w.F (ai , fj ) = F (ai .w, fj .w), that is, w acts on the arguments from the right. Note that a0 a1 a2 =
f ((A2 + A1 )(1) ) and W
f (A(1) ), respectively.
q and f0 f1 f2 = qc2 are invariant under the action of W
2
We define the translations Ti (i = 1, 2, 3, 4) by
T1 = πs2 s1 ,

T2 = s1 πs2 ,

T3 = s2 s1 π,

T4 = rw0 ,

(2.8)

whose action on parameters ai (i = 0, 1, 2) and c is given by

T1 : (a0 , a1 , a2 , c) 7→ qa0 , q −1 a1 , a2 , c ,
T2 : (a0 , a1 , a2 , c) 7→ (a0 , qa1 , q −1 a2 , c),

T3 : (a0 , a1 , a2 , c) 7→ q −1 a0 , a1 , qa2 , c ,

T4 : (a0 , a1 , a2 , c) 7→ (a0 , a1 , a2 , qc).

Note that Ti (i = 1, 2, 3, 4) commute with each other and T1 T2 T3 = 1. The action of T1 on the
f -variables can be expressed as
T1 (f1 ) =

qc2 1 + a0 f0
,
f1 f0 a0 + f0

T1 (f0 ) =

qc2 1 + a2 a0 T1 (f1 )
.
f0 T1 (f1 ) a2 a0 + T1 (f1 )

(2.9)

Or, applying T1 n T2 m T4 N (n, m, N ∈ Z) on (2.9) and putting
n,m
fi,N
= T1 n T2 m T4 N (fi )

(i = 0, 1, 2),

we obtain
n+1,m
f1,N

n,m
q 2N +1 c2 1 + a0 q n f0,N
= n,m n,m
n,m ,
f1,N f0,N a0 q n + f0,N

n+1,m
f0,N

=

q 2N +1 c2

n+1,m
1 + a2 a0 q n−m f1,N

n,m n+1,m
n+1,m
f0,N
a2 a0 q n−m + f1,N
f1,N

,

which is equivalent to q-PIII . Then T1 and Ti (i = 2, 4) are regarded as the time evolution and

acklund transformations of q-PIII , respectively. We here note that we also obtain q-PIV by
identifying T4 as a time evolution [13].
In order to formulate the symmetrization to q-PII , it is crucial to introduce the transformation R1 defined by
R1 = π 2 s1 ,

(2.10)

which satisfies
R1 2 = T 1 .
Considering the projection of the action of R1 on the line a2 = q 1/2 , we have
R1 : (a0 , a1 , c) 7→ (q 1/2 a0 , q −1/2 a1 , c),
R1 (f0 ) =

qc2 1 + a0 f0
,
f0 f1 a0 + f0

R1 (f1 ) = f0 .

Applying R1 k T4 N on (2.11) and putting
k
fi,N
= R1 k T4 N (fi )

(i = 0, 1, 2),

we have
k+1
f0,N
=

k
q 2N +1 c2 1 + a0 q k/2 f0,N
k f k−1 a q k/2 + f k
f0,N
0
0,N
0,N

,

(2.11)

6

N. Nakazono

which is equivalent to q-PII . Then R1 and T4 are regarded as the time evolution and a B¨
acklund
transformation of q-PII , respectively.
In general, we can derive various discrete Painlev´e systems from elements of infinite order
of affine Weyl groups that are not necessarily translations by taking a projection on a certain
subspace of the parameter space. We call such a procedure a projective reduction [12]. The
symmetrization is a kind of the projective reduction.

2.3

f ((A2 + A1 )(1) ) on the τ function
Birational representation of W

We introduce the new variables τi and τ i (i ∈ Z/3Z) by letting
fi = q 1/3 c2/3

τ i+1 τi−1
,
τi+1 τ i−1

and lift a representation to the affine Weyl group on their level:
Proposition 2.4 ([33]). We define the action of si (i = 0, 1, 2), π, wj (j = 0, 1), and r on τk
and τ k (k = 0, 1, 2) by the following formulae:
ui τi+1 τ i−1 + τ i+1 τi−1
,
ui 1/2 τ i
vi τ i+1 τi−1 + τi+1 τ i−1
si (τ i ) =
,
vi 1/2 τi
π(τi ) = τi+1 ,
si (τi ) =

w0 (τ i ) =

si (τj ) = τj (i 6= j),
si (τ j ) = τ j (i 6= j),
π(τ i ) = τ i+1 ,

ai+1 1/3 (τ i τi+1 τi+2 + ui−1 τi τ i+1 τi+2 + ui+1 −1 τi τi+1 τ i+2 )
,
ai+2 1/3 τ i+1 τ i+2

ai+1 1/3 (τi τ i+1 τ i+2 + vi−1 τ i τi+1 τ i+2 + vi+1 −1 τ i τ i+1 τi+2 )
,
ai+2 1/3 τi+1 τi+2
r(τi ) = τ i ,
w1 (τi ) =

w0 (τi ) = τi ,
w1 (τ i ) = τ i ,
r(τ i ) = τi ,

with
ui = q −1/3 c−2/3 ai ,

vi = q 1/3 c2/3 ai ,

f ((A2 + A1 )(1) ).
where i, j ∈ Z/3Z. Then, hs0 , s1 , s2 , π, w0 , w1 , ri forms the affine Weyl group W
n,m
We define the τ function τN
(n, m, N ∈ Z) by
n,m
τN
= T1 n T2 m T4 N (τ1 ).

We note that
τ0 = τ0−1,0 ,

τ1 = τ00,0 ,

τ2 = τ00,1 ,

τ 1 = τ10,0 ,

τ 0 = τ1−1,0 ,

τ 2 = τ10,1 , (2.12)

and
n,m
f0,N
n,m
f2,N

=q

(2N +1)/3 2/3

=q

(2N +1)/3 2/3

c

c

n,m n,m+1
τN
+1 τN
n,m n,m+1
τN
τN +1
n−1,m n,m
τN
+1 τN
n−1,m n,m
τN
τN +1

,
.

n,m
f1,N

=q

(2N +1)/3 2/3

c

n,m+1 n−1,m
τN
+1 τN
n,m+1 n−1,m
τN
τN +1

,

Hypergeometric τ Functions of the q-Painlev´e Systems of Type (A2 + A1 )(1)

7

Let us consider the τ functions for q-PII . We set
k
τN
= R1 k T4 N (τ1 ).

Note that
τ0 = τ0−2 ,

τ1 = τ00 ,

τ2 = τ0−1 ,

τ 0 = τ1−2 ,

τ 1 = τ10 ,

τ 2 = τ1−1 ,

(2.13)

and
k
= q (2N +1)/3 c2/3
f0,N

k−1
k
τN
+1 τN
k τ k−1
τN
N +1

.

In general, it follows that
n,0
2n
τN
,
= τN

n,1
2n−1
τN
= τN
.

For convenience, we introduce αi , γ, and Q by
αi 6 = ai ,

3

γ 6 = c,

Q6 = q.

Hypergeometric τ functions of the q-Painlev´
e systems
(1)
of type (A2 + A1 )

In this section, we construct the hypergeometric τ functions of q-PIII and q-PII . We define the
n,m
hypergeometric τ functions of q-PIII by τN
consistent with the action of hT1 , T2 , T3 , T4 i. We
k consistent with the action of hR , T i.
also define the hypergeometric τ functions of q-PII by τN
1 4
Here, we mean τ (α) consistent with a action of transformation r as
r.τ (α) = τ (α.r).
n,m
We then regard τN
as function in α0 and α2 , i.e.,
n,m
0,0
τN
= τN
(Qn α0 , Q−m α2 ).
k as function in α , i.e.,
We also regard τN
0
k
0
τN
= τN
(Qk/2 α0 ).

3.1

Hypergeometric τ functions of q-PIII

We construct the hypergeometric τ functions of q-PIII . By the action of the affine Weyl group,
n,m
τN
is determined as a rational function in τ0n,m and τ1n,m (or τi and τ i ). Thus, our purpose is
n,m
determining τ0n,m and τ1n,m consistent with the action of hT1 , T2 , T3 , T4 i and constructing τN
under the condition
γ = 1,

(3.1)

and the boundary condition
n,m
τN
=0

(N < 0).

(3.2)

First we consider the condition for τ0n,m which follows from the boundary condition (3.2).
We use the bilinear equations obtained in [12]:

8

N. Nakazono

Proposition 3.1. The following bilinear equations hold:
n,m n,m
n,m 2
n,m+1 n,m−1
4n−8m+4
τN
α1 −4 α2 4 τN
− Qn−2m+1 α1 −1 α2 τN
τN
= 0,
+1 τN −1 + Q
n,m n,m
n,m 2
4n+4m
4
−4
n+m
−1 n+1,m+1 n−1,m−1
τN +1 τN −1 + Q
α0 α2
τN
−Q
α0 α2 τN
τN
= 0,
n,m n,m
n,m 2
n+1,m n−1,m
−8n+4m−4
−4
4
−2n+m−1
−1
τN +1 τN −1 + Q
α0 α1 τN
−Q
α0 α1 τN
τN
= 0.

(3.3)
(3.4)
(3.5)

By putting N = 0 in (3.3)–(3.5), we get
2

Q4n−8m+4 α1 −4 α2 4 (τ0n,m ) − Qn−2m+1 α1 −1 α2 τ0n,m+1 τ0n,m−1 = 0,
2

(3.6)

Q4n+4m α0 4 α2 −4 (τ0n,m ) − Qn+m α0 α2 −1 τ0n+1,m+1 τ0n−1,m−1 = 0,

(3.7)

2
Q−8n+4m−4 α0 −4 α1 4 (τ0n,m )

(3.8)



Q−2n+m−1 α0 −1 α1 τ0n+1,m τ0n−1,m

= 0.

We set
τ0n,m = Γ(Q2n−m+1 α0 2 α2 ; Q, Q)Γ(Q−n+2m−1 α1 2 α0 ; Q, Q)Γ(Q−n−m α2 2 α1 ; Q, Q)An,m
0 . (3.9)
From (3.6)–(3.8), the following equations hold:
n,m+1 n,m−1
2
(An,m
A0
,
0 ) = A0

(3.10)

n+1,m+1 n−1,m−1
2
(An,m
A0
,
0 ) = A0

(3.11)

2
(An,m
0 )

(3.12)

= A0n+1,m A0n−1,m .
determine τ0n,m and

We next
of T1 , T2 , and T3 are given by

τ1n,m .

From (2.8) and Proposition 2.4, we see that the action

Ti (τi−1 ) = τi ,

(3.13)

Ti (τ i−1 ) = τ i ,

(3.14)

αi−1



+
i τi+1
,
Qαi−1 3 τ i−1
Q2 αi−1 6 τi+1 τ i + τ i+1 τi
,
Ti (τ i+1 ) =
Qαi−1 3 τi−1
2
τi 2
αi+1 αi−1 4 τi τ i αi 2 αi−1 2 τ i τi τi+1
1
3 τ i τi+1
+
+
+
α
,
Ti (τi ) =
i+1
αi+1 3 αi−1 6 τi−1
αi 2
τ i−1
αi+1 τ i+1 τi−1
τ i+1 τ i−1
τ i2
τi τ i
1
Ti (τ i ) =
+ αi 2 αi+1 5 αi−1 8
3
6
αi+1 αi−1 τ i−1
τi−1
2
τi τ i τ i+1
1
3 τi τ i+1
+
α
,
+ 2
i+1
αi αi+1 5 αi−1 2 τi+1 τ i−1
τi+1 τi−1
Ti (τi+1 ) =

i τ i+1

Q2 τ

(3.15)
(3.16)
(3.17)

(3.18)

where i = 1, 2, 3.
Lemma 3.1. If τi and τ i are consistent with (3.13)–(3.16), then they are also consistent
with (3.17) and (3.18).
Proof . Applying Ti−1 on (3.16) and using (3.13) and (3.14), we have
Ti (τi ) =

τi
Q
αi+1 2 αi−1 2 τ i
T

Ti (τi+1 ).
)
+
i
i+1
αi+1 3 αi−1 3 τ i+1
αi
τ i+1

(3.19)

By using (3.15) and (3.16) for (3.19), we get (3.17). Similarly, applying Ti−1 on (3.15) and
using (3.13) and (3.14), we have
Ti (τ i ) =

1

τi

Qαi+1 3 αi−1 3

τi+1

Ti (τi+1 ) + Qαi−1 3 αi+1 3

By using (3.15) and (3.16) for (3.20), we get (3.18).

τi
τi+1

Ti (τ i+1 ).

(3.20)


Hypergeometric τ Functions of the q-Painlev´e Systems of Type (A2 + A1 )(1)

9

From (2.12), we rewrite (3.15) and (3.16) as follows:
τ0−1,0 τ10,1 − Q−1 α1 3 τ0−1,1 τ10,0 + Q−2 α1 6 τ00,1 τ1−1,0 = 0,

(3.21)

τ00,0 τ1−1,0 − Q−1 α2 3 τ0−1,−1 τ10,1 + Q−2 α2 6 τ0−1,0 τ10,0 =
τ00,1 τ10,0 − Q−1 α0 3 τ01,1 τ1−1,0 + Q−2 α0 6 τ00,0 τ10,1 = 0,
τ00,1 τ1−1,0 − Qα1 3 τ00,0 τ1−1,1 + Q2 α1 6 τ0−1,0 τ10,1 = 0,
τ0−1,0 τ10,0 − Qα2 3 τ00,1 τ1−1,−1 + Q2 α2 6 τ00,0 τ1−1,0 = 0,
τ00,0 τ10,1 − Qα0 3 τ0−1,0 τ11,1 + Q2 α0 6 τ00,1 τ10,0 = 0.

(3.22)

0,

(3.23)
(3.24)
(3.25)
(3.26)

We set
τ1n,m = −Q2n+2m α0 2 α2 −2

Θ(−Q−6n α0 −6 ; Q6 )Θ(−Q6m α2 −6 ; Q6 ) n,m
τ0 Fn,m−1 .
Θ(Q−6(n−m) α0 −6 α2 −6 ; Q6 )

(3.27)

Here, Fn,m is equivalent to (2.3) because we obtain (2.1) and (2.2) from (3.24)–(3.26) and
(3.21)–(3.23), respectively. If we assume An,m
is an arbitrary constant, it does not contradict
0
n,m
(3.10)–(3.18). Therefore, we may set A0 = 1.
n,m
Finally we construct τN
.
Theorem 3.1. Under the assumption (3.1) and (3.2), the hypergeometric τ functions of q-PIII
are given as the follows:
n,m
τN
= (−1)N (N +1)/2 Q−2(2n−m)N

×

2 +6nN

α0 −4N

2 +6N

α2 −2N
!N
Θ(−Q−6n α0 −6 ; Q6 )Θ(−Q6m α2 −6 ; Q6 )
Θ(Q−6(n−m) α0 −6 α2 −6 ; Q6 )

2

× Γ(Q2n−m+1 α0 2 α2 ; Q, Q)Γ(Q−n+2m−1 α1 2 α0 ; Q, Q)
n,m−1
× Γ(Q−n−m α2 2 α1 ; Q, Q)ψN
,

(3.28)

where

n,m
ψN

and
Fn,m


Fn,m
Fn+1,m
···

Fn−1,m
Fn,m
···

=
..
..
..

.
.
.

Fn−N +1,m Fn−N +2,m · · ·


Fn+N −1,m
Fn+N −2,m
,
..

.

Fn,m

ψ0n,m = 1,

n,m
ψ−N
=0



An,m
0
2
2 2 2n−2m
=
; q , a2 a0 q
1 ϕ1
a2 2 q −2m
(a2 −2 q 2m+2 ; q 2 )∞


Θ(a0 2 a2 2 q 2n−2m−2 ; q 2 )
0
2 2n+2
2
+ Bn,m
;
q
,
a
q
.
ϕ
0
1 1
a2 −2 q 2m+4
(a2 2 q −2m−2 ; q 2 )∞ Θ(a0 2 q 2n ; q 2 )

Here, An,m and Bn,m are periodic functions of period one with respect to n and m.
Proof . We set
n,m
τN
= (−1)N (N +1)/2 Q−2(2n−m)N

×

2 +6nN

α0 −4N

2 +6N

α2 −2N
!N
Θ(−Q−6n α0 −6 ; Q6 )Θ(−Q6m α2 −6 ; Q6 )
Θ(Q−6(n−m) α0 −6 α2 −6 ; Q6 )

2

(N > 0),

(3.29)

10

N. Nakazono
n,m−1
× Γ(Q2n−m+1 α0 2 α2 ; Q, Q)Γ(Q−n+2m−1 α1 2 α0 ; Q, Q)Γ(Q−n−m α2 2 α1 ; Q, Q)ψN
.

From (3.2), (3.9), and (3.27), we find
n,m
ψN
=0

(N < 0),

ψ0n,m = 1,

ψ1n,m = Fn,m .

n,m
Furthermore, it is easily verified that ψN
satisfy
n,m n,m
n,m
ψN
+1 ψN −1 − ψN

2

n+1,m n−1,m
+ ψN
ψN
= 0,

(3.30)

from (3.5). In general, (3.30) admits a solution expressed in terms of the Toeplitz type determinant
n,m
ψN
= det (cn−i+j,m )i,j=1,...,N

(N > 0),

under the boundary conditions
n,m
ψN
=0

(N < 0),

ψ0n,m = 1,

ψ1n,m = cn,m ,

where cn,m is an arbitrary function. Therefore we have completed the proof.

3.2



Hypergeometric τ functions of q-PII

In this section, we construct the hypergeometric τ functions of q-PII by two methods.
3.2.1

Hypergeometric τ functions of q-PII (I)

We construct the hypergeometric τ functions of q-PII by using those of q-PIII . We here note
n,m
that τN
consistent with the action of hs2 , T1 , T2 , T3 , T4 i is also consistent with the action of R1
because
R1 = s2 T2 −1 .
n,m
Therefore, we construct τN
consistent with the action of hs2 , T1 , T2 , T3 , T4 i. The action of s2
n,m
on τN is
n−m,−m
n,m
.
) = τN
s2 (τN

(3.31)

n,m
We consider only τ0n,m and τ1n,m because τN
is determined as a rational function in τ0n,m
and τ1n,m . It easily verified that τ0n,m , (3.28) (or (3.9)), is consistent with the action of s2 . When
N = 1, we rewrite (3.31) as

s2 (Fn,m−1 ) = α2 −12 Q−12m

Θ(α0 −12 Q12m−12n ; Q12 )
Fn−m,−m−1 ,
Θ(α0 −12 α2 −12 Q−12n ; Q12 )

(3.32)

from (3.28). Moreover, by using (3.29), (3.32) can be rewritten as


s2 (An,m ) − Bn,m
0
12
12 12n−12m+12
;
Q
,
α
Q
ϕ
0
1 1
α2 −12 Q−12m+12
(α2 12 Q12m ; Q12 )∞


(An,m − s2 (Bn,m ))Θ(α0 12 Q12n−12m ; Q12 )
0
12
12
12 12n+12
,
; Q , α0 α2 Q
=
1 ϕ1
α2 12 Q12m+12
(α2 −12 Q−12m ; Q12 )∞ Θ(α0 12 α2 12 Q12n ; Q12 )
which implies that τ1n,m is also consistent with the action of s2 when
s2 (An,m ) = Bn,m .

(3.33)

Hypergeometric τ Functions of the q-Painlev´e Systems of Type (A2 + A1 )(1)

11

Lemma 3.2. Under the assumption (3.33), the hypergeometric τ functions (3.28) are consistent
with the action of hs2 , T1 , T2 , T3 , T4 i.
Therefore we easily obtain the following theorem:
Theorem 3.2. Setting
R1 (An,m ) = Bn,m ,

(3.34)

α2 = Q1/2 ,
and putting
n,0
2n
τN
= τN
,

n,1
2n−1
= τN
,
τN

n,m
we obtain the hypergeometric τ functions of q-PII . Here τN
is given by (3.28).

In general, the entries of determinants of the hypergeometric τ functions of Painlev´e systems
are expressed by two-parameter family of the functions satisfying the contiguity relations. However the hypergeometric τ functions of q-PII in Theorem 3.2 have only one parameter because of
the condition (3.34). In the next section, we construct the hypergeometric τ functions of q-PII
which admits two parameters.
3.2.2

Hypergeometric τ functions of q-PII (II)

We construct the hypergeometric τ functions of q-PII whose ratios correspond to the hyperk is
geometric solutions of q-PII in Proposition 2.2. By the action of the affine Weyl group, τN
k
k
determined as a rational function of τ0 and τ1 (or τi and τ i ). Thus, our purpose is determining τ0k
k under the conditions
and τ1k consistent with the action of hR1 , T4 i and constructing τN
α2 = Q1/2 ,

γ = 1,

(3.35)

and the boundary condition
k
τN
=0

(N < 0).

(3.36)

First we consider the condition for τ0k which follows from the boundary condition (3.36). We
use the bilinear equation obtained in [12]:
Proposition 3.2. The following bilinear equation holds:
k+2 k−1
k+1 k
k+1
k
(k−4N +1)/2 −2
τN
γ α0 τN
τN − Q−k+4N −1 γ 4 α0 −2 τN
τN = 0.
+1 τN −1 − Q

(3.37)

By putting N = 0 in (3.37), we get
Q3(k+1)/2 α0 3 τ0k+2 τ0k−1 + τ0k+1 τ0k = 0.

(3.38)

We set



τ0k = Γ Q(2k+3)/2 α0 2 ; Q, Q Γ Q−k/2 α0 −1 ; Q, Q Γ Q(−k+3)/2 α0 −1 ; Q, Q Ak1 .

(3.39)

From (3.38), Ak1 satisfies

k−1
k
Ak+2
= Ak+1
1 A1
1 A1 .

(3.40)

12

N. Nakazono

We next determine τ0k and τ1k . From (2.10) and Proposition 2.4, we see that the action of R1
on τ0k and τ1k is given by
R1 (τ0 ) = τ2 ,
R1 (τ1 ) =

(3.41)

Q−2 α0 6 τ1 τ 2 + τ 1 τ2
,
Q−1 α0 3 τ 0

(3.42)

R1 (τ2 ) = τ1 ,

(3.43)

R1 (τ 0 ) = τ 2 ,

(3.44)

R1 (τ 1 ) =

Q2 α0 6 τ 1 τ2 + τ1 τ 2
,
Qα0 3 τ0

(3.45)

R1 (τ 2 ) = τ 1 .

(3.46)

From (2.13), we rewrite (3.42) and (3.45) as
Qα0 −3 τ1−2 τ01 − Q2 α0 −6 τ10 τ0−1 − τ00 τ1−1 = 0,

(3.47)

Q−1 α0 −3 τ0−2 τ11 − Q−2 α0 −6 τ00 τ1−1 − τ10 τ0−1 = 0,

(3.48)

respectively. Setting
τ1k =

τ0k
Gk ,
Θ(Q3k+1 α0 6 ; Q3 )

(3.49)

then the systems (3.47) and (3.48) reduce to (2.6). Therefore Gk is equivalent to (2.7). If we
assume Ak1 is an arbitrary constant, it does not contradict (3.40)–(3.46). Therefore, we may put
Ak1 = 1.
k.
Finally we present an explicit formula for τN
Theorem 3.3. Under the assumption (3.35) and (3.36), the hypergeometric τ functions of q-PII
are given as the follows:
k
τN
= (−1)N (N −1)/2 QN (N −1)(k+N ) α0 2N (N −1)

×

Γ(Q(2k+3)/2 α0 2 ; Q, Q)Γ(Q−k/2 α0 −1 ; Q, Q)Γ(Q(−k+3)/2 α0 −1 ; Q, Q) k
φN ,
Θ(Q3k+1 α0 6 ; Q3 )N

where

φkN

and


Gk
Gk−1
···

Gk+2
Gk+1
···

=
..
..
..

.
.
.

Gk+2N −2 Gk+2N −3 · · ·


Gk−N +1
Gk−N +3
,
..

.

Gk+N −1


φk0 = 1,

φk−N = 0


0
1/2
(3+2k)/4
Gk = Ak Θ ia0 q
;q
; q , −ia0 q
1 ϕ1
−q 1/2



0
1/2
(3+2k)/4
.
;
q
,
ia
q
+ Bk Θ −ia0 q (2k+1)/4 ; q 1/2 1 ϕ1
0
−q 1/2
(2k+1)/4

1/2



Here, Ak and Bk are periodic functions of period one.

(N > 0),

Hypergeometric τ Functions of the q-Painlev´e Systems of Type (A2 + A1 )(1)

13

Proof . We set
k
= (−1)N (N −1)/2 QN (N −1)(k+N ) α0 2N (N −1)
τN

×

Γ(Q(2k+3)/2 α0 2 ; Q, Q)Γ(Q−k/2 α0 −1 ; Q, Q)Γ(Q(−k+3)/2 α0 −1 ; Q, Q) k
φN .
Θ(Q3k+1 α0 6 ; Q3 )N

From (3.36), (3.39), and (3.49), we find that
φkN = 0

(N < 0),

φk0 = 1,

φk1 = Gk .

From (3.37), φkN satisfies
k+2 k−1
k k+1
φkN +1 φk+1
= 0,
N −1 − φN φN + φN φN

(3.50)

which is a variant of the discrete Toda equation. Under the conditions
φkN = 0

(N < 0),

φk0 = 1,

φk1 = ck ,

where ck is an arbitrary function. Equation (3.50) admits a solution expressed by
φkN = det (ck+2i−j−1 )i,j=1,...,N

(N > 0).

This complete the proof.

3.3



Relation between the hypergeometric τ functions
of q-PIII and Heine’s transform

Masuda showed that the consistency of a certain reflection transformation to the hypergeometric
(1)
τ functions of type E8 correspond to Bailey’s four term transformation formula [18]. It is
also shown that the consistency of a certain reflection transformation to the hypergeometric
(1)
τ functions of type E7 correspond to limiting case of Bailey’s 10 ϕ9 transformation formula [17].
We here show that the consistency of s0 to the hypergeometric τ functions of q-PIII give rise to
a transformation of 1 ϕ1 which is obtained by Heine’s transform for 2 ϕ1 .
n,m
The action of s0 on τN
is
n,m
−n,m−n
s0 (τN
) = τN
.

(3.51)

n,m
We consider only τ0n,m and τ1n,m because τN
is determined as a rational function in τ0n,m
n,m
n,m
and τ1 . It easily verified that τ0 , (3.28) (or (3.9)), is consistent with the action of s0 . When
N = 1, (3.51) implies

s0 (Fn,m−1 ) =

Θ(α2 −12 Q−12n+12m ; Q12 )
F−n,m−n−1 ,
Θ(α0 −12 α2 −12 Q12m ; Q12 )

(3.52)

from (3.28). Moreover, by using (3.29), (3.52) can be rewritten as


0
12
12 12n−12m+12
; Q , α2 Q
s0 (An,m )1 ϕ1
α0 12 α2 12 Q−12m+12


(α2 12 Q12n−12m+12 ; Q12 )∞
0
12
12
12 −12m+12
− An,m
; Q , α2 α0 Q
1 ϕ1
α2 12 Q12n−12m+12
(α0 12 α2 12 Q−12m+12 ; Q12 )∞
− Bn,m α0 12 Q−12n

(α0 −12 α2 −12 Q12m , α2 −12 Q−12n+12m+12 ; Q12 )∞
Θ(α0 12 Q−12n ; Q12 )

14

N. Nakazono
× 1 ϕ1



0
α2 −12 Q−12n+12m+12

12

12

−12n+12

; Q , α0 Q



(α0 −12 α2 −12 Q12m ; Q12 )∞ Θ(α2 12 Q12n−12m ; Q12 )
+ s0 (Bn,m )
(α0 12 α2 12 Q−12m ; Q12 )∞ Θ(α0 −12 Q12n ; Q12 )


0
12
−12 12n+12
; Q , α0 Q
= 0.
× 1 ϕ1
α0 −12 α2 −12 Q12m+12

(3.53)

In particular, setting
s0 (An,m ) = An,m ,

Bn,m = 0,

in (3.53), we obtain


0
12
12 12n−12m+12
(3.54)
; Q , α2 Q
1 ϕ1
α0 12 α2 12 Q−12m+12


(α2 12 Q12n−12m+12 ; Q12 )∞
0
12
12
12 −12m+12
=
.
; Q , α2 α0 Q
1 ϕ1
α2 12 Q12n−12m+12
(α0 12 α2 12 Q−12m+12 ; Q12 )∞
Equation (3.54) corresponds to a specialization of Heine’s transform. Actually, by putting
a = b−1 c,

d = b−1 z,

in Heine’s transform [34]
2 ϕ1



a, b
; q, d
c



 −1

(a, bd; q)∞
a c, d
=
; q, a ,
2 ϕ1
bd
(c, d; q)∞

we obtain

 −1
 −1

(b−1 c, z; q)∞
b, b z
b c, b
−1
−1
; q, b c .
; q, b z =
2 ϕ1
2 ϕ1
z
c
(c, b−1 z; q)∞

(3.55)

Taking the limit b → ∞ in (3.55) leads to
1 ϕ1



0
; q, z
c





(z; q)∞
0
=
; q, c ,
1 ϕ1
z
(c; q)∞

which is equivalent to (3.54).

Acknowledgements
The author would like to express sincere thanks to Professor T. Masuda for fruitful discussions
and valuable suggestions. I acknowledge continuous encouragement by Professors K. Kajiwara
and T. Tsuda. This work has been partially supported by the JSPS Research Fellowship.

References
[1] Gasper G., Rahman, M. Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Applications, Vol. 96, Cambridge University Press, Cambridge, 2004.
(1)

[2] Hamamoto T., Kajiwara K., Hypergeometric solutions to the q-Painlev´e equation of type A4 , J. Phys. A:
Math. Theor. 40 (2007), 12509–12524, nlin.SI/0701001.
[3] Hamamoto T., Kajiwara K., Witte N.S., Hypergeometric solutions to the q-Painlev´e equation of type
(A1 + A′1 )(1) , Int. Math. Res. Not. 2006 (2006), Art. ID 84619, 26 pages, nlin.SI/0607065.

Hypergeometric τ Functions of the q-Painlev´e Systems of Type (A2 + A1 )(1)

15

[4] Joshi N., Kajiwara K., Mazzocco M., Generating function associated with the Hankel determinant formula
for the solutions of the Painlev´e IV equation, Funkcial. Ekvac. 49 (2006), 451–468, nlin.SI/0512041.
[5] Jimbo M., Miwa T., Ueno K., Monodromy preserving deformation of linear ordinary differential equations
with rational coefficients. I. General theory and τ -function, Phys. D 2 (1981), 306–352.
[6] Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407–448.
[7] Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III, Phys. D 4 (1981/82), 26–46.
[8] Kajiwara K., Kimura K., On a q-difference Painlev´e III equation. I. Derivation, symmetry and Riccati type
solutions, J. Nonlin. Math. Phys. 10 (2003), 86–102, nlin.SI/0205019.
[9] Kajiwara K., Masuda T., A generalization of determinant formulae for the solutions of Painlev´e II and
XXXIV equations, J. Phys. A: Math. Gen. 32 (1999), 3763–3778, solv-int/9903014.
[10] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., 10 E9 solution to the elliptic Painlev´e equation,
J. Phys. A: Math. Gen. 36 (2003), L263–L272, nlin.SI/0303032.
[11] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., Point configurations, Cremona transformations
´
and the elliptic difference Painlev´e equation, in Th´eories Asymptotiques et Equations
de Painlev´e, Semin.
Congr., Vol. 14, Soc. Math. France, Paris, 2006, 169–198, nlin.SI/0411003.
[12] Kajiwara K., Nakazono N., Tsuda T., Projective reduction of the discrete Painlev´e system of type
(A2 + A1 )(1) , Int. Math. Res. Not. 2010 (2010), Art. ID rnq089, 37 pages, arXiv:0910.4439.
[13] Kajiwara K., Noumi M., Yamada Y., A study on the fourth q-Painlev´e equation, J. Phys. A: Math. Gen.
34 (2001), 8563–8581, nlin.SI/0012063.
[14] Kajiwara K., Ohta Y., Determinant structure of the rational solutions for the Painlev´e IV equation,
J. Phys. A: Math. Gen. 31 (1998), 2431–2446, solv-int/9709011.
[15] Kajiwara K., Ohta Y., Satsuma J., Casorati determinant solutions for the discrete Painlev´e III equation,
J. Math. Phys. 36 (1995), 4162–4174, solv-int/9412004.
[16] Kajiwara K., Ohta Y., Satsuma J., Grammaticos B., Ramani A., Casorati determinant solutions for the
discrete Painlev´e-II equation, J. Phys. A: Math. Gen. 27 (1994), 915–922, solv-int/9310002.
(1)

[17] Masuda T., Hypergeometric τ -functions of the q-Painlev´e system of type E7 , SIGMA 5 (2009), 035,
30 pages, arXiv:0903.4102.
(1)

[18] Masuda T., Hypergeometric τ -functions of the q-Painlev´e system of type E8 , MI Preprint Series, 2009–12,
Kyushu University, 2009.
[19] Miwa T., Jimbo M., Date E., Solitons. Differential equations, symmetries and infinite-dimensional algebras,
Cambridge Tracts in Mathematics, Vol. 135, Cambridge University Press, Cambridge, 2000.
[20] Nakao S., Kajiwara K., Takahashi D., Multiplicative dPII and its ultradiscretization, Reports of RIAM
Symposium, No. 9ME-S2, Kyushu University, 1998, 125–130 (in Japanese).
[21] Noumi M., Painlev´e equations through symmetry, Translations of Mathematical Monographs, Vol. 223,
American Mathematical Society, Providence, RI, 2004.
[22] Noumi M., Yamada Y., Symmetries in the fourth Painlev´e equation and Okamoto polynomials, Nagoya
Math. J. 153 (1999), 53–86, q-alg/9708018.
[23] Ohta Y., Nakamura A., Similarity KP equation and various different representations of its solutions, J. Phys.
Soc. Japan 61 (1992), 4295–4313.
[24] Okamoto K., Studies on the Painlev´e equations. I. Sixth Painlev´e equation PVI , Ann. Mat. Pura Appl. 146
(1987), 337–381.
[25] Okamoto K., Studies on the Painlev´e equations. II. Fifth Painlev´e equation PV , Japan. J. Math. (N.S.) 13
(1987), 47–76.
[26] Okamoto K., Studies on the Painlev´e equations. III. Second and fourth Painlev´e equations, PII and PIV ,
Math. Ann. 275 (1986), 221–255.
[27] Okamoto K., Studies on the Painlev´e equations. IV. Third Painlev´e equation PIII , Funkcial. Ekvac. 30
(1987), 305–332.
[28] Quispel G.R.W., Roberts J.A.G., Thompson C.J., Integrable mappings and soliton equations, Phys. Lett. A
126 (1988), 419–421.

16

N. Nakazono

[29] Quispel G.R.W., Roberts J.A.G., Thompson C.J., Integrable mappings and soliton equations. II, Phys. D
34 (1989), 183–192.
[30] Ramani A., Grammaticos B., Discrete Painlev´e equations: coalescences, limits and degeneracies, Phys. A
228 (1996), 160–171, solv-int/9510011.
[31] Sakai H., Casorati determinant solutions for the q-difference sixth Painlev´e equation, Nonlinearity 11 (1998),
823–833.
[32] Sakai H., Rational surfaces associated with affine root systems and geometry of the Painlev´e equations,
Comm. Math. Phys. 220 (2001), 165–229.
[33] Tsuda T., Tau functions of q-Painlev´e III and IV equations, Lett. Math. Phys. 75 (2006), 39–47.
[34] Wadim Z., Heine’s basic transform and a permutation group for q-harmonic series, Acta Arith. 111 (2004),
153–164.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52