pages397-404. 175KB Jun 04 2011 12:06:59 AM

Journal de Th´eorie des Nombres
de Bordeaux 17 (2005), 397–404

Interpolation of entire functions on regular sparse
sets and q-Taylor series
par Michael WELTER
´sume
´. Nous donnons une d´emonstration alternative d’un th´eoRe
r`eme de Ismail et Stanton et appliquons cela `a des fonctions enti`eres arithm´etiques.
Abstract. We give a pure complex variable proof of a theorem by Ismail and Stanton and apply this result in the field of
integer-valued entire functions. Our proof rests on a very general
interpolation result for entire functions.

1. Introduction
In [4] (see also the references there) Ismail and Stanton established qanalogues of Taylor series expansions of entire functions, so–called q-Taylor
series, and gave some applications of these. Their proofs depend heavily
on the theory of basic hypergeometric functions.
In this note we will deduce one of their theorems from an interpolation
formula which we will prove in section 2. In section 3 we will give another
application of the q-Taylor series in the field of the so–called integer-valued
entire functions and give a first answer on a question asked by Ismail and

Stanton in [4].
We start with some definitions and notations. Throughout this section
let
6 1. We denote by Q the maximum of |q| and
−1q, a ∈ C \ {0} with |q| =
q .
The q-shifted factorials are defined by
(a; q)0 := 1, (a; q)n := (1 − aq n−1 )(a; q)n−1 for n = 1, 2, 3, . . . .

We put

1
zn := (aq n + a−1 q −n )
2

and
φn (z; a) :=

n−1
Y


(1 − 2azq k + a2 q 2k ) ∈ C[z]

k=0

This work was supported by the DFG (German Research Foundation).

Michael Welter

398

for n = 0, 1, 2, 3, . . .. Finally we denote for an entire function f
log |f |r
,
σ(f ) := lim sup
(log
r)2
r→∞
where as usual |f |r := max|z|=r |f (z)|. The theorem of Ismail and Stanton
(Theorem 3.3 in [4]) states

Theorem 1.1. Let f be an entire function with σ(f ) < 1/(2 log Q). Then
we have for all z ∈ C

X
(1)
f (z) =
q n fn,φ φn (z; a)
n=0

with

fn,φ =

n
X
(−1)k q k(k−1)/2 (1 − a2 q 2k )
f (zk ).
(q; q)k (q; q)n−k (a2 q k ; q)n+1
k=0


Remark. Ismail and Stanton state the theorem only for real a, q with
0 < a, q < 1.
2. Interpolation of entire functions on regular sparse sets
For subsets X ⊂ C we put ψX (r) = card {x ∈ X| |x| ≤ r}.
Definition. We call a subset X ⊂ C regular sparse, if X is infinite, discrete
and satisfies the following condition:
There exist θ ∈]1, +∞[ and T ∈ R such that
 
(2)
ψX rθ ≤ T ψX (r) + o(ψX (r)) when r → +∞.

In [6] we studied entire functions f that are integer-valued on regular
sparse sets X ⊂ Z. There we proved the following characterization of
regular sparse sets (see [6], Lemma 1).
Lemma 2.1. Let X be an infinite, discrete subset of C. Then the following
three statements are equivalent:
(i) X is regular sparse.

(ii) For all θ ∈]1, +∞[ there exists a T ∈ R such that ψX rθ ≤ T ψX (r)+
o(ψX (r)) when r → +∞.

(iii)
X
1
Λ(X) := lim sup
log |x| < 1.
r→∞ log rψX (r) x∈X\{0}
1 0 and z ∈ C with |z| ≤ δ.
For θ > 1, we have 2 |xn | ≤ |xn |θ =: r for all sufficiently large n. Therefore we can estimate
!  
n−1
Y
|xν |
1 n
1−
= exp(O(ψX (r))).

2
|xn |θ
ν=0


The last equality follows from the fact that ψX (|xn |) = n + O(1) for all n.
By Proposition 1 of [6] we know, that for regular sparse sets X there are
constants c, α > 0 such that log |xn | ≥ cnα for all n. Hence the limit

n−1
Y
δ
C(δ) := lim
1+
n→∞
|xν |
ν=0

exists. This leads to




n−1
n−1


Y
Y

 X

|PX,n (z)| =
(z − xν ) ≤ C(δ)
|xν | ≤ C exp 
log |x|


x∈X
ν=0

ν=0

|x|≤|xn |

and for all ξ with |ξ| = r

|PX,n (ξ)| ≥

n−1
Y
ν=0


|xn |θ − |xν | ≥ exp (θψX (|xn |) log |xn | + O(ψX (r)))

Further we have if n and therefore r is sufficiently large


log |f |r ≤ γψX |xn |θ log |xn |θ

≤ γTX (θ)θψX (|xn |) log |xn | + o(ψX (|xn |) log |xn |).

Here we have again used the fact that the set X is regular sparse.

402


Michael Welter

If we further assume, that 2δ < r, then we get from (9)
|RX,n (z)| ≤ exp (Λ(X) − θ + γθTX (θ))ψX (|xn |) log |xn |
+o(ψX (|xn |) log |xn |))
which shows that RX,n (z) converges against zero when n tends to infinity.
Hence the theorem is proven.

3. Application of Theorem 1.1 to integer-valued entire functions
In this section we will give some statements about entire functions that
are integer-valued on the sequence zn = (aq n + a−1 q −n )/2.
The following theorem is a corollary to Theorem 1 in [6], a general result
on integer-valued entire functions on regular sparse sets X ⊂ Z. From this
theorem one easily deduces
Theorem 3.1. Let a, q ∈ C \ {0} with |q| =
6 1 such that zn := 12 (aq n +
−1
−n
a q ) ∈ Z for every n ∈ N0 , and let f be an entire function such that
f (zn ) ∈ Z for every n ∈ N0 and

(log r)2
, γ < 0.0225
log |q|
for all sufficiently large r. Then f is a polynomial function.
log |f |r ≤ γ

Remark. The case a = ±1 was essentially treated by B´ezivin in [1, 2]. By
using an interpolation series method he obtained a better upper bound for
γ than that in the above theorem. The sequence (zn ) is the solution of the
linear difference equation un+1 = (q + q −1 )un − un−1 with the initial values
u0 = (a + a−1 )/2 and a1 = (aq + a−1 q −1 )/2. Hence the condition zn ∈ Z
for all n ∈ N0 is obviously satisfied if the three numbers
a + a−1 aq + a−1 q −1
,
, q + q −1
2
2
are rational integers. Therefore the theorem above covers not only the case
a = ±1 and we get some new applications with a, q both lying in the same
real quadratic number field.

From the q-Taylor theorem 1.1, we can deduce the following result, which
covers another case.
Theorem 3.2. Let K be Q or an imaginary-quadratic number field and
OK be its ring of integers. Further let a, q ∈ OK \ {0} with |q| > 1 and
a2 6∈ {q −ν |ν ∈ N}. If f is an entire function satisfying f (zn ) ∈ OK for all
n ∈ N0 and
(log r)2
, where γ < 1/10
log |f |r ≤ γ
log |q|
for all sufficiently large r, then f is a polynomial function.

Interpolation of entire functions

403

Proof. If Φd denotes the d-th cyclotomic polynomial, then we have for all
n ∈ N and k ∈ {0, . . . , n} (see Lang [5], p. 279f.)
n
Y
n−k
n
k
(q; q)n
Φd (q)[ d ]−[ d ]−[ d ] ∈ Z[q].
=
(q; q)k (q; q)n−k
d=1

Obviously we have

Q2n−1

2 ν
ν=1 (1 − a q )
∈ Z[a, q].
Q
n
2 k+ν )
2 k+ν )
ν=0 (1 − a q
ν=k+1 (1 − a q
Q2n−1
put Dn := (q; q)n ν=1
(1 − a2 q ν ) 6= 0, it follows from (5)
Dn AX,n ∈ Z[a, q] for all n ∈ N0 . Therefore |Dn AX,n | ≥ 1, if

Qk−1

Hence, if we
and (6) that
Dn AX,n is not equal to zero.
On the other hand, we find by (8) like in the proof of Theorem 2.2, again
with r := |zn |θ

|AX,n | ≤ exp (γθ2 − θ)n2 log |q| + o(n2 )
and

|Dn | ≤ |q|

n
Y

n(n+1)
(2n−1)2n
+
2
2

−ν 

1 + |q|

ν=1

Obviously the two infinite products

Y

1 + |q|−ν

2n−1
Y
ν=1



1 + a2 |q|−ν .

ν=1

and


Y

ν=1

converge, and therefore we get



1 + a2 |q|−ν


|Dn AX,n | ≤ exp (γθ2 − θ + 5/2)n2 log |q| + o(n2 ) .

We now chose θ = 1/(2γ). If γ < 1/10 then the upper bound of |Dn AX,n |
is less than 1 for all sufficiently large n. Hence Dn AX,n = 0 for this n.
For we know that Dn is not zero, this implies that AX,n vanishes for all
sufficiently large n. This proves the theorem.

References
´zivin, Sur les points o`
[1] J.-P. Be
u une fonction analytique prend des valeurs enti`
eres. Ann.
Inst. Fourier 40 (1990), 785–809.
´zivin, Fonctions enti`
[2] J.-P. Be
eres prenant des valeurs enti`
eres ainsi que ses d´
eriv´
ees sur des
suites recurrentes binaires. Manuscripta math. 70 (1991), 325–338.
[3] P. Bundschuh, Arithmetische Eigenschaften ganzer Funktionen mehrerer Variablen. J. reine
angew. Math. 313 (1980), 116–132.

404

Michael Welter

[4] M. E. H. Ismail, D. Stanton, q-Taylor theorems, polynomial expansions, and interpolation
of entire functions. Journal of Approximation Theory 123 (2003), 125–146.
[5] S. Lang, Algebra. 3rd edition, Addison-Wesley (1993).
[6] M. Welter, Ensembles r´
eguli`
erement lacunaires d’entiers et fonctions enti`
eres arithm´
etiques. J. Number Th. 109 (2004), 163–181.
Michael Welter
Mathematisches Institut der Universit¨
at Bonn
Beringstr. 4
53115 Bonn, Allemagne
E-mail : [email protected]

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52