Paper-1-20-2009. 121KB Jun 04 2011 12:03:09 AM

ACTA UNIVERSITATIS APULENSIS

No 20/2009

PROPERTIES OF SOME FAMILIES OF MEROMORPHIC
P-VALENT FUNCTIONS INVOLVING CERTAIN DIFFERENTIAL
OPERATOR

M. K. Aouf, A. Shamandy, A. O. Mostafa and S. M. Madian
Abstract. Making use of a differential operator, which is defined here by means
of the Hadamard product (or convolution), we introduce the class Σnp (f, g; λ, β) of
meromorphically p-valent functions. The main object of this paper is to investigate
various important properties and characteristics for this class. Also a property
preserving integrals is considered.
2000 Mathematics Subject Classification: 30C45.
1. Introduction
Let Σp denote the class of functions of the form:
f (z) = z −p +


X


ak z k

(p ∈ N = {1, 2, ...}) ,

(1.1)

k=0

which are analytic and p-valent in the punctured unit disc U ∗ = {z : z ∈ C and
0 < |z| < 1} = U \{0}. For functions f (z) ∈ Σp given by (1.1) and g(z) ∈ Σp given
by

X
g(z) = z −p +
bk z k (p ∈ N ),
(1.2)
k=0

we define the Hadamard product (or convolution) of f (z) and g(z) by

(f ∗ g)(z) = z −p +


X

ak bk z k = (g ∗ f )(z).

(1.3)

k=0

For complex parameters α1 , α2 , ..., αq and β1 , β2 , ..., βs (βj ∈
/ Z0− = {0, −1,
−2, ...}; j = 1, 2, ..., s), we now define the generalized hypergeometric function
q Fs (α1 , α2 , ..., αq ; β1 , β2 , ..., βs ; z) by (see, for example, [10] and [11])
7

M.K. Aouf, A.Shamandy, A. O. Mostafa, S.M. Madian - Properties of some ...

q Fs (α1 , α2 , ..., αq ; β1 , β2 , ..., βs ; z) =



X
k=0

(α1 )k ...(αq )k k
z
(β1 )k ...(βs )k (1)k

(q ≤ s + 1; s, q ∈ N0 = N ∪ {0}; z ∈ U ),

(1.4)

where (θ)k , is the Pochhammer symbol defined in terms of the Gamma function
Γ, by

Γ(θ + v)
1
(v = 0; θ ∈ C ∗ = C\{0}),
(θ)v =

=
θ(θ + 1)....(θ + v − 1)
(v ∈ N ; θ ∈ C).
Γ(θ)
Corresponding to the function hp (α1 , α2 , ..., αq ; β1 , β2 , ..., βs ; z), defined by
hp (α1 , α2 , ..., αq ; β1 , β2 , ..., βs ; z) = z −p q Fs (α1 , α2 , ..., αq ; β1 , β2 , ..., βs ; z), (1.5)
we consider a linear operator
Hp (α1 , α2 , ..., αq ; β1 , β2 , ..., βs ) : Σp −→ Σp ,
which is defined by the following Hadamard product:
Hp (α1 , α2 , ..., αq ; β1 , β2 , ..., βs )f (z) = hp (α1 , α2 , ..., αq ; β1 , β2 , ..., βs ; z) ∗ f (z)
(q ≤ s + 1; s, q ∈ N0 ; z ∈ U ).

(1.6)

We observe that, for a function f (z) of the form (1.1), we have
Hp (α1 , α2 , ..., αq ; β1 , β2 , ..., βs )f (z) = Hp,q,s (α1 ) = z

−p

+



X

Γk ak z k ,

(1.7)

k=0

where
Γk =

(α1 )k+p ...(αq )k+p
.
(β1 )k+p ...(βs )k+p (1)k+p

(1.8)

Then one can easily verify from (1.7) that

z(Hp,q,s (α1 )f (z))′ = α1 Hp,q,s (α1 + 1)f (z) − (α1 + p)Hp,q,s (α1 )f (z).

(1.9)

The linear operator Hp,q,s (α1 ) was investigated recently by Liu and Srivastava [9]
and Aouf [2]. The operator Hp,q,s (α1 ) contains the operator ℓp (a, c) ( see [8] ) for
q = 2, s = 1, α1 = a > 0, β1 = c (c 6= 0, −1, ...) and α2 = 1 and also contains
the operator Dν+p−1 ( see [1] and [4]) for q = 2, s = 1, α1 = ν + p (ν > −p; p ∈
N ) and α2 = β1 = p.
8

M.K. Aouf, A.Shamandy, A. O. Mostafa, S.M. Madian - Properties of some ...

n (f ∗ g)(z) : Σ −→
For functions f , g ∈ Σp , we define the linear operator Dλ,p
p
Σp (λ ≥ 0; p ∈ N ; n ∈ N0 ) by
0
Dλ,p
(f ∗ g)(z) = (f ∗ g)(z),


(1.10)

1
Dλ,p
(f ∗ g)(z) = Dλ,p (f ∗ g)(z) = (1 − λ)(f ∗ g)(z) + λz −p (z p+1 (f ∗ g)(z))′ ,

=z

−p

+


X

[1 + λ(k + p)]ak bk z k (λ ≥ 0; p ∈ N ),

(1.11)


k=0

2
(f ∗ g)(z) = Dλ,p (Dλ,p (f ∗ g))(z),
Dλ,p

= (1 − λ)Dλ,p (f ∗ g)(z) + λz −p (z p+1 Dλ,p (f ∗ g)(z))′
=z

−p

+


X

[1 + λ(k + p)]2 ak bk z k (λ ≥ 0; p ∈ N )

(1.12)


k=0

and ( in general )
n−1
n
Dλ,p
(f ∗ g)(z) = Dλ,p (Dλ,p
(f ∗ g)(z))

= z −p +


X

[1 + λ(k + p)]n ak bk z k (λ ≥ 0; p ∈ N ; n ∈ N0 ). (1.13)

k=0

From (1.13) it is easy to verify that:
n

z(Dλ,p
(f ∗ g)(z))′ =

1 n+1
1 n
Dλ,p (f ∗ g)(z) − (p + )Dλ,p
(f ∗ g)(z) (λ > 0).
λ
λ

(1.14)

In this paper, we introduce the class Σnp (f, g; λ, β) of the functions f , g ∈
Σp , which satisfy the condition:

Re

(

n+1

Dλ,p
(f ∗ g)(z)

)
1
n (f ∗ g)(z) − (p + λ ) < −β
λDλ,p

(z ∈ U ∗ ; λ > 0; 0 ≤ β < p; p ∈ N ; n ∈ N0 ).
(1.15)

We note that:




1
in (1.15), the class
(i) If λ = 1 and the coefficients bk = 1 or g(z) = p
z (1 − z)
n
Σp (f, g; λ, β) reduces to the class Bn (β) studied by Aouf and Hossen [3];

9

M.K. Aouf, A.Shamandy, A. O. Mostafa, S.M. Madian - Properties of some ...
1
, (ν > −p; p ∈ N ) in (1.15), the class
− z)ν+p
Σnp (f, g; λ, β) reduces to the class Mν+p−1 (β), studied by Aouf [1];


1
(iii) If bk = 1 or g(z) = p
in (1.15), the class Σnp (f, g; λ, β) reduces to
z (1 − z)
the class Kpn (λ, β), where Kpn (λ, β) is defined by

(ii) If n = 0, λ = 1 and g(z) =

Re

(

n+1
Dλ,p
f (z)

z p (1

)
1
n f (z) − (p + λ ) < −β
λDλ,p

(z ∈ U ∗ ; λ > 0; 0 ≤ β < p; p ∈ N ; n ∈ N0 ),
(1.16)

where
n
Dλ,p
f (z) = z −p +


X

[1 + λ(k + p)]n ak z k (λ > 0; p ∈ N ; n ∈ N0 );

(1.17)

k=0

(a)k
(c 6= 0, −1, ...) in (1.15), the class
(c)k
Σnp (f, g; λ, β) reduces to Σnp (a, c; λ, β), where Σnp (a, c; λ, β) is defined by

(iv) If n = 0, λ = 1 and the coefficients bk =

Re




a ℓp (a + 1, c)f (z)
− (a + p) < −β
ℓp (a, c)f (z)

(z ∈ U ∗ ; 0 ≤ β < p; p ∈ N );

(1.18)

(v) If n = 0, λ = 1 and the coefficients bk in (1.15) is replaced by Γk , where
Γk is given by (1.8), the class Σnp (f, g; λ, β) reduces to Σnp,q,s (α1 , β1 ; λ, β), where
Σnp,q,s (α1 , β1 ; λ, β) is defined by


α1 Hp,q,s (α1 + 1)f (z)
− (α1 + p) < −β
Re
Hp,q,s (α1 )f (z)
(z ∈ U ∗ ; α1 ∈ C ∗ ; 0 ≤ β < p; p ∈ N ).

(1.19)

In this paper known results of Bajpai [5], Goel and Sohi [6], Uralegaddi and
Somanatha [12] and Aouf and Hossen [3] are extended.
2.Basic properties of the class Σnp (f, g; λ, β)
We begin by recalling the following result (Jack’s Lemma), which we shall apply
in proving our first inclusion theorems (Theorem 1 and Theorem 2 below).

10

M.K. Aouf, A.Shamandy, A. O. Mostafa, S.M. Madian - Properties of some ...

Lemma 1 [7] . Let the (nonconstant) function w(z) be analytic in U,with w(0) = 0.
If |w(z)| attains its maximum value on the circle |z| = r < 1 at a point z0 ∈ U ,
then

z0 w (z0 ) = ξw(z0 ) ,
(2.1)
where ξ is a real number and ξ ≥ 1.
Theorem 1. For λ > 0, 0 ≤ β < p, p ∈ N and n ∈ N0 ,
(f, g; λ, β) ⊂ Σnp (f, g; λ, β) .
Σn+1
p

(2.2)

Proof. Let f (z) ∈ Σn+1
(f, g; λ, β). Then
p
( n+2
)
Dλ,p (f ∗ g)(z)
1
Re
− (p + ) < −β, |z| < 1.
n+1
λ
λDλ,p
(f ∗ g)(z)
We have to show that (2.3) implies the inequality
( n+1
)
Dλ,p (f ∗ g)(z)
1
Re
n (f ∗ g)(z) − (p + λ ) < −β.
λDλ,p

(2.3)

(2.4)

Define a regular function w(z) in U by
n+1
(f ∗ g)(z)
Dλ,p
n (f ∗ g)(z)
λDλ,p

− (p +

1
[p + (2β − p)w(z)]
)=−
.
λ
1 + w(z)

(2.5)

Clearly w(0) = 0. Equation (2.5) may be written as
n+1
Dλ,p
(f ∗ g)(z)
n (f
Dλ,p

∗ g)(z)

=

1 + [1 + 2λ(p − β)]w(z)
.
1 + w(z)

(2.6)

Differentiating (2.6) logarithmically with respect to z and using (1.14), we obtain
n+2
Dλ,p
(f ∗g)(z)
n+1
λDλ,p
(f ∗g)(z)

− (p + λ1 ) + β

(p − β)

=

2λzw′ (z)
(1+w(z)){1+[1+2λ(p−β)]w(z)}



1−w(z)
1+w(z) .

(2.7)

We claim that |w(z)| < 1 for z ∈ U . Otherwise there exists a point z0 ∈ U such that

max |w(z)| = |w(z0 )| = 1. Applying Jack’s Lemma, we have z0 w (z0 ) = ξw(z0 )(ξ ≥
|z|≤|z0 |

1). Writing w(z0 ) = eiθ (0 ≤ θ ≤ 2π) and putting z = z0 in (2.7), we get

11

M.K. Aouf, A.Shamandy, A. O. Mostafa, S.M. Madian - Properties of some ...

n+2
Dλ,p
(f ∗g)(z0 )
n+1
λDλ,p
(f ∗g)(z0 )

− (p + λ1 ) + β
=

p−β

2λξw(z0 )
(1+w(z0 )){1+[1+2λ(p−β)]w(z)}



1−w(z0 )
1+w(z0 ) .

(2.8)

Thus

Re

 n+2

Dλ,p (f ∗g)(z0 )


1


)
+
β

(p
+
 λDn+1 (f ∗g)(z0 )

λ
λ,p

p−β











1
> 0,
2[1 + λ (p − β)]

(2.9)

which obviously contradicts our hypothesis that f (z) ∈ Σn+1
(f, g; λ, β). Thus we
p
must have |w(z)| < 1 (z ∈ U ), and so from (2.5), we conclude that f (z) ∈
Σnp (f, g; λ, β), which evidently completes the proof of Theorem 1.
Theorem 2. Let f, g ∈ Σp satisfy the condition

Re

(

n+1
Dλ,p
(f ∗ g)(z)

)
1
(p − β)
− (p + ) < −β +
(z ∈ U )
n
λDλ,p (f ∗ g)(z)
λ
2(p − β + c)

(2.10)

for λ > 0, 0 ≤ β < p, p ∈ N, n ∈ N0 and c > 0. Then
Fc,p (f ∗ g)(z) =

c
z c+p

Zz

tc+p−1 (f ∗ g)(t)dt

(2.11)

0

Σnp (f, g; λ, β).

belongs to
Proof. From the definition of Fc,p (f ∗ g)(z), we have
n
n
n
z(Dλ,p
Fc,p (f ∗ g)(z))′ = cDλ,p
(f ∗ g)(z) − (c + p)Dλ,p
Fc,p (f ∗ g)(z)

(2.12)

and also
1 n
1 n+1
Dλ,p Fc,p (f ∗ g)(z) − (p + )Dλ,p
Fc,p (f ∗ g)(z) (λ > 0).
λ
λ
(2.13)
Using (2.12) and (2.13), the condition (2.10) may be written as
n
z(Dλ,p
Fc,p (f ∗ g)(z))′ =

Re






n+2
Dλ,p
Fc,p (f ∗g)(z)
n+1
λDλ,p
Fc,p (f ∗g)(z)



 1 + (λc − 1)

+ (c −

1
λ)

n F
Dλ,p
c,p (f ∗g)(z)
n+1
Dλ,p Fc,p (f ∗g)(z)




p−β
1 
.
− (p + ) < −β +
λ 
2(p − β + c)


12

(2.14)

M.K. Aouf, A.Shamandy, A. O. Mostafa, S.M. Madian - Properties of some ...

We have to prove that (2.14) implies the inequality
( n+1
)
Dλ,p Fc,p (f ∗ g)(z)
1
Re
n F (f ∗ g)(z) − (p + λ ) < −β.
λDλ,p
c,p

(2.15)

Define a regular function w(z) in U by
n+1
Dλ,p
Fc,p (f ∗ g)(z)
n F (f
λDλ,p
c,p

∗ g)(z)

− (p +

1
[p + (2β − p)w(z)]
)=−
.
λ
1 + w(z)

(2.16)

Clearly w(0) = 0. The equation (2.16) may be written as
n+1
Dλ,p
Fc,p (f ∗ g)(z)
n F (f
Dλ,p
c,p

∗ g)(z)

=

1 + [1 + 2λ(p − β)]w(z)
.
1 + w(z)

(2.17)

Differentiating (2.17) logarithmically with respect to z and using (2.13), we obtain
n+2
Dλ,p
Fc,p (f ∗ g)(z)
n+1
λDλ,p
Fc,p (f

∗ g)(z)



n+1
Dλ,p
Fc,p (f ∗ g)(z)
n F (f
λDλ,p
c,p

∗ g)(z)

=

2λ(p−β)zw′ (z)
(1+w(z))[1+(1+2λ(p−β))w(z)] .

(2.18)

The above equation may be written as
n+2
Dλ,p
Fc,p (f ∗g)(z)
n+1
λDλ,p
Fc,p (f ∗g)(z)

+ (c − λ1 )

Dn Fc,p (f ∗g)(z)

λ,p
1 + (λc − 1) Dn+1
F
λ,p

+

"

− (p +

c,p (f ∗g)(z)

n+1
Dλ,p
Fc,p (f ∗ g)(z)
1
1
)=
− (p + )
n
λ
λDλ,p Fc,p (f ∗ g)(z)
λ

#

β)zw′ (z)





1
2λ(p −



,
n F
D
(f
∗g)(z)
c,p
(1 + w(z))[1 + (1 + 2λ(p − β))w(z)]
λ,p
1 + (λc − 1) Dn+1
F (f ∗g)(z)
λ,p

c,p

which, by using (2.16) and (2.17), reduces to
n+2
Dλ,p
Fc,p (f ∗g)(z)
n+1
λDλ,p
Fc,p (f ∗g)(z)

+ (c − λ1 )

Dn Fc,p (f ∗g)(z)

λ,p
1 + (λc − 1) Dn+1
F
λ,p

+

c,p (f ∗g)(z)



1 − w(z)
1
− (p + ) = − β + (p − β)
λ
1 + w(z)

2λ(p − β)zw′ (z)
.
(1 + w(z)){c + [c + 2(p − β)]w(z)}
13

(2.19)

M.K. Aouf, A.Shamandy, A. O. Mostafa, S.M. Madian - Properties of some ...

The remaining part of the proof is similar to that Theorem 1, so we omit it.
Remark 1. (i) For λ = p = c = ak = bk = 1 and n = β = 0, we note that Theorem
2 extends a results of Bajpai [ 5, Theorem 1 ];
(ii) For λ = p = ak = bk = 1 and n = β = 0, we note that Theorem 2 extends a
results of Goel and Sohi [ 6, Corollary 1 ].
Theorem 3. (f ∗ g)(z) ∈ Σnp (f, g; λ, β) if and only if
F (f ∗ g)(z) =

1
z 1+p

Zz

tp (f ∗ g)(t)dt ∈ Σn+1
(f, g; λ, β).
p

(2.20)

0

Proof.From the definition of F (f ∗ g)(z) we have
n
n
n
Dλ,p
(zF ′ (f ∗ g)(z)) + (1 + p)Dλ,p
F (f ∗ g)(z) = Dλ,p
(f ∗ g)(z),

that is,
n
n
n
F (f ∗ g)(z) = Dλ,p
(f ∗ g)(z).
z(Dλ,p
F (f ∗ g)(z))′ + (1 + p)Dλ,p

(2.21)

n (f ∗g)(z) = D n+1 F (f ∗g)(z). Hence
By using the identity (1.14), (2.21) reduces to Dλ,p
λ,p
n+1
n+2
Dλ,p
(f ∗ g)(z) = Dλ,p
F (f ∗ g)(z), therefore,
n+1
Dλ,p
(f ∗ g)(z)
n (f ∗ g)(z)
Dλ,p

=

n+2
Dλ,p
F (f ∗ g)(z)
n+1
Dλ,p
F (f ∗ g)(z)

and the result follows.
References
[1] M.K. Aouf, New certeria for multivalent meromorphic starlike functions of
order alpha, Proc. Japan. Acad., 69 (1993), 66-70.
[2] M.K. Aouf, Certain subclasses of meromorphically multivalent functions associated with generalized hypergeometric function, Comput. Math. Appl., 55 (2008),
494-509.
[3] M.K. Aouf and H.M. Hossen, New certeria for meromorphic p-valent starlike
functions, Tsukuba J. Math., 17 (1993), no. 2, 481-486.
[4] M.K. Aouf and H.M. Srivastava, A new criterion for meromorphically p-valent
convex functions of order alpha, Math. Sci. Res. Hot-Line, 1 (1997), no. 8, 7-12.
14

M.K. Aouf, A.Shamandy, A. O. Mostafa, S.M. Madian - Properties of some ...

[5] S.K. Bajpai, A note on a class of meromorphic univalent functions, Rev.
Roum. Math. Pures Appl., 22 (1977), 295-297.
[6] R.M. Goel and N.S. Sohi, On a class of meromorphic functions, Glas. Mat.,
17 (1981), 19-28.
[7] I.S. Jack, Functions starlike and convex of order α, J. London Math. Soc.,
(2) 3 (1971), 469-474.
[8] J.-L. Liu and H.M. Srivastava, A linear operator and associated with the
generalized hypergeometric function, J. Math. Anal. Appl., 259 (2000), 566-581.
[9] J.-L. Liu and H.M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, Math. Comput. Modelling , 39 (2004), 21-34.
[10] R.K. Raina and H.M. Srivastava, A new class of meromorphiclly multivalent
functions with applications to generalized hypergeometric functions, Math. Comput.
Modelling, 43 (2006), 350-356.
[11] H.M. Srivastava and P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press, Ellis Horwood Limited, Chichester, John Wiley and Sons, New
York, Chichester, Brisbane, Toronto, 1985.
[12] B.A. Uralegaddi and C. Somanatha, New certeria for meromorphic starlike
univalent functions, Bull. Austral. Math. Soc., 43 (1991), 137-140.
M. K. Aouf
Department of Mathematics
Faculty of Science
Mansoura University
Mansoura 35516, Egypt.
email: mkaouf127@yahoo.com
A. Shamandy
Department of Mathematics
Faculty of Science
Mansoura University
Mansoura 35516, Egypt.
email: shamandy16@hotmail.com
A. O. Mostafa
Department of Mathematics
Faculty of Science
Mansoura University
Mansoura 35516, Egypt.
email: adelaeg254@yahoo.com
15

M.K. Aouf, A.Shamandy, A. O. Mostafa, S.M. Madian - Properties of some ...

S. M. Madian
Department of Mathematics
Faculty of Science
Mansoura University
Mansoura 35516, Egypt.
email: samar math@yahoo.com

16

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52