vol17_pp577-596. 177KB Jun 04 2011 12:06:01 AM

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 577-596, November 2008

ELA

http://math.technion.ac.il/iic/ela

LINEAR ALGEBRA AND THE SUMS OF POWERS OF INTEGERS∗
FRANC
¸ OIS DUBEAU†

Abstract. A general framework based on linear algebra is presented to obtain old and new
polynomial expressions for the sums of powers of integers. This framework uses changes of polynomial
basis, infinite lower triangular matrices and finite differences.

Key words. Finite differences, Polynomial space, Polynomial basis, Change of basis, Sum of
powers of integers, Infinite lower triangular matrix.

AMS subject classifications. 11B83, 11B37, 15A03, 15A09.


1. Introduction. Polynomial formulas to evaluate the sums of powers of integers
K


k n = 1n + 2n + 3n + · · · + K n

k=1

has a long history. In the antic Greece, Archimedes (287BC − 212BC) obtained
expressions for n = 1 and n = 2, and during the apex of Arab mathematical science, in the eleven century, Al-Haytham (965-1038), known in the West has Alhazen,
obtained formulas for n = 3 and n = 4 [4, 8]. Later several mathematicians considered this problem: Faulhaber (1631), Pascal (1636), Fermat (1654), Bernoulli (1713),
Euler (1755), Jacobi (1824), etc. The most celebrated results were obtained by J.
Faulhaber [10, 12, 20, 7, 14, 13] and J. Bernoulli [19, 14]. The reader interested by
the history of this problem could look at the preceding references and the following
[2, 6, 9, 15, 18, 19, 21].
In this paper we present a unified approach for obtaining polynomial formulas for
the sums of powers of integers. The method is based on finite differences and changes
of basis for polynomial subspaces. The main result is the following theorem proved
in Section 2.


+∞
Theorem 1.1. Let Bp = pi (x) i=0 be any family of polynomials such that the
∗ Received

by the editors August 6, 2008. Accepted for publication November 16, 2008. Handling
Editor: Miroslav Fiedler.
† D´
epartement de math´ematiques, Facult´e des sciences, Universit´e de Sherbrooke, 2500 Boul. de
l’Universit´
e, Sherbrooke (Qc), Canada, J1K 2R1 (Francois.Dubeau@USherbrooke.ca). Supported
by an NSERC (Natural Sciences and Engineering Research Council of Canada) individual discovery
grant.
577

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 577-596, November 2008

ELA


http://math.technion.ac.il/iic/ela

578

F. Dubeau

polynomial pi (x) is of degree i. For any fixed real number τ and any integer n ≥ 0

n
there exist constants αn,j (τ ) j=−1 such that
K


(1.1)

kn =

n



αn,j (τ )pj+1 (K + τ )

j=−1

k=1

where
(1.2)

αn,−1 (τ ) = −

n


αn,j (τ )pj+1 (τ ) = −

n


αn,j (τ )pj+1 (τ − 1).


j=0

j=0

Well known examples of formulas that we can obtain from this result are the
Bernoulli’s polynomial expression [19, 14] (see Section 3), and the Faulhaber’s polynomial expressions [10] (see Section 4.3).
In the last section the method is extended to obtain polynomial expressions for
the l-fold
(l)

ΣK0 K1n =

(1.3)

K1


kl



kl =K0 kl−1 =K0



l

···

k3


k2


k1n

k2 =K0 k1 =K0



summations



Finally, let us observe that the method worked out in this paper is also suitable
for implementation in a computer algebra system.

+∞
K
2. A general method for k=1 k n . Let Bp = pi (x) i=0 be a family of polynomials where pi (x) is of degree i for i ≥ 0. Let ∆τ be the finite difference operator
defined for any fixed τ ∈ R and for any function F (x) by
∆τ F (x) = F (x + τ ) − F (x + τ − 1).
The method is based on the following two elementary results.
Lemma 2.1. For any integer K0 ≤ K1 we have
(2.1)

K1


∆τ F (x + k) = F (x + K1 + τ ) − F (x + K0 + τ − 1).


k=K0

Lemma 2.2. For any integer i ≥ 0, if pi (x) is a polynomial of degree i, then
qi (x) = ∆τ pi+1 (x) is a polynomial of degree i.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 577-596, November 2008

ELA

http://math.technion.ac.il/iic/ela

579

Sums of Powers of Integers


As a consequence of Lemma 2.2, for any integer n ≥ 0 the sets Bsn = ei (x) =




n
n
xi i=0 , and Bqn = qi (x) = ∆τ pi+1 (x) i=0 are bases for the set Pn of polynomials of
degree at most n, and




(2.2)
Pn = Lin ei (x)|i = 0, ..., n = Lin qi (x)|i = 0, ..., n .




Let E (x) = (e0 (x), e1 (x), e2 (x), · · ·)t and Q (x) = (q0 (x), q1 (x), q2 (x), · · ·)t then
from (2.2) we obtain





E (x) = M Q (x)

(2.3)

and





Q (x) = N E (x)

where M and N are two infinite lower triangular matrices given by





M = αi,j (τ )



α0,0 (τ )
α1,0 (τ )
α2,0 (τ )
..
.



β0,0 (τ )
β1,0 (τ )
β2,0 (τ )
..
.



=
i = 0, 1, ...

j = 0, 1, ...

0
α1,1 (τ )
α2,1 (τ )
..
.

···
0
α2,2 (τ )
..
.

···
0 ···
.
..
. ..







and




N = βi,j (τ )



=
i = 0, 1, ...

j = 0, 1, ...

0
β1,1 (τ )
β2,1 (τ )
..
.

···
0
β2,2 (τ )
..
.

···
0 ···
.. ..
.
.





.


These matrices are invertible and M N = I = N M .
From (2.3) and (2.1), we obtain
(2.4)

K1


k=K0

en (x + k) =

n

j=0



αn,j (τ ) pj+1 (x + K1 + τ ) − pj+1 (x + K0 + τ − 1) ,

and if we set x = 0, K0 ≤ K1 = K, and K0 = 0 or 1, then we have a proof of
Theorem 1.1.
We suggest two methods for computing the scalars αi,j (τ )’s. The first method is
by direct inversion of the infinite lower triangular matrix N while the second method
uses the derivative of qn (x).
For the first method, we consider the system M N = I and we obtain

1
for j = i,

 βi,i (τ )
αi,j (τ ) =

 − 1 i
l=j+1 αi,l (τ )βl,j (τ ) for j = i − 1, ..., 0,
βj,j (τ )

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 577-596, November 2008

ELA

http://math.technion.ac.il/iic/ela

580

F. Dubeau

or we consider the system N M = I and we have

i−1
− βi,i1(τ ) l=j βi,l (τ )αl,j (τ )
αi,j (τ ) =
1

for j = 0, ..., i − 1,
for j = i.

βi,i (τ )

(1)

The second method proceeds as follows. Since pn+1 (x) is a polynomial of degree
n, we can write
(1)

pn+1 (x) =

n


γn,j−1 pj (x),

j=0

and
(1)

qn(1) (x) = ∆τ pn+1 (x) =

n


γn,j−1 ∆τ pj (x) =

j=1

n−1


γn,j qj (x).

j=0

Using the matrix notation, we have
− (1)



Q (x) = Γ Q (x)

(2.5)

where Γ is the infinite lower triangular matrix

0
···
 γ
0
 1,0



γ
γ

2,0
2,1
=
Γ = γi,j
i = 0, 1, ...
 γ3,0 γ3,1

j = 0, 1, ...
..
..
.
.






···
.

0 ··· 

.. ..
.
.

···
0
γ3,2
..
.

Moreover, we also have
(2.6)
where the infinite

0 0
 0 1


0
D=




− (1)



E (x) = DP E (x),
diagonal matrices D and P are defined


0


0

 1


2 0
 and P =  0




0 3
0


..
..
..
.
.
.

by

0
1
0

0
1
..



.

0
..
.

..

.




.




→(1)

→(1)

Hence from E (x) = M Q (x), (2.5) and (2.6), it follows that DP M = M Γ.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 577-596, November 2008

ELA

http://math.technion.ac.il/iic/ela

581

Sums of Powers of Integers

We obtain recursively each line of M by solving the system

DP M = M Γ,




E (ξ) = M Q (ξ),
where ξ is any arbitrary value for x. This leads to : α0,0 (τ )
=
have

i

for

γ i,i−1 αi−1,i−1 (τ )








i
1

for

)

α


αi,j (τ ) =
i−1,j
i,l
l,j−1
l=j+1
γ j,j−1






i

 ei (ξ)− j=1 αi,j (τ )qj (ξ)
for
q0 (ξ)

P

0, and for i ≥ 1 we
j = i,
j = i − 1, ..., 1,
j = 0.


+∞
3. Bernoulli’s polynomial formula. Let Bp = pi (x) = ei (x) i=0 and τ = 0.
We will use the notation αi,j (τ ) = αi,j and βi,j (τ ) = βi,j . We have

n 

n+1
qn (x) = en+1 (x) − en+1 (x − 1) =
(3.1)
(−1)n−j ej (x),
j
j=0

hence βn,j =



n+1
j



(−1)n−j for j = 0, ..., n, and





N =




1
0 ···
−1
2
0 ···
1 −3
3
0 ···
−1
4 −6
4
0 ···
..
..
..
.. . . . .
.
.
.
.
.
.






.




(1)

To compute M we use (2.5), and since qn (x) = (n + 1)qn−1 (x) for n ≥ 1, we
have


0
 2 0





0
3
0

 = (I + D)P.
Γ=



0 4
0


..
..
..
.
.
.

Then solving the system

DP M = M (I + D)P,







→ 

E (0) = M Q (0) or E (1) = M Q (1) ,

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 577-596, November 2008

ELA

http://math.technion.ac.il/iic/ela

582

F. Dubeau

leads to : α0,0 = 1, and for i ≥ 1
αi,j =

i
αi−1,j−1
j+1

for j = 1, ..., i, and
(3.2)

αi,0 =

i


(−1)j+1 αi,j = 1 −

i


αi,j .

j=1

j=1

From these relations we obtain
(3.3)

αi,j

1
=
i+1



i+1
j+1



αi−j,0

for j = 0, ..., i.
Remark 3.1. From (3.2) and (3.3), if we set αi−j,0 = Bi , the Bi ’s are the
Bernoulli’s numbers generated by : B0 = 1, and for i ≥ 1



i 
i

1  i+1
i+1
(3.4)
(−1)j
Bi−j = 1.
Bi−j = 0 or
j+1
j+1
i+1
j=0

j=0

For i ≥ 1, from (3.4) we get
⌊i⌋

2
2 
i + 1 j=0

(3.5)



i+1
2j



B2j = 1,

and


⌊ i−1
2 ⌋
2 
i+1
B2j+1 = 1.
2j + 1
i + 1 j=0

(3.6)

Since B0 = 1, from (3.5) we obtain the B2j ’s for j ≥ 1. From (3.6) we have B1 =
and for i ≥ 3

⌊ i−1
2 ⌋

j=1

i+1
2j + 1



1
2

B2j+1 = 0,

which implies that B2j+1 = 0 for j ≥ 1.
In this case (1.1) leads to the following celebrated Bernoulli’s polynomial formula

K
n 

1  n+1
kn =
Bi K n+1−i .
i
n+1
k=1

i=0

Expressions (3.3) and (3.2), used to compute recursively the coefficients, have already
been presented in [5, 9, 17, 3]. Several other proofs of this well known formula for the
sum of powers of integers appeared elsewhere [1, 6, 11, 12, 15, 16, 18, 21].

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 577-596, November 2008

ELA

http://math.technion.ac.il/iic/ela

583

Sums of Powers of Integers



K

=

1
2
2K

+ 21 K



K2

=

1
3
3K

+ 21 K 2 + 61 K



K3

=

1
4
4K

+ 21 K 3 + 41 K 2



K4

=

1
5
5K

+ 21 K 4 + 31 K 3 −

K5

=

1
6
6K

+ 21 K 5 +



K6

=

1
7
7K

+ 21 K 6 + 21 K 5 − 16 K 3 +

K7

=

1
8
8K

+ 21 K 7 +



K8

=

1
9
9K

+ 21 K 8 + 32 K 7 −

K9

=

1
10
10 K

+ 21 K 9 + 43 K 8 −



K 10

=

1
11
11 K

+ 21 K 10 + 65 K 9 − 1K 7 + 1K 5 − 21 K 3 +






5
4
12 K

7
6
12 K

1
30 K





1
2
12 K

7
4
24 K

7
5
15 K

1
42 K

+

1
2
12 K

+ 92 K 3 −

7
6
10 K

1
30 K

+ 12 K 4 −

3
2
20 K
5
66 K

Table 3.1
First 10 Bernoulli’s polynomial expressions for the sums of powers of integers.

4. Towards the Faulhaber’s polynomial formula. In this section we present
three formulas for the sums of powers of integers related by the bases we use to obtain
them. The last one is the Faulhaber’s polynomial formula. Throughout this section
τ = 12 .

4.1. A first intermediate polynomial formula. The first formula of this

section is very similar to the Bernoulli’s polynomial formula. Let Bp = pi (x) =
+∞
ei (x) i=0 , and let us use the notation ui (x) = ∆1/2 pi+1 (x), ai,j = αi,j ( 21 ) and bi,j =
βi,j ( 12 ).








Let U (x) = (u0 (x), u1 (x), u2 (x), · · ·)t , and set E (x) = M1 U (x) and U (x) =

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 577-596, November 2008

ELA

http://math.technion.ac.il/iic/ela

584

F. Dubeau



N1 E (x) where



M1 = ai,j



a0,0
a1,0
a2,0
..
.



b0,0
b1,0
b2,0
..
.



=
i = 0, 1, ...

j = 0, 1, ...

0
a1,1
a2,1
..
.

···
0
a2,2
..
.



···
0 ···
.. ..
.
.






and



N1 = bi,j



=
i = 0, 1, ...

j = 0, 1, ...

0

···
0
b2,2
..
.

b1,1
b2,1
..
.



···
0 ···
.. ..
.
.



.


We have
1
1
un (x) = en+1 (x + ) − en+1 (x − )
2
2

n 

1 n+1−j
n+1
=
[1 + (−1)n−j ]ej (x),
( )
j
2
j=0

(4.1)

=


⌊n
2⌋


j=0

and hence










N1 = 









1

1
22

1
24

0

0

..
.

3
3



0
 
2
1

1
22

5
5



n+1
2j + 1

0

0
..
.

4
3





1
( )2j en−2j (x),
2



···
0


1
22

3
1

0

..
.

···

5
3



0


4
1
0
..
.

···


0


5
1
..
.

···


0
..

···
.

..

From (4.1), we not only have (2.2) but also
n
n
Lin{en−2i (x)|i = 0, ..., ⌊ ⌋} = Lin{un−2i (x)|i = 0, ..., ⌊ ⌋},
2
2

.










.









Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 577-596, November 2008

ELA

http://math.technion.ac.il/iic/ela

585

Sums of Powers of Integers

and this observation implies that an,n−(2j+1) = 0 = bn,n−(2j+1) for j = 0, ..., ⌊ n−1
2 ⌋.
Therefore the sum of powers of integers (1.1) is given by
K


(4.2)

n

n

k = an,−1 +

k=1

⌊2⌋


1
an,n−2j (K + )n+1−2j
2
j=0

with (1.2) as
n

n

(4.3)

an,−1

⌊2⌋
⌊2⌋


1
1
( )n+1−2j an,n−2j = (−1)n
( )n+1−2j an,n−2j .
=−
2
2
j=0
j=0

It follows that an,−1 = 0 for n even.
(1)

Using (2.5), and since qn (x) = (n + 1)qn−1 (x) for n ≥ 1, we have





Γ = (I + D)P = 




Solving the system


0
2
0

0
3
0



0
4
..
.

0
..
.

..

.




.




DP M1 = M1 (I + D)P,





→ 



E (0) = M1 U (0) or E (1) = M1 U (1) ,

leads to : a0,0 = 1, and for i ≥ 1

ai,j =

i
ai−1,j−1
j+1

for j = 1, ..., i, and
i−1

(4.4)

ai,0

i
2

1
[1 + (−1)i ] 
1
( )j+1 [1 + (−1)j ]ai,j = −
=−
( )i−2j ai,i−2j .
2
2
2
j=1
j=0

Hence ai,0 = 0 for odd i. From these relations we obtain
(4.5)
for j = 0, ..., i.

ai,j =

1
i+1



i+1
j+1



ai−j,0

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 577-596, November 2008

ELA

http://math.technion.ac.il/iic/ela

586

F. Dubeau

Remark 4.1. As for the Bernoulli’s numbers, let us set ai,0 = Ai . Then from
(4.4) and (4.5), the Ai ’s are generated by : A0 = 1 and for i ≥ 1
i


2

1 2j
i+1
( )
Ai−2j = 0.
2j + 1
2
j=0

Using x =

1
2





and x = − 21 in E (x) = M1 U (x) , we have
1
i
2

=

i


ai,j

and

j=0



i



1
i 
(−1)j ai,j
=
2
j=0

which leads to
⌊ i−1
2 ⌋

i

1
i
2

=

⌊2⌋


ai,i−2j

and 0 =

j=0



ai,i−(2j+1) .

j=0

We also conclude from these relations that ai,i−(2j+1) = 0 and A2j+1 = 0 for any
j ≥ 0.
Finally, (4.2) becomes
K


k=1

⌊ n+1
2 ⌋
n

k =


j=0

1
an,n−2j (K + )n+1−2j .
2

where the an,n−2j ’s are given by (4.3), (4.4) and (4.5).
4.2. A second intermediate polynomial formula. Let Bp =
where

for i = 0, 1,
 ei (x)
pi (x) =

ei (x) − 41 ei−2 (x) for i ≥ 2.



+∞
pi (x) i=0

Let us use the notation vi (x) = ∆1/2 pi+1 (x), ci,j = αi,j ( 12 ) and di,j = βi,j ( 12 ).








Let V (x) = (v0 (x), v1 (x), v2 (x), · · ·)t , and set E (x) = M2 V (x) and V (x) =


N2 E (x) where the two lower triangular matrices are defined by



M2 = ci,j





=
i = 0, 1, ...

j = 0, 1, ...

c0,0
c1,0
c2,0
..
.

0
c1,1
c2,1
..
.

···
0
c2,2
..
.

···
0 ···
.. ..
.
.







Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 577-596, November 2008

ELA

http://math.technion.ac.il/iic/ela

587

Sums of Powers of Integers



K

=

1 2
2U



1
8



K2

=

1 3
3U



1
12 U

K3

=

1 4
4U

− 18 U 2 +

1
64



K4

=

1 5
5U

− 16 U 3 +

7
240 U



K5

=

1 6
6U



K6

=

1 7
7U

− 14 U 5 +



K7

=

1 8
8U





K8

=

1 9
9U

− 13 U 7 +



K9

=

1
10
10 U

− 38 U 8 +



K 10

=

1
11
11 U







5
4
24 U

7
6
24 U

7
2
96 U

+

7
3
48 U



49
4
192 U

+

5
9
12 U



49
5
120 U

1
128

31
1344 U



31
2
384 U

+

17
2048

31
3
144 U

+

127
3840 U



31 4
64 U

+

381
2
2560 U

+ 87 U 7 −

31 5
32 U

+

127 3
256 U



49 6
80 U





31
2048

2555
33792 U

Table 4.1
First 10 Bernoulli’s like polynomial expressions for the sums of powers of integers, U = K + 21 .

and


N2 = di,j





=
i = 0, 1, ...

j = 0, 1, ...

d0,0
d1,0
d2,0
..
.

0
d1,1
d2,1
..
.

···
0
d2,2
..
.

···
0 ···
.. ..
.
.





.


We have v0 (x) = e0 (x), v1 (x) = 2e1 (x), and for i ≥ 2
(4.6)

1
vi (x) = ui (x) − ui−2 (x)
4

 
i 


i − 1  1 i−j+1 
i
( )
+
=
1 + (−1)i−j ej (x)
j−1
j−1
2
j=1
=

⌊ i−1
2 ⌋


j=0

i
2j + 1



+



i−1
2j


1
( )2j ei−2j (x).
2

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 577-596, November 2008

ELA

http://math.technion.ac.il/iic/ela

588

F. Dubeau

Hence


Then for n ≥ 1






N2 = 






1
0
0
0
0
0
..
.

0
2
0
1
2

0
1
8

Lin{en−2i (x)|i = 0, ..., ⌊

···
0 ···
3
0 ···
0
4
0 ···
7
0
5
0 ···
4
0
4
0
6
0 ···
..
..
..
..
.. ..
.
.
.
.
.
.








.






n−1
n−1
⌋} = Lin{vn−2i (x)|i = 0, ..., ⌊
⌋},
2
2

and cn,0 = 0 = dn,0 for n ≥ 1, and cn,n−(2j+1) = 0 = dn,n−(2j+1) cn,n−(2j+1) = 0 =
dn,n−(2j+1) for any j = 0, ..., ⌊ n−1
2 ⌋. It follows that (1.1) becomes

 n−1
2

K
cn,n−2j (K + 21 )n−1−2j
for n odd,
 K(K + 1) j=0

n
k =

 n2 −1

k=1
cn,n−2j (K + 12 )n−2−2j for n even.
K(K + 1)(K + 12 ) j=0







Remark 4.2. From (4.6) we have V (x) = (I − 41 P 2 ) U (x). Then E (x) =






M2 (I− 41 P 2 ) U (x). We also have E (x) = M1 U (x). It follows that M2 (I− 14 P 2 ) = M1 .
+∞
+∞
But (I − 41 P 2 )−1 = l=0 ( 14 )l P 2l , then M2 = M1 (I − 41 P 2 )−1 = M1 l=0 ( 14 )l P 2l ,
and
ci,i−2j =

j

1
( )j−l ai,i−2l
4
l=0

for j = 0, ..., ⌊ 2i ⌋.

+∞
4.3. Faulhaber’s polynomial formula. Let Bp = pi (x) i=0 where
i 
1
1 ⌊ i ⌋
pi (x) = xi−2⌊ 2 ⌋ (x − )(x + ) 2 .
2
2

Let us use the notation wi (x) = ∆1/2 pi+1 (x), fi,j = αi,j ( 12 ), and gi,j = βi,j ( 21 ).








Let W (x) = (w0 (x), w1 (x), w2 (x), · · ·)t , then E (x) = MF W (x) and W (x) =


NF E (x) where the two lower triangular matrices are defined by


f0,0
0
···
 f1,0 f1,1



0
···


= f
MF = fi,j

f
f
0
·
·
·
2,1
2,2
i = 0, 1, ...
 2,0

.
.
.
.
.
..
..
..
..
..
j = 0, 1, ...

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 577-596, November 2008

ELA

http://math.technion.ac.il/iic/ela

589

Sums of Powers of Integers



K

=

1
2V



K2

=

1
3UV



K3

=

V [ 14 U 2 −



K4

=

U V [ 15 U 2 −



K5

=

V [ 16 U 4 − 61 U 2 +

1
32 ]

K6

=

U V [ 71 U 4 −

+



K7

=

V [ 18 U 6 −



K8

=

U V [ 91 U 6 −



K9

=

1
U8 −
V [ 10



K 10

=

1
U V [ 11
U8 −



1
16 ]
7
60 ]

3
2
14 U

25 4
96 U

73
2
384 U

+

11 4
36 U

7
6
20 U

31
336 ]

+

13 6
33 U

239 2
720 U

21 4
40 U

+

+

17
512 ]







205 4
264 U

127
960 ]

113 2
320 U



+

409 2
528 U

31
512 ]

+

2555
8448 ]

Table 4.2
First 10 intermediate polynomial expressions for the sums of powers of integers, V = K(K + 1).

and


NF = gi,j





=
i = 0, 1, ...

j = 0, 1, ...

g0,0
g1,0
g2,0
..
.

0
g1,1
g2,1
..
.

···
0
g2,2
..
.

···
0 ···
..
..
.
.

We have

 

⌊k
2⌋


k
k+1
w2k (x) =
e2k−2j
+
2j + 1
2j + 1
j=0

and


⌊k
2⌋

k+1
e2k+1−2j .
2
w2k+1 (x) =
2j + 1
j=0







Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 577-596, November 2008

ELA

http://math.technion.ac.il/iic/ela

590

F. Dubeau

The matrix NF is







NF = 






1
0
0
0
0
0
..
.

0
2
0
0
0
0
..
.

···
0 ···
3
0 ···
0
4
0 ···
1
0
5
0 ···
0
2
0
6
0 ···
..
..
..
..
..
..
.
.
.
.
.
.

Consequently for i ≥ 2

and also








.










i
i
Lin wi−2j (x)|j = 0, ..., ⌊ ⌋ − 1 = Lin ei−2j (x)|j = 0, ..., ⌊ ⌋ − 1 ,
2
2
⌊ 2i ⌋−1

(4.7)

ei (x) =



fi,i−2j wi−2j (x).

j=0

Hence, for n ≥ 2, (1.1) becomes
 

 n−3
2  n−3
2 −j
2

K
 K(K + 1)
j=0 fn,n−2j K(K + 1)

kn =


 n −1−j
 n2 −1

k=1
fn,n−2j K(K + 1) 2
(K + 12 )K(K + 1) j=0

for n odd,
for n even,

which is the Faulhaber’s polynomial expression for the sums of powers of integers.
To compute recursively the coefficients fi,i−2j , we observe that
(1)

(4.8)

w2l+2 (x) = (1 + 2(l + 1))w2l+1 (x) +

l+1
w2l−1 (x),
2

and
(1)

(4.9)

w2l+1 (x) = 2(l + 1)w2l (x).

Then, from (4.7)
(4.10)

(2l + 2)x2l+1 =

l

j=0


f2l+2,2l+2−2j (1 + 2(l − j + 1))w2(l−j)+1 (x)
+

(4.11)
and
(4.12)

(2l + 1)x2l =

l−1

j=0


(l − j) + 1
w2(l−j)−1 (x) ,
2

f2l+1,2l+1−2j 2(l − j + 1))w2(l−j) (x).

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 577-596, November 2008

ELA

http://math.technion.ac.il/iic/ela

591

Sums of Powers of Integers

Then again using (4.7), (4.8) and (4.9), we obtain the recursive method : assume
f2,0 = 0 and f2,2 = 13 , for l ≥ 1 :
(a) to compute f2l+1,2l+1−2j from f2l,2l−2j we use the relation
(4.13)

f2l+1,2l+1−2j =

(2l + 1)
f2l,2l−2j
2(l + 1 − j)

for j = 0, ..., l − 1;
(b) to compute f2l+2,2l+2−2j from f2l+1,2l+1−2j , we set f2l+2,2l+4 = 0 and f2l+1,1 = 0
and we use

(l + 2 − j)
2(l + 1) 
(4.14)f2l+2,2l+2−2j =
f2l+1,2l+1−2j −
f2l+2,2l+2−2(j−1)
(2(l − j) + 3)
4(l + 1)
for j = 0, ..., l.
Remark 4.3. Using the matrix notation, (4.8) and (4.9) lead to the lower trian−
→(1)


gular matrix Γ such that W (x) = ΓW (x) and its nonzero elements are γi,i−1 = i+1
for i ≥ 1, and γ2l,2l−3 = 4l for l ≥ 2. Solving the system DP MF = MF Γ, we obtain
(4.13) and (4.14).
The formula (4.13) was known by Faulhaber [10, 14] and appears also in [12, 20,
7, 15].
4.4. Other polynomial formulas. We could find other formulas trying with
other sets B. For example, take any integer m ≥ 2 and set pi (x) = ei (x) for i ≤ 0 and

1
1 ⌊ mi ⌋
i
pi (x) = xi−2⌊ m ⌋ (x − )(x + )
2
2

for i ≥ 1. The value m = 2 corresponds to the Faulhaber’s case.
5. An extension of the method. In this section by repeating the application
of the difference operator we obtain expressions for l-fold summations of powers of
integers. Let us use the following notation for the l-fold summations
 σ
for l = 0,
 ∆τ F (x + K1 )
(l)
ΣK0 ∆στ F (x + K1 ) =
 K1
Σkl =K0 · · · Σkk21 =K0 ∆στ F (x + k1 ) for l ≥ 1,
and

(l)

ΣK0 K10 =


 1


for any nonnegative integer l.

k2
1
ΣK
kl =K0 · · · Σk1 =K0 1

for l = 0,
for l ≥ 1,

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 577-596, November 2008

ELA

http://math.technion.ac.il/iic/ela

592

F. Dubeau



K

=

1
2V



K2

=

1
3UV



K3

=

1 2
4V



K4

=

U V [ 51 V −



K5

=

V 2 [ 16 V −

K6

=

U V [ 71 V 2 − 71 V +



K7

=

V 2 [ 18 V 2 − 61 V +



K8

=

U V [ 91 V 3 − 92 V 2 + 15 V −

K9

=

1
V 3 − 41 V 2 +
V 2 [ 10



K 10

=

1
U V [ 11
V4−





1
15 ]
1
12 ]
1
21 ]

1
12 ]

10 3
33 V

3
10 V

+

1
15 ]



17 2
33 V

3
20 ]



5
11 V

+

5
33 ]

Table 4.3
First 10 Faulhaber’s polynomial expressions for the sums of powers of integers.

Lemma 5.1. For any integers K0 ≤ K1 and σ ≥ 1 we have
σ
σ−1
1
ΣK
F (x + K1 + τ ) − ∆σ−1
F (x + K0 + τ − 1).
τ
k=K0 ∆τ F (x + k) = ∆τ

More generally we have
Lemma 5.2. For any integers K0 ≤ K1 and 0 ≤ l ≤ σ we have
(l)

F (x + K1 + lτ )
ΣK0 ∆στ F (x + K1 ) = ∆σ−l
τ


(j)
0
σ−(l−j)
−Σl−1
F (x + K0 + (l − j)τ − 1).
j=0 ΣK0 K1 ∆τ
Lemma 5.3. For any integer i ≥ 0, if pi (x) is a polynomial of degree i, then
qi (x) = ∆στ pi+σ (x) is a polynomial of degree i.
From Lemma 5.3 we have




Pn = Lin ei (x)|i = 0, ..., n = Lin qi (x)|i = 0, ..., n .

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 577-596, November 2008

ELA

http://math.technion.ac.il/iic/ela

593

Sums of Powers of Integers









Let E (x) = M Q (x) and Q (x) = N E (x) where M and
matrices



M = αi,j (τ, σ)
i = 0, 1, ...
j = 0, 1, ...

α0,0 (τ, σ)
0
···
 α1,0 (τ, σ) α1,1 (τ, σ)
0

=  α (τ, σ) α (τ, σ) α (τ, σ)
2,1
2,2
 2,0
..
..
..
.
.
.

N are two lower triangular

···
0 ···
..
.
. ..

and




N = βi,j (τ, σ)




=








i = 0, 1, ...
j = 0, 1, ...

β0,0 (τ, σ))
β1,0 (τ, σ))
β2,0 (τ, σ))
..
.

0
β1,1 (τ, σ))
β2,1 (τ, σ))
..
.

···
0
β2,2 (τ, σ))
..
.

···
0 ···
..
..
.
.

such that M N = I = N M . It follows that
(5.1)

ei (x) =

i


αi,j (τ, σ)qj (x) =

i






,


αi,j (τ, σ)∆στ pj+σ (x),

j=0

j=0

and
qi (x) =

i


βi,j (τ, σ)ej (x).

j=0

From (5.1) and the Lemma 5.2 we have
(l)

ΣK0 (x + K1 )n =

n


(l)

αn,j (τ, σ)ΣK0 ∆στ pj+σ (x + K1 ).

j=0

If we set x = 0 and 1 = K0 ≤ K1 = K, the l-fold summation of powers of integers is
(l)

Σ1 K n =

n


(l)

αn,j (τ, σ)Σ1 ∆στ pj+σ (K).

j=0

The scalars αi,j (τ, σ)’s can be computed recursively by inversion of the lower
triangular matrix N if this matrix is known or by the following procedure. Since

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 577-596, November 2008

ELA

http://math.technion.ac.il/iic/ela

594

F. Dubeau

(1)

pn+σ (x) is a polynomial of degree n + σ − 1, we have
(1)

pn+σ (x) =

n+σ−1


γn,j−σ pj (x).

j=0

Then
(1)

qn(1) (x) = ∆στ pn+σ (x) =

n+σ−1


γn,j−σ ∆στ pj (x) =

j=σ

n−1


γn,j qj (x),

j=0

→(1)



and we write Q (x) = Γ Q (x) where Γ is a lower triangular matrix with zero values
→(1)



on the diagonal. We also have E (x) = DP E (x). Using these identities with
(1)
(1)




E (x) = M Q (x), it follows that
DP M = M Γ.
Adding




E (ξ) = M Q (ξ)
for any fixed x = ξ, we can solve for M .
6. Examples. We present two families of formulas based on the general approach. The details are left to the reader.

+∞
6.1. A Bernoulli’s type example. Let Bp = pi (x) = ei (x) i=0 , and let us
(σ)

(σ)

use the notation ui (x) = ∆σ1/2 pi+σ (x), ai,j = αi,j ( 21 , σ) and bi,j = βi,j ( 12 , σ). We
have
n

un (x) =

⌊2⌋


(σ)

bn,n−2j en−2j (x)

j=0

then
n
n
Lin{en−2i (x)|i = 0, ..., ⌊ ⌋} = Lin{un−2i (x)|i = 0, ..., ⌊ ⌋}.
2
2
It follows that
n

en (x) =

⌊2⌋


n

(σ)
an,n−2j un−2j (x)

j=0

=

⌊2⌋


(σ)

an,n−2j ∆σ1/2 pn+σ−2j (x).

j=0

and
n

(σ)
Σ1 K n

=

⌊2⌋

j=0

(σ)

(σ)

an,n−2j Σ1 ∆σ1/2 pn+σ−2j (K).

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 577-596, November 2008

ELA

http://math.technion.ac.il/iic/ela

595

Sums of Powers of Integers

For example, let σ = 2 we have
n

(2)
Σ1 K n

=

⌊2⌋

j=0



(2)
an,n−2j (K + 1)n+2−2j − (K + 1) .


+∞
6.2. A Faulhaber’s type example. Let Bp = pi (x) i=0 with
i 
1 ⌊ i ⌋
1
pi (x) = xi−2⌊ 2 ⌋ (x − σ )(x + σ ) 2
2
2

(σ)

(σ)

for i ≥ 1. We use the notation wi (x) = ∆σ1/2 pi+σ (x), fi,j = αi,j ( 21 , σ), and gi,j =
βi,j ( 12 , σ). It is possible to show that
⌊ i−1
2 ⌋

wi (x) =



(σ)

gi,i−2j ei−2j (x)

j=0

(σ)

(σ)

with gi,0 = 0 and fi,0 = 0. Then


i−1 
i−1 
Lin ei−2j (x)|j = 0, ..., ⌊
⌋ = Lin wi−2j (x)|j = 0, ..., ⌊
⌋ ,
2
2

and we can write

⌊ n−1
2 ⌋

⌊ n−1
2 ⌋



en (x) =

(σ)
fn,n−2j wn−2j (x)

j=0

=



(σ)

fn,n−2j ∆σ1/2 pn+σ−2j (x)

j=0

and obtain
⌊ n−1
2 ⌋
(σ)
Σ1 K n

=



(σ)

(σ)

fn,n−2j Σ1 ∆σ1/2 pn+σ−2j (K).

j=0

For example, for σ = 2 we have
⌊ n−1
2 ⌋
(2)
Σ1 K n

=



fn,n−2j Σ1 ∆21/2 pn+2−2j (K)




⌊ n2 ⌋+1−j
n
(2)
fn,n−2j (K + 1)n−2⌊ 2 ⌋ K(K + 2)
.

(2)

(2)

j=0

⌊ n−1
2 ⌋

=

j=0

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 17, pp. 577-596, November 2008

ELA

http://math.technion.ac.il/iic/ela

596

F. Dubeau
REFERENCES

[1] D. Acu. Some algorithms for the sums of integer powers. Mathematics Magazine, 61:189–191,
1988.
[2] A. F. Beardon. Sums of powers of integers. American Mathematical Monthly, 103:201–213,
1996.
[3] D. M. Bloom. An old algorithm for the sums of integer powers. Mathematics Magazine,
66:304–305, 1993.
[4] C. B. Boyer. Pascal’s formula for the sums of powers of integers. Scripta Mathematica, 9:
237-244, 1943.
[5] M. A. Budin and A. J. Cantor. Simplified computation of sums of powers of integers. IEEE
Transactions on Systems, Man, and Cybernetics, 2:285–286, 1972.
[6] A. W. F. Edwards. Sums of powers of integers : a little of history. The Mathematical Gazette,
66:22–28, 1982.
[7] A. W. F. Edwards. A quick route to sums of powers. American Mathematical Monthly, 93:451–
455, 1986.
[8] C. H. Jr Edwards. The Historical Development of Calculus. Springer-Verlag Inc., New York,
1979.
[9] H. M. Edwards. Fermat’s Last Theorem : a Genetic Introduction to Algebraic Number Theory.
Springer-Verlag Inc. New York, New York, 1977.
[10] J. Faulhaber. Academia Algebræ. Darinnen die miraculosische Inventiones zu den h¨
ochsten
weiters continuirt und profitiert werden, call number QA154.8 F3 1631a f MATH at Stanford University Libraries, Johann Ulrich Sch¨
onigs, Augspurg[sic], 1631.
[11] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. 4th edition,
Oxford, London, 1960.
[12] J. Jacobi. De usu legitimo formulae summatoriae Maclaurinianae. Journal f¨
ur die Reine und
Angewandte Mathematik, 12:263-272, 1834.
[13] H. K. Krishnapriyan. Eulerian polynomial and Faulhaber’s result on sums of powers of integers.
The College Mathematics Journal, 26:118-123, 1995.
[14] D. E. Knuth. Johann Faulhaber and sums of powers. Mathematics of Computation, 203:277–
294, 1993.
[15] T. C. T. Kotiah. Sums of powers of integers - A review. International Journal of Mathematical
Education in Science and Technology, 24:863–874, 1993.
[16] J. Nunemacher and R. M. Young. On the sum of consecutive Kth powers. Mathematics
Magazine, 61:237–238, 1987.
[17] R. W. Owens. Sums of powers of integers. Mathematics Magazine, 65:38–40, 1992.
[18] S. H. Scott. Sums of powers of natural numbers by coefficient operation. The Mathematical
Gazette, 64:231–238, 1980.
[19] D. E. Smith. A Source Book in Mathematics. McGraw-Hill, New York, 1929.
[20] L. Tits. Sur la sommation des puissances num´eriques. Mathesis, 37:353-355, 1923.
[21] J. B. Wilker. Sums of powers of natural numbers by efficient cooperation. The Mathematical
Gazette, 64:239–244, 1980.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52