vol18_pp693-699. 96KB Jun 04 2011 12:06:05 AM

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 693-699, November 2009

ELA

http://math.technion.ac.il/iic/ela

EXPLICIT POLAR DECOMPOSITIONS OF COMPLEX MATRICES∗
ROGER A. HORN† , GIUSEPPE PIAZZA‡ , AND TIZIANO POLITI§

Abstract. In [F. Uhlig, Explicit polar decomposition and a near-characteristic polynomial:
The 2 × 2 case, Linear Algebra Appl., 38:239–249, 1981], the author gives a representation for the
factors of the polar decomposition of a nonsingular real square matrix of order 2. Uhlig’s formulae
are generalized to encompass all nonzero complex matrices of order 2 as well as all order n complex
matrices with rank at least n − 1.

Key words. Polar decomposition.

AMS subject classifications. 15A23.


1. Introduction and notation. A polar decomposition of A ∈ Cn×n is a factorization
(1.1)

A = UH

in which U ∈ Cn×n is unitary and H ∈ Cn×n is positive semidefinite (and therefore
also Hermitian). The factor H is always uniquely determined as the unique positive
1/2
semidefinite square root of A∗ A: H = (A∗ A) . If A is nonsingular, then the unitary
−1
factor is also unique: U = AH . The polar factors of A can be found by exploiting
its singular value decomposition, even if A is singular.
In the literature [1, 2], it has been considered whether it is possible to compute the
polar factors of a complex matrix using only arithmetic operations and extraction of
radicals of integer degree. In [1], the authors note that this can be done if the largest
and smallest singular values are known, e.g., the class of singular real symmetric
stochastic matrices and the class of companion matrices. In [4, 6], explicit formulae
are given for polar factors of companion and block companion matrices. In this note,
we generalize the explicit formulae in [5] for the polar factors of nonsingular real
square matrices of order 2, and obtain explicit formulae for polar factors of n−by−n

complex matrices with rank at least n − 1.
∗ Received

by the editors April 10, 2009. Accepted for publication September 21, 2009. Handling
Editor: Ravindra B. Bapat.
† Mathematics Department, University of Utah, 155 South 1400 East, Salt Lake City, Utah 841120090, USA (rhorn@math.utah.edu).
‡ Dipartimento di Matematica, Politecnico di Bari, Via Orabona 4, I–70125 Bari, Italy. This paper
is dedicated to the memory of Professor Giovanni Di Lena.
§ Dipartimento di Matematica, Politecnico di Bari, Via Orabona 4, I–70125 Bari, Italy
(politi@poliba.it).
693

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 693-699, November 2009

ELA

http://math.technion.ac.il/iic/ela


694

R.A. Horn, G. Piazza, and T. Politi

A singular value decomposition of A ∈ Cn×n is a factorization
A = V ΣW ∗ ,
in which V, W ∈ Cn×n are unitary and Σ = diag(σ1 , . . . , σn ) is a real diagonal matrix
whose diagonal entries are σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, the non-increasingly ordered
singular values of A. The matrices H = W ΣW ∗ and U = V W ∗ are corresponding
1/2
polar factors of A: H is positive semidefinite and H = (A∗ A)
(always unique), U
is unitary (unique only if A is nonsingular), and A = U H.
We let adjA denote the adjugate of A, that is, the transposed matrix of cofactors
of A (see [3], p. 20). If A is nonsingular, then
adjA = det A · A−1 .
In general,
adjA∗ = (adjA)∗ ,

adjAB = adjB adjA,

and


adjΣ = diag 



j=1

σj ,



j=2

σj , . . . ,



j=n




σj  .

Moreover,
adjA∗ = adj(W ΣV ∗ ) = (adjV ∗ )(adjΣ)(adjW ) = det(V ∗ W )V (adjΣ)W ∗ .
If A is nonsingular, then eiθ := (detA)/|detA| is a well-defined complex number with
unit modulus and
adjA∗ = e−iθ V (adjΣ)W ∗ .
2. Orders 2 and 3. In this section, we exhibit an explicit formula for the polar
factors of a nonzero order 2 complex matrix. Our formula reduces to the representation in [5] when A is real and nonsingular. For order 3 complex matrices with rank at
least two, we give an explicit formula for a unitary factor in the polar decomposition,
given the positive semidefinite factor. This formula suggests a representation for a
unitary factor in the polar decomposition for order n complex matrices with rank at
least n − 1, which we discuss in the next section.

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 693-699, November 2009


ELA

http://math.technion.ac.il/iic/ela

695

Explicit Polar Decomposition

Theorem 2.1. Let A ∈ C2×2 be nonzero and let θ be any real number such that
det A = eiθ | det A|. Then A = U H, in which

−1/2
U = det(A + eiθ adjA∗ )
(A + eiθ adjA∗ )

is unitary and H = U ∗ A is positive semidefinite. If A is real, then H is real and U
may be chosen to be real.
Proof. Suppose that A is nonsingular, and compute



:= A + eiθ adjA∗
= V ΣW ∗ + eiθ e−iθ V (adjΣ)W ∗
= V (Σ + adjΣ)W ∗
=V



σ1
0

0
σ2



+




σ2
0

0
σ1




W∗

= V ((σ1 + σ2 )I)W ∗ = (σ1 + σ2 )V W ∗ ,
which is a positive scalar multiple of the unitary factor of A corresponding to the
positive definite factor H = (A∗ A)1/2 . Moreover,
| det(A + eiθ adjA∗ )| = (σ1 + σ2 )2 .
Now suppose that A is singular and nonzero, so rankA = 1 and Σ = diag(σ1 , 0)
with σ1 > 0. For any θ ∈ [0, 2π) we must show that Zθ is a positive scalar multiple
of a unitary matrix and that Zθ∗ A is positive semidefinite. Let γ = eiθ det(V ∗ W ) and
compute



= V (Σ + adjΣ)W ∗
=V



= σ1 V



0
0





1 0
0 γ




W ∗,

σ1
0



0
0

0
σ1




W∗


which is a positive scalar multiple of a unitary matrix (a product of three unitary
matrices). Moreover,




σ1 0
1 0
V∗ ·V
W ∗ = σ1 W ΣW ∗ = σ1 H,
Zθ∗ A = σ1 W
0 0
0 γ¯

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 693-699, November 2009

ELA

http://math.technion.ac.il/iic/ela

696

R.A. Horn, G. Piazza, and T. Politi

which is positive semidefinite.
Finally, suppose that A is real. Then so is adjA∗ . If A is nonsingular, then
θ ∈ {0, π}; if A is singular, take θ = 0.
If A is nonsingular, then eiθ and U in the preceding theorem are uniquely determined. If A is singular, then eiθ may be any complex number with modulus one, and
U is not uniquely determined.
Theorem 2.2. Let A ∈ C3×3 and suppose that rankA ≥ 2. Let H be the positive
semidefinite square root of A∗ A, and let θ be any real number such that det A =
eiθ | det A|. Then A = U H, in which

U=

(2.1)

1
((trH)A − AH + eiθ adjA∗ )
tr(adjH)

is unitary. If A is real, then H is real and U may be chosen to be real.
Proof. Suppose that A is nonsingular, and compute



:= (trH)A − AH + eiθ adjA∗
= (trΣ)V ΣW ∗ − (V ΣW ∗ )(W ΣW ∗ ) + eiθ e−iθ V (adjΣ)W ∗
= V ((trΣ)Σ − Σ2 + adjΣ)W ∗
= (σ1 σ2 + σ1 σ3 + σ2 σ3 )V W ∗ = tr(adjΣ)V W ∗ ,

which is a positive scalar multiple of the unitary polar factor of A corresponding to
the positive definite factor H.
Now suppose that rankA = 2, so Σ = diag(σ1 , σ2 , 0) and σ1 ≥ σ2 > 0. Let

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 693-699, November 2009

ELA

http://math.technion.ac.il/iic/ela

697

Explicit Polar Decomposition

γ = eiθ det(V ∗ W ) and compute


Zθ = V (trΣ)Σ − Σ2 + γadjΣ W ∗


σ1 (σ1 + σ2 )


=V
0
0
0 0

+γ 0 0
0 0


1
= σ1 σ2 V  0
0


  2
0
0
σ1


0
σ2 (σ1 + σ2 ) 0 −
0
0
0

0
σ22
0


0
0 
0


0
0  W ∗
σ1 σ2


0 0
1 0  W ∗,
0 γ

which is a positive scalar multiple of a unitary matrix. One checks that Zθ∗ A =
σ1 σ2 W ΣW ∗ = σ1 σ2 H.
3. Order n for n ≥ 3. Let pH (z) be the characteristic polynomial of the n-by-n
positive semidefinite matrix H = (A∗ A)1/2 :
n

pH (z) = z +

(3.1)

n


pk z n−k .

k=1

The coefficients pk are elementary symmetric functions of the eigenvalues of H, which
are the singular values of A:
pk = (−1)k



k


σij ,

k = 1, . . . , n.

1≤i1 0. Let γ = eiθ det(V ∗ W ) and compute
Zθ = V ((−1)n pn−2 Σ + (−1)n ΣqH (Σ) + γadjΣ) W ∗ .
For k = 1, . . . , n − 1, the k th main diagonal entry of V ∗ Zθ W is
(−1)n pn−2 σk + (−1)n (−pn−2 σk − pn−1 ) = (−1)n−1 pn−1 = tr(adjH)
because σn = 0. The nth main diagonal entry of V ∗ Zθ W is γσ1 · · · σn−1 = γtr(adjH).
Thus, Zθ = tr(adjH)V diag(1, . . . , 1, γ)W ∗ , which is a positive scalar multiple of a
unitary matrix. One checks that Zθ∗ A = tr(adjH)W ∗ ΣW = tr(adjH)H.
For n = 3, (3.2) becomes
(3.3)
which is (2.1).

U=

1
((−(−trH))A − AH + eiθ adjA∗ ),
tr(adjH)

Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 18, pp. 693-699, November 2009

ELA

http://math.technion.ac.il/iic/ela

Explicit Polar Decomposition

699

REFERENCES

[1] A. George and Kh. Ikramov. Is the polar decomposition finitely computable? SIAM J. Matrix
Anal. Appl., 17:348–354, 1996.
[2] A. George and Kh. Ikramov. Addendum: Is the polar decomposition finitely computable? SIAM
J. Matrix Anal. Appl., 18:264, 1997.
[3] R. Horn and C. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1985.
[4] G. Kalogeropoulos and P. Psarrakos. The polar decomposition of block companion matrices.
Comput. Math. Appl., 50:529–537, 2005.
[5] F. Uhlig. Explicit polar decomposition and a near-characteristic polynomial: The 2 × 2 case.
Linear Algebra Appl., 38:239–249, 1981.
[6] P. van den Driessche and H.K. Wimmer. Explicit polar decomposition of companion matrices.
Electron. J. Linear Algebra, 1:64–69, 1996.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52