07-21.2010. 151KB Jun 04 2011 12:07:15 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 21/2010
pp. 65-78

CERTAIN APPLICATION OF DIFFERENTIAL SUBORDINATION
ASSOCIATED WITH GENERALIZED DERIVATIVE OPERATOR

Ma‘moun Harayzeh Al-Abbadi and Maslina Darus
Abstract.The purpose of the present paper is to introduce several new subclasses of analytic function defined in the unit disk D = { z ∈ C : | z | < 1 }, using
derivative operator for analytic function, introduced in [1]. We also investigate various inclusion properties of these subclasses. In addition we determine inclusion
relationships between these new subclasses and other known classes.
2000 Mathematics Subject Classification: 30C45.
Key words: Analytic function; Hadamard product (or convolution); Univalent
function; Convex function; Starlike function; Subordination; Derivative operator.
1. Introduction and Definitions
Let A denote the class of functions of the form

X
f (z) = z +

ak z k ,
ak is complex number

(1)

k=2

which are analytic in the open unit disk U = {z ∈ C : |z| < 1} on the complex
plane C. Let S, S ∗ (α), K(α) (0 ≤ α < 1) denote the subclasses of A consisting
of functions that are univalent, starlike of order α and convex of order α in U ,
respectively. In particular, the classes S ∗ (0) = S ∗ and K(0) = K are the familiar
classes of starlike and convex functions in U , respectively.


P
P
bk z k analytic
ak z k and g(z) = z +
Let be given two functions f (z) = z +
k=2


k=2

in the open unit disk U = {z ∈ C : |z| < 1}. Then the Hadamard product (or
convolution) f ∗ g of two functions f , g is defined by

f (z) ∗ g(z) = (f ∗ g)(z) = z +


X
k=2

65

ak bk z k .

M. H. Al-Abbadi, M. Darus - Certain application of differential subordination ...

Next, we give simple knowledge in subordination. If f and g are analytic in U ,
then the function f is said to be subordinate to g, and can be written as

f ≺g

and f (z) ≺ g(z)

(z ∈ U ),

if and only if there exists the Schwarz function w, analytic in U , with w(0) =
0 and |w(z)| < 1 such that f (z) = g(w(z)) (z ∈ U ) .
If g is univalent in U , then f ≺ g if and only if f (0) = g(0) and f (U ) ⊂ g(U ). [9, p.36].
Now, (x)k denotes the Pochhammer symbol (or the shifted factorial) defined by

1
for k = 0, x ∈ C\{0},
(x)k =
x(x + 1)(x + 2)...(x + k − 1) for k ∈ N = {1, 2, 3, ...}and x ∈ C.
Let
ka (z) =

z
(1 − z)a


where a is any real number. It is easy to verify that ka (z) = z +
ka ∗ f, denotes the Hadamard product of ka with f that is
(ka ∗ f )(z) = z +


X
(a)k−1
k=2

(1)k−1


P

k=2

(a)k−1 k
(1)k−1 z .


Thus

ak z k .

Let N denotes the class of functions which are analytic, convex, univalent in U , with
normalization h(0) = 1 and Re(h(z)) > 0 (z ∈ U ) Al Shaqsi and Darus [1] defined
the following generalized derivative operator.
Definition 1 ([1]). For f ∈ A the operator κnλ is defined by κnλ : A → A
κnλ f (z) = (1 − λ)Rn f (z) + λz(Rn f (z))′ ,

(z ∈ U ),

(2)

where n ∈ N0 = N ∪ {0}, λ ≥ 0 and Rn f (z) denote for Ruscheweyh derivative
operator [11].
If f is given by (1), then we easily find from the equality (2) that
κnλ f (z)

=z+



X

(1 + λ(k − 1)) c(n, k)ak z k ,

(z ∈ U ),

k=2



(n+1)k−1
where n ∈ N0 = {0, 1, 2...} , λ ≥ 0 and c(n, k) = n+k−1 = (1)k−1
.
n

P
(1 + λ(k − 1)) c(n, k)z k , where n ∈ N0 , λ ≥ 0 and (z ∈ U ), the
Let φnλ (z) = z +

k=2

operator κnλ written as Hadamard product of φnλ (z) with f (z), that is
κnλ f (z) = φnλ (z) ∗ f (z) = (φnλ ∗ f )(z).
66

M. H. Al-Abbadi, M. Darus - Certain application of differential subordination ...

Note that for λ=0, κn0 f (z) = Rn f (z) which Ruscheweyh derivative operator [11].
Now, let remind the well known Carlson-Shaffer operator L(a, c) [3] associated with
the incomplete beta function φ(a, c; z), defined by
L(a, c) : A → A
L(a, c) := φ(a, c; z) ∗ f (z)

(z ∈ U ), where φ(a, c; z) = z +


P

k=2


(a)k−1 k
(c)k−1 z .

It is easily seen that κ00 f (z) = L(0, 0)f (z) = f (z) and κ10 f (z) = L(2, 1)f (z) = zf ′
and also if λ = 0, n = a − 1, we see κ0a−1 f (z) = L(a, 1)f (z), where a = 1, 2, 3, .. .
Therefore, we write the following equality which can be verified easily for our result.
n
(1 − β)κnλ f (z) + βz(κnλ f (z))′ = β(1 + n)κn+1
λ f (z) − (β(1 + n) − 1)κλ f (z)

(3)

By using the generalized derivative operator κnλ we define new subclasses of A:
For some β(0 ≤ β ≤ 1), some h ∈ N and for all z ∈ U.


z(κnλ f (z))′ + βz 2 (κnλ f (z))′′

h(z)

.
Pλn (h, β) = f ∈ A :
(1 − β)κnλ f (z) + βz(κnλ f (z))′
For some α(α ≥ 0), some h ∈ N and for all z ∈ U.


κnλ f (z)
n
n

Tλ (h, α) = f ∈ A : (1 − α)
+ α(κλ f (z)) ≺ h(z)
z
and finally Rλn (h, α) = {f ∈ A : (κnλ f (z))′ + αz(κnλ f (z))′′ ≺ h(z)} .
We note that the class P0a−1 (h, 0) = Sa (h) was studied by Padmanabhan Parvatham in [8], P0a−1 (h, 1) = ka (h) , T0a−1 (h, 0) = Ra (h) and T0a−1 (h, 1) = pa (h)
were studied by Padmanabhan and Manjini in [7] and the classes P0a−1 (h, β) =
Pa (h, β), T0a−1 (h, β) = Ta (h, β) and R0a−1 (h, β) = Ra (h, β) were studied by Ozkan
, β) was studied by Altintas
and Altintas [6]. Also note that the class P00 ( 1+(1−2α)z
1−z

[2]. Obviously, for the special choices function h and variables α, β, λ, n we have the
following relationships:
P00 (

1+z
1+z
1+z
, 0) = S ∗ , P00 (
, 1) = K, P01 (
, 0) = K
1−z
1−z
1−z

, 0) = S ∗ (α), P00 ( 1+(1−2α)z
, 1) = K(α)
and P00 ( 1+(1−2α)z
1−z
1−z


(0 ≤ α < 1).

2. The main inclusion relationships

67

M. H. Al-Abbadi, M. Darus - Certain application of differential subordination ...

In proving our main results, we need the following lemmas.
Lemma 1 (Ruscheweyh and Sheil-Small [12,p.54]). If f ∈ K, g ∈ S ∗ , then for
each analytic function h,
(f ∗ hg) (U )
⊂ coh(U ),
(f ∗ g) (U )
where coh(U ) denotes the closed convex hull of h(U ).
Lemma 2 (Ruscheweyh [10]). Let 0 < α ≤ β, if β ≥ 2 or α + β ≥ 3, then the
function
φ(α, β, z) = z +


X
(α)k−1
k=2

(β)k−1

z k (z ∈ U )

belongs to the class K of convex functions.
Lemma 3 ([5]). Let h be analytic, univalent, convex in U , with h(0) = 1 and
Re(βh(z) + γ) > o

(β, γ ∈ C; z ∈ U ).

If p(z) is analytic in U , with p(0) = h(0), then
p(z) +

zp′ (z)
≺ h(z) ⇒ p(z) ≺ h(z).
βp(z) + γ

Lemma 4 ([5]). Let h be analytic, univalent, convex in U , with h(0) = 1.

Also let p(z) be analytic in U , with p(0) = h(0). If p(z) + zpγ(z) ≺ h(z) then
Rz
p(z) ≺ q(z) ≺ h(z), where q(z) = zγγ tγ−1 h(t)dt (z ∈ U ; Re(γ) ≥ 0; γ 6= 0).
0

Lemma 5 ([4, p.248]). If ψ ∈ K and g ∈ S ∗ , and F is an analytic function with
ReF (z) > 0 for z ∈ U, then we have
Re

(ψ ∗ F g) (z)
>0
(ψ ∗ g) (z)

(z ∈ U ).

) >
Lemma 6 ([13]). If 0 < a ≤ c then Re( φ(a,c;z)
z

68

1
2

for all z ∈ U.

M. H. Al-Abbadi, M. Darus - Certain application of differential subordination ...
Theorem 1. f (z) ∈ Pλn (h, β) if and only if g(z) = βzf ′ (z) + (1 − β) f (z) ∈

Pλn (h, 0).

z(κn g(z))′

≺ h(z). Using the
Proof. (⇒) Let f ∈ Pλn (h, β), we want to show κnλg(z)
λ


well-known property of convolution z(f ∗ g) (z) = (f ∗ zg )(z) we obtain
z(φnλ (z) ∗ f (z))′ + βz 2 (φnλ (z) ∗ f (z))′′
z(κnλ f (z))′ + βz 2 (κnλ f (z))′′

=
=
(1 − β)κnλ f (z) + βz(κnλ f (z))′
(1 − β) φnλ (z) ∗ f (z) + βz(φnλ (z) ∗ f (z))′
=

φnλ (z) ∗ z [f ′ (z) + βzf ′′ (z)]
φnλ (z) ∗ zg ′ (z)
=
≺ h(z).
φnλ (z) ∗ [(1 − β)f (z) + βzf ′ (z)]
φnλ (z) ∗ g(z)

Therefore g(z) ∈ Pλn (h, 0).
(⇐) Obvious. Let g(z) ∈ Pλn (h, 0), by using same property of convolution and
arguments, in the last proof, we obtain
φn (z) ∗ zg ′ (z)
z(κnλ f (z))′ + βz 2 (κnλ f (z))′′
z(κnλ g(z))′
= λn
=
≺ h(z).
n
κλ g(z)
φλ (z) ∗ g(z)
(1 − β)κnλ f (z) + βz(κnλ f (z))′
Therefore f (z) ∈ Pλn (h, β) .
Remark 1. If β=1 in Theorem 1, then we deduce Theorem 3(i) of Padmanabhan and Manjini [7].
Theorem 2. Let h ∈ N, 0 ≤ β ≤ 1, 0 ≤ n1 ≤ n2 and n1 , n2 ∈ N0 , if n2 ≥
1 or n1 + n2 ≥ 1, then Pλn2 (h, β) ⊂ Pλn1 (h, β).
Proof. We suppose that f ∈ Pλn2 (h, β). Then by the definition of the class
Pλn2 (h, β) we have
z(κnλ2 f (z))′ + βz 2 (κnλ2 f (z))′′
= h(w(z)),
(1 − β)κnλ2 f (z) + βz(κnλ2 f (z))′
where h is convex univalent in U with Re(h(z)) > 0 (z ∈ U ) , and |w(z)| < 1 in U
(n+1)k−1
.
with w(0) = h(0) − 1. By using the fact c(n, k) = (1)k−1
Setting kλn1 f (z) = kλn2 f (z) ∗ ϕnn12 (z)

where ϕnn12 (z) = z +


P

k=2

(n1 +1)k−1 k
(n2 +1)k−1 z

we get

z(κnλ2 f (z) ∗ ϕnn12 (z))′ + βz 2 (κnλ2 f (z) ∗ ϕnn12 (z))′′
z(κnλ1 f (z))′ + βz 2 (κnλ1 f (z))′′

=
(1 − β)κnλ1 f (z) + βz(κnλ1 f (z))′
(1 − β) κnλ2 f (z) ∗ ϕnn12 (z) + βz(κnλ2 f (z) ∗ ϕnn12 (z))′


ϕnn12 (z) ∗ z(κnλ2 f (z))′ + βz 2 (κnλ2 f (z))′′
ϕnn12 (z) ∗ h(w(z))p(z)



, (4)
=
= n1
ϕnn12 (z) ∗ p(z)
ϕn2 (z) ∗ (1 − β) κnλ2 f (z) + βz(κnλ2 f (z))′
69

M. H. Al-Abbadi, M. Darus - Certain application of differential subordination ...

where p(z) = (1 − β) κnλ2 f (z) + βz(κnλ2 f (z))′ . It follows from Lemma 2 that
ϕnn12 (z) ∈ K and it follows from the Theorem 1 and from the definition of Pλn (h, β)
that p(z) ∈ S ∗ . Therefor applying Lemma 1 we get
 n

ϕn12 (z) ∗ h(w(z))p (U )
⊂ coh(w(U )) ⊂ h(U ).
{ϕnn12 (z) ∗ p} (U )
Since h is convex univalent, thus (4) is subordinate to h in U and consequently
f (z) ∈ Pλn1 (h, β). This completes the proof of the Theorem 2.
¨
Remark 2. Ozkan
and Altintas in [6] obtained the result: for a ≥ 1, Pa+1 (h, λ) ⊂
Pa (h, λ). If we take λ=0, n1 = a1 − 1 and n2 = a2 − 1 in Theorem 2 we obtain following result improving the above mentiond.
Corollary 1. Let 0 < a1 ≤ a2 , if a2 ≥ 2 or a1 + a2 ≥ 3, then Pa2 (h, λ) ⊂
Pa1 (h, λ).
Theorem 3. For λ ≥ 0, n ∈ N0 and 0 ≤ β ≤ 1, then Pλn+1 (h, β) ⊂ Pλn (h, β).
Proof. We suppose that f ∈ Pλn+1 (h, β). Then by the definition of the class
we have

Pλn+1 (h, β)


2 n+1
′′
z(κn+1
λ f (z)) + βz (κλ f (z))
= h(w(z)),
n+1

(1 − β)κn+1
λ f (z) + βz(κλ f (z))

where h is convex univalent in U with Re(h(z)) > 0 (z ∈ U ) , and |w(z)| < 1 in U
(n+1)k−1
.
with w(0) = h(0) − 1. By using the fact c(n, k) = (1)k−1

P
(n+1)k−1 k
Setting κnλ f (z) = κn+1
λ f (z) ∗ ϕn (z), where ϕn (z) = z +
(n+2)k−1 z , we get
k=2


′′
z(κn+1
βz 2 (κn+1
z(κnλ f (z))′ + βz 2 (κnλ f (z))′′
λ f (z) ∗ ϕn (z)) + 
λ f (z) ∗ ϕn (z))
=
n+1

(1 − β)κnλ f (z) + βz(κnλ f (z))′
(1 − β) κn+1
λ f (z) ∗ ϕn (z) + βz(κλ f (z) ∗ ϕn (z))



2 n+1
′′
ϕn (z) ∗ z(κn+1
ϕ (z) ∗ h(w(z))p(z)
λ f (z)) + βz (κλ f (z))


= n
=
.
(5)
n+1
n+1
ϕn (z) ∗ p(z)
ϕn (z) ∗ (1 − β) κλ f (z) + βz(κλ f (z))′

n+1

Here p(z) = (1 − β) κn+1
λ f (z) + βz(κλ f (z)) . It follows from Lemma 2 that
ϕn (z) ∈ K and it follows form the Theorem 1 and from the definition of Pλn (h, β)
that p(z) ∈ S ∗ . Therefore applying Lemma 1 we get

{ϕn (z) ∗ h(w(z))p} (U )
⊂ coh(w(U )) ⊂ h(U ).
{ϕn (z) ∗ p} (U )
70

M. H. Al-Abbadi, M. Darus - Certain application of differential subordination ...

Since h is convex univalent, thus (5) is subordinate to h in U and consequently
f (z) ∈ Pλn (h, β). This completes the proof of Theorem 3.
Theorem 4. Let h ∈ N, 0 ≤ β ≤ 1 and 0 ≤ λ1 ≤ λ2 then Pλn2 (h, β) ⊂ Pλn1 (h, β).
Proof. Let f ∈ Pλn2 (h, β). Applying the definition of the class Pλn2 (h, β). And
using the same arguments as in the proof of Theorem 2. We get

′

′′
′
′′
n f (z) ∗ ψ λ1 (z) + βz 2 κn f (z) ∗ ψ λ1 (z)
n
2
n
z
κ
z κλ1 f (z) + βz κλ1 f (z)
λ2
λ2
λ2
λ2

′ =

′
(1 − β)κnλ1 f (z) + βz κnλ1 f (z)
(1 − β)(κnλ2 f (z) ∗ ψλλ21 (z)) + βz κnλ2 f (z) ∗ ψλλ21 (z)
=

ψλλ21 (z) ∗ h(w(z))q(z)
ψλλ21 (z) ∗ q(z)

′
where |w(z)| < 1 in U with w(0) = 0, q(z) = (1 − β)κnλ2 f (z) + βz κnλ2 f (z) and

P
1+λ1 (k−1) k
ψλλ21 (z) = z +
1+λ2 (k−1) z . It follows from the Theorem 1 and the definition
k=2

of Pλn (h, β) that q(z) ∈ S ∗ . And by classical results in the class of convex, the
coefficients problem for convex: |an | ≤ 1 we find ψλλ21 (z) ∈ K. Hence it follows from
Lemma 1 that
n
o
ψλλ21 (z) ∗ h(w(z))q (U )
n
o
⊂ coh(w(U )) ⊂ h(U )
ψλλ21 (z) ∗ q (U )
because h is convex univalent, and consequently f ∈ Pλn1 (h, β).

Theorem 5. If f (z) ∈ Pλn (h, β) for n ∈ N0 then Fµ (f ) ∈ Pλn (h, β) where Fµ is
the integral operator defind by
µ+1
Fµ (f ) = Fµ (f )(z) :=


Zz

tµ−1 f (t)dt

(µ ≥ 0).

0

Proof. Let f (z) ∈ Pλn (h, β) and
p(z) =

z(κnλ Fµ (f ))′ (z) + βz 2 (κnλ Fµ (f ))′′ (z)
(1 − β)(κnλ Fµ (f ))(z) + βz(κnλ Fµ (f ))′ (z)

from (6), we have z(Fµ (f ))′ (z) + µFµ (f )(z) = (µ + 1)f (z) and so


(φnλ ∗ z(Fµ (f )) )(z) + µ (φnλ ∗ Fµ (f )) (z) = (µ + 1) (φnλ ∗ f ) (z).
71

(6)

M. H. Al-Abbadi, M. Darus - Certain application of differential subordination ...
Using the fact z(φnλ ∗ Fµ (f ))′ (z) = (φnλ ∗ zFµ′ (f ))(z) we obtain
z(κnλ Fµ (f ))′ (z) + µ(κnλ Fµ (f ))(z) = (µ + 1)κnλ f (z).
Differentiating (7), we have

p(z) + µ = (µ + 1)

(7)


(1 − β)(κnλ f (z)) + βz(κnλ f (z))′
.
(1 − β)(κnλ Fµ (f ))(z) + βz(κnλ Fµ (f ))′ (z)

(8)

Making use of the logarithmic differentiation on both sides of (8) and multiplying
the resulting equation by z, we have
p(z) +

z(κnλ f (z))′ + βz 2 (κnλ f (z))′′
zp′ (z)
=
.
p(z) + µ
(1 − β)(κnλ f (z)) + βz(κnλ f (z))′

(9)

By applying Lemma 3 to (9), it follows that p ≺ h in U, that is Fµ (f ) ∈ Pλn (h, β).
Remark 3. Special cases of Theorems 3 and 5 with β = 0, λ = 0, n =
a − 1 and β = 1, λ = 0, n = a − 1 were given earlier in [8,7], respectively.
Remark 4. By putting β = 0, λ = 0, n = 0 and h(z) =
Theorem 3, we obtain K ⊂ S ∗ .
Theorem 6. If f ∈ pnλ (h, β) then ψ = βf + (1 − β)

Rz
0

f (t)
t

1+z
1−z

(z ∈ U ) in

dt ∈ pnλ (h, 1).

Proof. Let f ∈ Pλn (h, β). Applying Theorem 1 at β=1 we get
f ∈ Pλn (h, 1) ⇔ zf ′ ∈ Pλn (h, 0)

(10)

now zψ ′ = βzf ′ + (1 − β)f that is zψ ′ ∈ Pλn (h, 0), by (10) we see ψ ∈ Pλn (h, 1).
Theorem 7. Let h ∈ N, α ≥ 0 and 0 ≤ n1 ≤ n2 if n2 ≥ 1 or n1 + n2 ≥ 1 then
Tλn2 (h, α) ⊂ Tλn1 (h, α).
Proof. Let f ∈ Tλn2 (h, α). We obtain that
′
κnλ2 f (z)
(1 − α)
+ α κnλ2 f (z) ≺ h(z),
z

(11)

where h ∈ N.

P
Setting, κnλ1 f (z) = κnλ2 f (z) ∗ ψnn21 (z), where ψnn21 (z) = z +

k=2

c(n1 ,k) k
c(n2 ,k) z .

Applying

(11) and the properties of convolution we find that


′ ψnn21 (z)
′
κnλ2 f (z)
κnλ1 f (z)
n1
n2
+ α κλ f (z) =
∗ (1 − α)
+ α κλ f (z) . (12)
(1 − α)
z
z
z
72

M. H. Al-Abbadi, M. Darus - Certain application of differential subordination ...

Under the hypothesis 0 ≤ n1 ≤ n2 , it follows from Lemma 6 that the function
n

ψn21 (z)
z

has its real part greater than or equal to 12 in U. From the Herglotz
n
R dµ(x)
ψ 1 (z)
=
Theorem we thus obtain n2z
1−xz (z ∈ U ), when µ(x) is a probability
|x|=1
R
measure on the unit circle |x| = 1, that is,
dµ(x) = 1. It follows from (12) that

z →

|x|=1

′
κn1 f (z)
(1 − α) λ
+ α κnλ1 f (z) =
z

Z

h(xz)dµ(x) ≺ h(z)

|x|=1

because h is convex univalent in U . This proves Theorem 7.
Remark 5. By putting λ = 0, n2 + 1 = a2 , and n1 + 1 = a1 in the Theorem 7
we deduce the following result which improves Theorem 5 of [6].
Corollary 2. If 0 < a1 ≤ a2 then Ta2 (h, α) ⊂ Ta1 (h, α).
Theorem 8. For n ∈ N0 and λ ≥ 0 then Tλn+1 (h, α) ⊂ Tλn (h, α).
κn f (z)

Proof. Let f ∈ Tλn+1 (h, α) and p(z) = (1 − α) λ z
Taking β=1 in (3), we obtain the following equality:

+ α (κnλ f (z))′ .

n
z (κnλ f (z))′ = (n + 1) κn+1
λ f (z) − nκλ f (z).

(13)

Using (13) and the differentiation of (13), we have

′
f (z)
κn+1
zp (z)
p(z) +
f (z) ≺ h(z).
= (1 − α) λ
+ α κn+1
λ
n+1
z

(14)

By applying Lemma 4 to (14), we can write p ≺ h(z) in U. Thus f ∈ Tλn (h, α).
Theorem 9. If f ∈ Tλn (h, α) then Fµ (f ) ∈ Tλn (h, α).
Proof. We assume that if f ∈ Tλn (h, α) and p(z) = (1−α)
Differentiating (7), we have
p(z) +

(κnλ Fµ (f ))(z)
z

+α (κnλ Fµ (f ))′ (z).

(κn f (z))
zp′ (z)
= (1 − α) λ
+ α (κnλ f (z))′
µ+1
z

from Lemma 4, we write p(z) ≺ h(z) in U and hence Fµ (f ) ∈ Tλn (h, α).

73

M. H. Al-Abbadi, M. Darus - Certain application of differential subordination ...
Theorem 10. f ∈ Rλn (h, α) if and only if zf ′ ∈ Tλn (h, α).
Proof. Using the equality z(φnλ (z) ∗ f )′ = (φnλ ∗ zf ′ ) (z) we see that.
′
′
(φn ∗ (zf ′ )) (z)
κnλ (zf ′ )(z)
+ α κnλ (zf ′ ) (z) = (1 − α) λ
+ α φnλ ∗ (zf ′ ) (z)
z
z


= (1 − α) (φnλ ∗ f )′ (z) + α z (φnλ ∗ f )′ (z) = (κnλ f (z))′ + αz (κnλ f (z))′′ .

(1 − α)

Theorem 11. Let h ∈ N, α > 0 and n1 , n2 ∈ N0 . If 0 6 n1 ≤ n2 then
Rλn2 (h, α) ⊂ Rλn1 (h, α).
Proof. Applying Theorem 10 we immediately find that
f ∈ Rλn2 (h, α) ⇔ zf ′ ∈ Tλn2 (h, α) ⇒ zf ′ ∈ Tλn1 (h, α) ⇔ f ∈ Rλn1 (h, α).
This completes the proof of Theorem 11.

Theorem 12. Rλn+1 (h, α) ⊂ Rλn (h, α). Proof. Let f ∈ Rλn+1 (h, α) and p(z) =
(κnλ f (z))′ + αz (κnλ f (z))′′ .
Differentiating (13), we have
p(z) +

′
′′
zp′ (z)
= κn+1
f (z) + αz κn+1
f (z) .
λ
λ
α

From Lemma 4, we have p ≺ h in U. Thus f ∈ Rλn (h, α).

Theorem 13. If f ∈ Rλn (h, α) then Fµ (f ) ∈ Rλn (h, α).
Proof. We assume that f ∈ Rλn (h, α) and p(z) = (κnλ Fµ (f ))′ + αz (κnλ Fµ (f ))′′ .
Differentiating (7), we have
p(z) +

zp′ (z)
= (κnλ f (z))′ + αz (κnλ f (z))′′ ≺ h(z).
µ+1

From Lemma 4, we write p ≺ h in U. Thus Fµ (f ) ∈ Rλn (h, α).
Theorem 14. Rλn (h, α) ⊂ Tλn (h, α).
Proof. Let f ∈ Rλn (h, α) and p(z) = (1 − α)
Thus, we obtain

κn
λ f (z)
z

+ α (κnλ f (z))′ .

p(z) + zp′ (z) = (κnλ f (z))′ + αz (κnλ f (z))′′ ≺ h(z).
74

M. H. Al-Abbadi, M. Darus - Certain application of differential subordination ...

Hence, from Lemma 4, we have f ∈ Tλn (h, α).
Theorem 15.
(i) If f ∈ Tλn (h, α) then f ∈ Tλn (h, 0).
(ii) For α > β > 0, Tλn (h, α) ⊂ Tλn (h, β).
Proof.
(i) Let f ∈ Tλn (h, α) and p(z) =

κn
λ f (z)
.
z

Then, we find that

p(z) + αzp′ (z) = (1 − α)

κnλ f (z)
+ α (κnλ f (z))′ .
z

From Lemma 4, we have p ≺ h in U. Thus f (z) ∈ Tλn (h, 0).
(ii) If β=0, then the statement reduces to (i). Hence we suppose that β 6= 0 and let
f ∈ Tλn (h, α). Let z1 be arbitrary point in U . Then
κn f (z)

κn f (z )

∈ h(U ), we write the
(1 − α) λ z1 1 + α (κnλ f (z1 ))′ ∈ h(U ). From (i), since λ z
following equality:




κnλ f (z)
κnλ f (z)
β κnλ f (z) β


n
n
(1 − β)
+ β (κλ f (z)) = 1 −
+
+ α (κλ f (z)) .
(1 − α)
z
α
z
α
z
Since β/α < 1 and h(U ) is convex,
(1 − β)

κnλ f (z)
+ β (κnλ f (z))′ ∈ h(U ).
z

Thus f ∈ Tλn (h, β).
Theorem 16.
(i) If f ∈ Rλn (h, α) then f ∈ Rλn (h, 0).
(ii)For α > β > 0, Rλn (h, α) ⊂ Rλn (h, β).
Proof. (i) Let f ∈ Rλn (h, α) and p(z) = (κnλ f (z))′ then we have
p(z) + αzp′ (z) = (κnλ f (z))′ + αz (κnλ f (z))′′ .
Hence from Lemma 4, we have p ≺ h in U. Thus f (z) ∈ Rλn (h, 0).
(ii) If β=0, then the statement reduces to (i). Hence we suppose that β 6= 0 and let
f ∈ Rλn (h, α). Let z1 be arbitrary point in U . Then
(κnλ f (z1 ))′ + αz1 (κnλ f (z1 ))′′ ∈ h(U ).
75

M. H. Al-Abbadi, M. Darus - Certain application of differential subordination ...

From (i) we write the following equality:



β
β n

′′
n
n
(κλ f (z))′ + αz (κnλ f (z))′′ .
(κλ f (z)) + βz (κλ f (z)) = 1 −
(κnλ f (z))′ +
α
α
Since β/α < 1 and h(U ) is convex,
(κnλ f (z))′ + βz (κnλ f (z))′′ (z) ∈ h(U ).
Thus f ∈ Rλn (h, β).
3. Convolution results and its applications
Theorem 17. Let h ∈ N, n ∈ N0 and 0 6 β 6 1. If g ∈ K and f ∈ Pλn (h, β)
then f ∗ g ∈ Pλn (h, β).
Proof. We begin by assuming f ∈ Pλn (h, β) and g ∈ K. In the proof we use the
same idea as in the proof of Theorem 2. Let
z(κnλ f (z))′ + βz 2 (κnλ f (z))′′
= h(w(z)),
(1 − β) κnλ f (z) + βz(κnλ f (z))′
and
p(z) = (1 − β) κnλ f (z) + βz(κnλ f (z))′ .
Using the following equalities:


z (φnλ ∗ f )′ (z) = φnλ ∗ zf ′ (z) and z 2 (φnλ ∗ f )′′ (z) = φnλ ∗ z 2 f ′′ (z),

we write

z(κnλ (f ∗ g) (z))′ + βz 2 (κnλ (f ∗ g) (z))′′
=
(1 − β) κnλ (f ∗ g) (z) + βz(κnλ (f ∗ g) (z))′
z(φnλ ∗ f ∗ g)′ (z) + βz 2 (φnλ ∗ f ∗ g)′′ (z)
=

′
(1 − β) φnλ ∗ f ∗ g (z) + βz φnλ ∗ f ∗ g (z)


g ∗ z(κnλ f (z))′ + βz 2 (κnλ f (z))′′
g ∗ h(w(z))p(z)

=
≺ h(z).
=
n
n

g ∗ p(z)
g ∗ (1 − β) κλ f (z) + βz(κλ f (z))
=

Consequently f ∗ g ∈ Pλn (h, β).

Theorem 18. Let h ∈ N, n ∈ N0 , α ≥ 0 and Re
f ∈ Tλn (h, α) then f ∗ g ∈ Tλn (h, α).
76



g(z)
z



> 1/2. If g ∈ K and

M. H. Al-Abbadi, M. Darus - Certain application of differential subordination ...

Proof. By observing that


κnλ f (z)
κnλ (f ∗ g) (z)
g(z)
n

n

+ α(κλ (f ∗ g) (z)) =
∗ (1 − α)
+ α(κλ f (z))
(1 − α)
z
z
z
and by applying the same methods in the proof of Theorem 7 we get Theorem 18.


Theorem 19. Let h ∈ N, n ∈ N0 , α ≥ 0 and Re g(z)
> 1/2. If g ∈ K and
z
f ∈ Rλn (h, α) then f ∗ g ∈ Rλn (h, α).
Proof. If f ∈ Rλn (h, α) then, from Theorem 10 we have zf ′ ∈ Tλn (h, α) and using
Theorem 18, we obtain zf ′ ∗ g ∈ Tλn (h, α). Therefore
zf ′ (z) ∗ g(z) = z(f ∗ g)′ (z) ∈ Tλn (h, α).
By applying Theorem 10 again, we conclude that f ∗ g ∈ Rλn (h, α) . The proof is
complete.
Acknowledgement: This work is fully supported by UKM-GUP-TMK-07-02107, Malaysia.
References
[1] K. Al Shaqsi and M. Darus, On univalent function with respect to k symmetric
points defined by a generalization Ruscheweyh derivative operators, Jour. Anal.
Appl., 7 (1), (2009), 53-61.
¨ Ozkan
¨
[2] O. Altintas, O.
and H.M. Srivastava, Neighborhoods of a certain family
of multivalent functions with negative coefficients, Comput. Math. Appl., 47, (2004),
1667-1672.
[3] B.C. Carlson and D.B.Shaffer, Starlike and prestarlike hypergeometric function, SIAM J, Math. Anal., 15, (1984), 737-745.
[4] P.L. Duren, Univalent functions, in: A Series of comprehensive studies in
mathematics. 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
[5] S.S. Miller and P.T.Mocanu, Differential subordinations: Theory and Applications, in: Series on monographs and textbooks in pure and applied mathematics,
225, Marcel Dekker, New York, 2000.
¨ Ozkan
¨
[6] O.
and O. Altintas, Applications of differential subordination, Appl.
Math. Lett., 19 (2006), 728-734.
[7] K.S. Padmanabhan and R. Manjini, Certain applications of differential subordination, Publ. Inst. Math., (N.S.), Tome 39 (53), (1986), 107-118.
77

M. H. Al-Abbadi, M. Darus - Certain application of differential subordination ...

[8] K.S. Padmanabhan and R. Parvatham, Some applications of differential subordination, Bull. Austral. Math. Soc., 32, (1985), 321-330.
[9] CH. Pommerenke, Univalent function, Vanderhoeck and ruprecht, g¨ottingen,
1975.
[10] St. Ruscheweyh, Convolutions in geometric function theory, Les Presses de
I‘Univ.de Montreal, 1982.
[11] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math.
Soc., Vol. 49, 1975, pp. 109-115.
[12] St.Ruscheweyh and T.Sheil-small, Hadamard product of schlicht functions
and the Polya-Schoenberg conjecture, Comment. Math. Helv., 48 (1973), 119 - 135.
[13] L.T. Spelina, On certain applications of the Hadamard product, Appl. Math.
Comput., 199 (2008), 653-662.
Ma‘moun Harayzeh Al-Abbadi, Maslina Darus
School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600 Selangor D. Ehsan, Malaysia.
e-mail: mamoun nn@yahoo.com, maslina@ukm.my

78

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52