getdoc6bd5. 123KB Jun 04 2011 12:04:29 AM

Elect. Comm. in Probab. 10 (2005), 207–217

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

EXACT ASYMPTOTICS FOR BOUNDARY CROSSING
PROBABILITIES OF BROWNIAN MOTION WITH PIECEWISE LINEAR TREND
ENKELEJD HASHORVA
Institute of mathematical Statistics
University of Bern
Sidlerstrasse 5, 3012 Bern
Switzerland
email: Enkelejd.Hashorva@stat.unibe.ch
Submitted 3 November 2004 , accepted in final form 12 August 2005
AMS 2000 Subject classification: Primary 60F10; secondary 60G15, 60G70.
Keywords: Brownian motion with trend, boundary crossing probability, large deviations, exact
asymptotics.
Abstract
Let B be a standard Brownian motion and let bγ be a piecewise linear continuous boundary
function. In this paper we obtain an exact asymptotic expansion of P {B(t) < b γ (t), ∀t ∈ [0, 1]}

provided that the boundary function satisfies limγ→∞ bγ (t∗ ) = −∞ for some t∗ ∈ (0, 1].

Introduction
Let B denote a standard Brownian motion, and let b : [0, 1] → R be a deterministic boundary function. Several authors have studied the boundary crossing probability P {∃t ∈ [0, 1] :
B(t) > b(t)}. If the boundary function b is piecewise linear, then the boundary crossing probability can be calculated explicitly. When h is a straight line this probability is well known,
see for example Borodin and Salminen (1996), p. 197. Scheike (1992) obtained an integral
expression for trend functions consisting of two straight lines. Wang and P¨otzelberger (1997),
Novikov et al. (1999), Janssen and Kunz (2004) deal with the case of a general piecewise
linear boundary. Wang and P¨otzelberger (1997) gave an integral expression for the boundary
crossing probability, while Janssen and Kunz (2004) have expanded this integral expression in
a sum of multivariate normal distribution functions. For other related results see the recent
articles of Benghin and Orsingher (1999), P¨otzelberger and Wang (2001) and Abundo (2002).
In an asymptotic context the boundary function b = bγ may depend on γ. If limγ→∞ bγ (t∗ ) =
−∞, with t∗ ∈ (0, 1], then the boundary crossing probability tends to 1. For this case, it is
interesting to find the speed of convergence to 1.
In various applications bγ is of the form u − γh with h a trend function (or signal) and u a
207

208


Electronic Communications in Probability

given deterministic function with u(0) > 0. If h is positive at some point t ∗ ∈ (0, 1], then
ψ(γh, u, B) = 1 − P {∃t ∈ [0, 1] : B(t) + γh(t) > u(t)} → 0,

γ → ∞.

The speed of convergence to 0 of ψ(γh, u, B) is of particular interest when dealing for instance
with the asymptotic power of weighted Kolmogorov test (see e.g. Bischoff et al. (2004) for
results concerning Brownian bridge). A large deviation type result for ψ(γh, u, B 0 ) with B0
a Brownian bridge is derived in Bischoff et al. (2003a), whereas in Bischoff et al. (2003b) the
exact asymptotic behaviour is obtained for h, u both piecewise linear continuous functions.
In an unrelated paper Lifshits and Shi (2002) showed in Lemma 2.3 the following asymptotic
lower bound
µ n
Z

1 L ′
−2
−b

≥ −
lim inf γ log P sup (B(t) + γh(t)) < aγ
(h (t))2 dt,
(1)
γ→∞
2 0
t∈[0,L]
with h piecewise linear such that h(0) = 0 and a > 0, b ≥ 0, L > 0 three constants. If b = 0
the logarithmic asymptotic above follows by large deviation theory (see e.g. Varadhan (1984),
or Ledoux (1996)), we have
µ n
Z L

1
−2
(g ′ (t))2 dt,
(2)
lim inf γ log P sup (B(t) + γh(t)) < a
= − inf
γ→∞

2 g≥h 0
t∈[0,L]
Rt
with g(t) = 0 g ′ (s) ds, t ∈ [0, 1].
For a given function f : [0, ∞) → R with f (0) ≤ 0 we denote throughout in the following by
f˜ the smallest non-decreasing concave majorant of max(0, f ) and by f˜′ = (f˜)′ the right-hand
derivative of f˜ (if it exits).
In this article we obtain an exact asymptotic expansion for ψ(hγ , uγ , B) where hγ , uγ are two
piecewise linear continuous functions and the trend function hγ becomes large as γ → ∞. It
˜ γ the smallest non-decreasing concave
turns out that the asymptotic is largely determined by h
majorant of hγ . In the special case that hγ = γh is piecewise linear continuous with h(0) ≤ 0
and uγ (t) = aγ −b , ∀t ∈ [0, L], a > 0, b ≥ 0 we have (see Example 1)
o
n
P sup (B(t) + γh(t)) < aγ −b
t∈[0,L]


µ 2Z L

γ
˜ ′ (t))2 dt + aγ 1−b h
˜ ′ (0+) ,
(h
= (1 + o(1))c1 γ −c2 exp −
2 0

γ → ∞,

with c1 , c2 two positive constants. An immediate consequence of the above result and (2) is
Z t
Z L
Z L

2

2
˜
g ′ (s) ds, t ∈ [0, 1].
(3)

(h (t)) dt,
with g(t) =
inf
(g (t)) dt =
g≥max(0,h)

0

0

0

Outline of the paper: In the next section we introduce several notation. In Section 3 we present
the main result, and give its proof in Section 4.

Preliminaries
Consider in the following the reproducing kernel Hilbert space which is naturally connected
with B(t), t ∈ [0, 1] defined by
Z t
o

n
h′ (s) ds, ∀t ∈ [0, 1]
H1 = h absolute continuous, ∃h′ ∈ L2 ([0, 1]) : h(t) =
0

Boundary Crossings of Brownian Motion

209

furnished with the inner product and the corresponding norm
Z 1
Z 1


2
(h′ (s))2 ds,
h1 (s)h2 (s) ds, ∀h1 , h2 ∈ H1 , |h| =
< h 1 , h2 > =

∀h ∈ H1 .


0

0

We introduce next some notation needed in the sequel.
Throughout, let k > 1 be a fixed integer and put t0 = 0 < t1 < · · · < tk = 1, δi = ti+1 − ti , i ≤
k − 1 and denote by Σ the covariance matrix of the random vector (B(t1 ), . . . , B(tk ))⊤ . Its
inverse matrix is given by
 1

1
1
− t2 −t
0
···
0
t1 −t0 + t2 −t1
1



..
1
1
1

 − 1
.
− t3 −t


t2 −t1
t2 −t1 + t3 −t2
2


..
.
1
1

1
(4)
Σ−1 = 
.
0
− t3 −t2
+
0


t3 −t2
t4 −t3


..
..
..


.

.
− tk −t1k−1 
.

1
0
···
0
− tk −t1k−1
tk −tk−1
Hence we have for any x = (x1 , . . . , xk )⊤ , y = (y1 , . . . , yk )⊤ ∈ Rk
x⊤ Σ−1 y =

k−1
X
i=0

(yi+1 − yi )
(xi+1 − xi ),
ti+1 − ti

with x0 = y0 = 0.

(5)

For any two vectors x, y ∈ Rk the relations x ≥ y and x > y, x < y are understood
componentwise.
|I|
Let I be an index subset of {1, . . . , k} with |I| > 0 elements. The subvector x I = (xi )⊤
i∈I ∈ R
of x consists of the components of x with indices in I and similarly, the square matrix Σ I is
obtained by deleting the rows and the columns of Σ with indices not in I. We write simply
−1

−1
x⊤
, respectively. Note in passing that both Σ−1 , Σ−1
I , ΣI instead of (xI ) , (ΣI )
I exist since
Σ, ΣI are positive definite matrices.
If L, M are two non-empty index sets, then LM is defined by
LM = {i : i ∈ L, i + 1 ∈ M }.
In case that |L||M | = 0 then LM is the empty set.
Denote in the following by g the vector (g(t1 ), . . . , g(tk ))⊤ with g : R → R an arbitrary
function.
Any polygonal line g discussed below is continuous with minimal representation given in terms
of the nodes (t0 , g(t0 )), (t1 , g(t1 )), . . . , (tk , g(tk )) so that g(t∗ ) > 0 for some t∗ ∈ (0, 1] and
g(0) ≤ 0. Put next
K(g) = {i ∈ {1, . . . , k} : g˜(ti ) > g(ti )}
and let I(g) ⊆ {1, . . . , k} be the minimal index set such that the polygonal lines through
(ti , g˜(ti )), i = 0, . . . , k, and through (ti , g˜(ti )), i ∈ I(g) ∪ {0} are equal. Clearly, I(g) exists,
is unique and |I(g)| ≤ k. Since we assume that g(t∗ ) > 0 then we have |I(g)| ≥ 1. For any
x ∈ Rk we get
−1
−1
˜ I(g) = x⊤
x⊤
I(g) ΣI(g) g I(g) .
I(g) ΣI(g) g
If for some m ∈ {0, 1, . . . , k} the points ((tm , g(tm )), (tm+1 , g(tm+1 )), (tm+2 , g(tm+2 ))) lie in a
line, then
g(tm+2 ) − g(tm+1 )
g(tm+2 ) − g(tm )
g(tm+1 ) − g(tm )
=
=
,
tm+1 − tm
tm+2 − tm+1
tm+2 − tm

210

Electronic Communications in Probability

hence by the definition of the index set I(g) and (5) we have for any x ∈ Rk
−1
˜ = x⊤
x⊤ Σ−1 g
I(g) ΣI(g) g I(g)

(6)

and consequently for any polygonal line g ∈ H1 we get

g |2 =

Z

1

0

−1
˜ = g⊤
˜ ⊤ Σ−1 g

g ′ (s))2 ds = g
I(g) ΣI(g) g I(g) .

(7)

Main Result
We consider in the following a piecewise linear continuous boundary functions b γ = uγ − hγ
with nodes in (ti , bγ (ti )), i ≤ k with bγ (0) > 0, γ > 0. As mentioned above ψ(hγ , uγ , B) can be
calculated explicitly (see e.g. Janssen and Kunz (2004))
ψ(hγ , uγ , B) =

h

(2π)

×

k

k−1
Y
i=0

k−1
Yh
i=0

i−1/2 Z
(ti+1 − ti )

exp(−x⊤ Σ−1 x/2)

x 0 and h, u be given continuous polygonal lines such that
˜γ , h
˜ ∈ H1 , h
˜ 6= 0 and h
˜ γ 6= 0, bγ (0) > 0 hold for any γ > 0. Assume that bγ is linear in each
h
interval [ti , ti+1 ], 0 ≤ i ≤ k − 1 and for any γ > 0
I(hγ ) = I(h) =: I,

K(hγ ) = K(h) =: K.

(12)

If (9),(10),(11) hold and further
lim

γ→∞

qγ−1

·

´¶¸
x1
2bγ (0) ³
˜
+ hγ (t1 ) − hγ (t1 )
= q(x1 ), ∀x1 ≥ c1 (13)
1 − exp −
˜γ |
t1
1 + 1(1 ∈ I)|h
µ

Boundary Crossings of Brownian Motion

211

is satisfied with qγ > 0, q(x1 ) positive, then as γ → ∞
ψ(hγ , uγ , B)
˜ γ |−|I∪IJ∪JI|−2|II|
= (1 + o(1))Cqγ |h


1(ai+1 > 0) +

i∈IK

2
˜ γ |(ti+1 − ti )
|h

³
´¸
˜ γ (ti+1 ) − hγ (ti+1 )] + 1(ai+1 = 0, ci+1 > −∞)
× 1(ai+1 = 0, ci+1 = −∞)[h
³

2
˜ γ (ti ) − hγ (ti )]
1(ai > 0) +
×
1(ai = 0, ci = −∞)[h
˜ γ |(ti+1 − ti )
|h
i∈KI
´¸
³ 1
´
˜ γ |2 + (uγ )⊤ Σ−1 hI ,
(14)
+1(ai = 0, ci > −∞) exp − |h
I I
2
with J = {1, . . . , k} \ (I ∪ K) and C a positive constant defined by
C

=

h

(2π)

k

k−1
Y
i=0

Z

i−1/2 h
(ti+1 − ti )

Y

i∈II∪IJ∪JI

i
2/(ti+1 − ti )

¢
−1
exp −(x − u) Σ (x∗ − u)/2 − x⊤
I ΣI hI q(x1 )
x≥c
¸
Y

1 − exp(−2xi xi+1 /(ti+1 − ti ))
×
xi xi+1

×

¡

i∈II∪IJ∪JI





−1

i∈JJ


1(ai+1 = 0, ci+1 = −∞)xi + 1(ai+1 = 0, ci+1 > −∞)xi (xi+1 − ci+1 )
×
i∈IK

h
i¸ Y ·
1(ai = 0, ci = −∞)xi+1
+1(ai+1 > 0) 1 − exp(−2ai+1 xi /(ti+1 − ti ))
i∈KI


+1(ai = 0, ci > −∞)xi+1 (xi − ci ) + 1(ai > 0) 1 − exp(−2ai xi+1 /(ti+1 − ti ))
¸
·
Y
¡
¢
(15)
1 − exp −2(xi − ci )(xi+1 − ci+1 )/(ti+1 − ti ) dx,
×
h

i∈KK∪JK∪KJ


where x∗I = (0, . . . , 0)⊤ ∈ R|I| , x∗J∪K = xJ∪K , c = (cQ
1 , . . . , ck ) , ci ≤ 0, i = 1, . . . , k, ai = ci =
0, i 6∈ K, 1(·) is the boolean indicator function, and i∈{φ} =: 1, exp(−∞) =: 0.

Corollary 2 Let h ∈ H1 be a piecewise linear continuous function with nodes at (ti , h(ti )), 0 ≤
i ≤ k and h(0) = 0. Then we have
min x⊤ Σ−1 x =

x≥h

min

g≥h,g∈H1

˜ 2.
˜ ⊤ Σ−1 h
˜ = h⊤ Σ−1 hI(h) = |h|
|g|2 = h
I(h) I(h)

(16)

˜ ∈ H1 and h(t∗ ) > 0, t∗ ∈ (0, 1], then h
˜γ = γh
˜ ∈ H1
Remarks: 1) If hγ = γh with h(0) ≤ 0, h
˜ γ | = γ|h|
˜ → ∞ as γ → ∞. Further I(hγ ) = I(h), K(hγ ) = K(h) holds for any
with norm |h
γ > 0 and
ai =

˜ i ) − h(ti )
h(t
> 0,
˜
|h|

ci = −∞,

∀i ∈ K(h),

ai = ci = 0,

∀i 6∈ K(h).

212

Electronic Communications in Probability

˜ = a0 > 0,
Condition (13) can be checked easily. For instance if 1 ∈ I and limγ→∞ bγ (0)/(γ|h|)
x
).
If
a
=
0
then
we put qγ =
then we can take qγ = 1, hence q(x1 ) = 1 − exp(−2a0 t−1
1
0
1
˜ 1 ) which implies q(x1 ) = x1 .
2bγ (0)/(γ|h|t
If further uγ (t) = dγ u(t), t ∈ [0, 1], γ > 0 with limγ→∞ dγ = d ∈ [0, ∞), then clearly (10) holds.
˜ γ ∈ H1 we have I(hγ ) = {1, . . . , k}, |K(hγ )| = 0, |J(hγ )| ≥ 0. If h
˜ γ is
2) In the case hγ = h
strictly concave then |J(hγ )| = 0.
3) The assumption that the boundary function bγ is continuous can be easily dropped using
the result of Janssen and Kunz (2004).
4) Exact asymptotic expansion for P {B(t) + hγ (t) < uγ (t), t ∈ [0, L]} with L ∈ (0, ∞] can be
shown along the same lines of the proof of the main result above.
5) The asymptotic behaviour of ψ(hγ , uγ , B0 ) with hγ , uγ piecewise linear functions and B0 a
Brownian bridge can be derived by our main result using further a time transformation that
transforms a Brownian bridge to a Brownian motion.
Alternatively the Brownian bridge case can be shown directly using similar arguments as for
the Brownian motion. Note that the reproducing kernel Hilbert space connected to B 0 is the
subspace of H1 with functions h ∈ H1 : h(0) = h(1) = 0. See Bischoff et al. (2003b) for the
case hγ = γh, uγ = u, γ > 0. Note further that the main term in the asymptotic will be
determined by the smallest concave majorant of hγ . (In the Brownian motion case it is the
˜ γ ).
smallest non-decreasing concave majorant h

Example 1. Consider h and u continuous functions being further linear on each interval
[ti , ti+1 ], i ≤ k − 1 such that h(0) = 0 and u(0) > 0. We discuss briefly the asymptotic
behaviour of ψ(γh, dγ u, B) with dγ positive such that limγ→∞ dγ = d ∈ [0, ∞).
˜ be the smallest concave non-decreasing majorant of h. Clearly, h
˜ exists and h
˜ ∈ H1 .
Let h
The constants ai , ci and the index sets I, K can be defined as in remark 1) above. Further
we can take qγ = 2dγ u(0)/(t1 γ|h|) and q(x1 ) = x1 for 1 ∈ I. We consider for simplicity
only the case I, K are non-empty disjoint index sets such that I ∪ K = {1, . . . , k}. Hence
|J| = |IJ| = |JI| = |JK| = |KJ| = 0. By the above theorem we get as γ → ∞
´
³ 2
˜ 2 + γdγ u⊤ Σ−1 hI ,
˜ −|I|−2|II|−1 exp − γ |h|
ψ(hγ , dγ u, B) = (1 + o(1))2Cdγ t−1
I I
1 u(0)(γ|h|)
2
with C a positive constant (see below (17)). If the function u is constant in t, say u(t) =
1, ∀t ∈ [0, 1] then
˜ = u⊤ Σ−1 hI = h(t
˜ 1 )/t1 = h
˜ ′ (0+) ≥ 0,
u⊤ Σ−1 h
I I
consequently
ψ(hγ , dγ u, B)

´
³ 2
˜ 2 + γdγ h
˜ ′ (0+) ,
˜ −|I|−2|II|−1 − γ |h|
(γ|
h|)
= (1 + o(1))2Cdγ t−1
1
2

γ → ∞.

˜ 1 ) = 0, which means that h
˜ is zero in the segment [0, t1 ],
It is interesting to note that if h(t
and h is non-positive in [0, t1 ], then the second asymptotic term above vanishes.

Boundary Crossings of Brownian Motion

213

Next, we give an explicit formula for the constant C. In view of (15) we have

C

=

h

(2π)k

×
×

k−1
Y
i=0

Z

x≥c

¸
i−1/2 · Y
(ti+1 − ti )
2/(ti+1 − ti )−1
i∈II

¶ Y
µ
−1
exp −(x∗ − u)⊤ Σ−1 (x∗ − u)/2 − x⊤
Σ
h
xi xi+1
I x1
I I

Yh

i∈IK

i∈II

i
i Yh
1 − exp(−2ai xi+1 /(ti+1 − ti )) dx
1 − exp(−2ai+1 xi /(ti+1 − ti ))
i∈KI

−1
= (2π)−|I|/2 |ΣI |−1/2 exp(−d2 u⊤
I ΣI uI /2)

·Y

2/(ti+1 − ti )−1

xI ≥0I

i∈II

×x1

Y

xi xi+1

i∈II

×

Yh

i∈KI

= (2π)

Yh

i∈IK

i
1 − exp(−2ai xi+1 /(ti+1 − ti )) dxI

−|I|/2

−1/2

|ΣI |

exp(−d

2

−1
u⊤
I ΣI uI /2)

x2i

0

0

Y Z

i∈KIK

exp(−xi vi ) dxi

Y Z

ˆ
i∈IIK


Y Z

i∈KII

×



Y Z

ˆ
i∈III

×

−1
exp(−x⊤
I ΣI hI )

i
1 − exp(−2ai+1 xi /(ti+1 − ti ))

·Y

−1

2/(ti+1 − ti )

i∈II

×

¸Z

0

0



¸

h
i
xi exp(−xi vi ) 1 − exp(−2ai+1 xi /(ti+1 − ti )) dxi

h
i
xi exp(−xi vi ) 1 − exp(−2ai−1 xi /(ti+1 − ti )) dxi



h
i
exp(−xi vi ) 1 − exp(−2ai−1 xi /(ti+1 − ti ))

h
i
× 1 − exp(−2ai+1 xi /(ti+1 − ti )) dxi
ˆ

−1
= 2|II|+|III|+3|KIK|−|I|/2 (π |I| |ΣI |)−1/2 exp(−d2 u⊤
I ΣI uI /2)

·Y

(ti+1 − ti )−1

i∈II

¸

¶¸
¸· Y µ
·Y
1
(ti+1 − ti )2
1

×
vi3
vi2
(2ai+1 + (ti+1 − ti )vi )2
ˆ
ˆ
i∈IIK
i∈III
¶¸· Y
· Y µ
ai−1 ai+1 (ai−1 + ai+1 + (ti+1 − ti )vi )
(ti+1 − ti )2
1

2
2
vi
(2ai−1 + (ti+1 − ti )vi )
vi (2ai−1 + (ti+1 − ti )vi )
i∈KIK
i∈KII
¸
1
×
,
(17)
(2ai+1 + (ti+1 − ti )vi )(2ai−1 + 2ai+1 + (ti+1 − ti )vi )
−1
|I|

k
with vi = e⊤
i ΣI hI > 0, i ∈ I where ei is the ith unit vector in R , 0 = (0, . . . , 0) ∈ R and

ˆ = {i − 1 ∈ {0} ∪ I, i ∈ II},
III
KII = {i − 1 ∈ K, i ∈ II},

ˆ
IIK
= {i − 1 ∈ {0} ∪ I, i ∈ IK},
KIK = {i − 1 ∈ K, i ∈ IK}.

214

Electronic Communications in Probability

Proofs
Proof of Theorem 1. Assume for simplicity that I, J and K are non-empty index sets. By
˜ γ (ti ) = hγ (ti ), i 6∈ I}. Define in
the definition I ∪ J ∪ K = {1, . . . , k} with J = {i ∈ 1, . . . k : h
˜
the following γi = |hγ | if i ∈ I and γi = 1 otherwise and put xγ = (x1 /γ1 , . . . , xk /γk )⊤ . Using
(6) and (7) we get for any x ∈ Rk
˜ γ − uγ )⊤ Σ−1 (xγ + h
˜ γ − uγ )
(xγ + h
˜ γ |2 + 2x⊤ Σ−1 (h/|h
˜ γ |)I − 2(uγ )⊤ Σ−1 hI .
= (xγ − uγ )⊤ Σ−1 (xγ − uγ ) + |h
I I
I I
˜ γ (ti ) = hγ (ti ), ∀i ∈ I) and the fact that h
˜ γ is
By the definition of the index set I (recall h
−1 ˜
−1 ˜
concave non-decreasing we get ΣI (hγ )I > 0I . Furthermore (Σ hγ )i 6= 0, ∀i ∈ I is satisfied,
hence Lemma A.1 of Bischoff et al. (2003b) implies
˜ γ − uγ )⊤ Σ−1 (xγ + h
˜ γ − uγ )
(xγ + h
−1
2

˜ γ | − 2(uγ ) Σ hI + 2x⊤ Σ−1 (h/|h
˜ γ |)I + (x − uγ )⊤ (ΣJ∪K )−1 (x − uγ )J∪K .
≥ |h
I I
I I
J∪K
By the assumptions we obtain further as γ → ∞
´
³
˜ γ |2 − 2(uγ )⊤ Σ−1 hI
˜ γ − uγ )⊤ Σ−1 (xγ + h
˜ γ − uγ ) − |h
(xγ + h
I I


−1

⊤ −1
2x⊤
(x∗ − u)
I ΣI hI + (x − u) Σ

,

with x∗I = 0I , x∗J∪K = xJ∪K and for any i ≥ 1 (recall δi = ti+1 − ti )
³
¡
¢¡
¢´
˜ γ (ti ) − hγ (ti ) xi+1 /γi+1 + h
˜ γ (ti+1 ) − hγ (ti+1 )
1 − exp −2δi−1 xi /γi + h

˜ γ |2 )−1 xi xi+1 ,

2(δi |h
i ∈ II,



−1

˜

2(δ
|
h
|)
x
x
,
i ∈ IJ or i ∈ JI,
i i+1

 i γ

−1

i ∈ JJ,

1 − exp(−2δi xi xi+1 ),


−1

1 − exp(−2ai+1 δi xi ),
i ∈ IK, ai+1 > 0



2(|h
˜ γ |δi )−1 (h
˜ γ (ti+1 ) − hγ (ti+1 ))xi ,
i ∈ IK, ai+1 = 0, ci+1 = −∞
= (1 + o(1))
−1
˜

2(|hγ |δi ) (xi+1 − ci+1 )xi ,
i ∈ IK, ai+1 = 0, ci+1 > −∞



−1


x
),
i
∈ KI, ai > 0
1

exp(−2a
δ
i+1
i i



−1 ˜

˜
2(|hγ |δi ) (hγ (ti ) − hγ (ti ))xi+1 ,
i ∈ KI, ai = 0, ci = −∞




−1
˜

2(|
h

)
(x

c
)x
,
i ∈ KI, ai = 0, ci > −∞

γ i
i
i i+1

¢

1 − exp¡−2δ −1 (x − c )(x
i
i
i+1 − ci+1 ) , i ∈ KK ∪ JK ∪ KJ.
i
Note in passing that the terms in the right-hand side above are non-negative for any x i ≥
ci , xi+1 ≥ ci+1 and exp(−∞) =: 0. Further, q(x1 ) is either bounded by 1 or is linear in x1
and by the definition of the index set K we have cI∪J = 0I∪J and ck ≤ 0, ∀k ∈ K. Write
˜ γ,i , hγ,i instead of h
˜ γ (ti ), hγ (ti ), respectively. In light
for notation simplicity in the following h
˜ γ + uγ and applying further Lebesgue’s Bounded
of (8), changing variables x → −xγ − h

Boundary Crossings of Brownian Motion

215

Convergence Theorem we obtain
ψ(hγ , uγ , B)
k−1
h
Y i−1/2 Z
k
= (2π)
δi
i=0

×

exp(−x⊤ Σ−1 x/2)

xh−h

i=0

˜ γ − uγ )
ϕ(xγ + h

·
´¸
³
−1
˜
× 1 − exp −2bγ (0)t1 (x1 /γ1 + hγ,1 − hγ,1 )
×

k−1


1 − exp

i=1

³

−2δi−1 (xi /γi

´¸
˜
˜
+ hγ,i − hγ,i )(xi+1 /γi+1 + hγ,i+1 − hγ,i+1 ) dx

·
k−1
´
³
Y ¸−1/2
k
˜ γ |−|I| exp −|h
˜ γ |2 /2 + (uγ )⊤ Σ−1 hI
=
(2π)
|h
δi
I I
i=0

×

Z

˜γ
x>h−h

´
³
−1 ˜
˜
exp −(xγ − uγ )⊤ Σ−1 (xγ − uγ )/2 − x⊤
Σ
(
h
/|
h
|)
γ
γ I
I I

·
´¸
³
−1
˜
× 1 − exp −2bγ (0)t1 (x1 /γ1 + hγ,1 − hγ,1 )
×

k−1


1 − exp

i=1

³

−2δi−1 (xi /γi

´¸
˜
˜
+ hγ,i − hγ,i )(xi+1 /γi+1 + hγ,i+1 − hγ,i+1 ) dx

·
k−1
Y ¸−1/2 ·
= (1 + o(1)) (2π)k
δi
i=0

Y

i∈II∪IJ∪JI

¸

˜ γ |−|I∪IJ∪JI|−2|II|
1(ai+1 > 0)
2/δi |h
i∈IK

´¸
˜ γ,i+1 − hγ,i+1 ) + 1(ai+1 = 0, ci+1 > −∞)
˜ γ |δi )−1 1(ai+1 = 0, ci+1 = −∞)(h
+2(|h
³
´¸

˜ γ |δi )−1 1(ai = 0, ci = −∞)(h
˜ γ,i − hγ,i ) + 1(ai = 0, ci > −∞) qγ
1(ai > 0) + 2(|h
×
³

i∈KI

Z
´
³

⊤ −1

⊤ −1
˜ γ |2 /2 + (uγ )⊤ Σ−1 hI )
q(x1 )
Σ
h
exp
−(x

u)
Σ
(x

u)/2

x
× exp(−|h
I
I I
I I
x≥c
¸

Y

1(ai+1 = 0, ci+1 = −∞)xi
1 − exp(−2δi−1 xi xi+1 ) ×
×
xi xi+1
i∈II∪IJ∪JI

i∈IK

i∈JJ

h

+1(ai+1 = 0, ci+1 > −∞)xi (xi+1 − ci+1 ) + 1(ai+1 > 0) 1 − exp(−2ai+1 δi−1 xi )

1(ai = 0, ci = −∞)xi+1 + 1(ai = 0, ci > −∞)xi+1 (xi − ci ) + 1(ai > 0)
×
i∈KI


h
× 1 − exp(−2ai δi−1 xi+1 )

Y

i∈KK∪JK∪KJ

·
´¸
³
1 − exp −2δi−1 (xi − ci )(xi+1 − ci+1 ) dx.

216

Electronic Communications in Probability

−1
⊤ −1
k
˜
Since Σ−1
I hI = ΣI hI > 0I then xI ΣI hI > 0 holds for any x ∈ (0, ∞) . Hence it follows
easily that the last integral above is positive and finite, thus the proof is complete.

Proof of Corollary 2. Following the proof of the above theorem it is easy to see that the
dominating term (as γ → ∞) of ψ(γh, 1, B) is the same as the leading term of the discrete
boundary crossing probability P {max1≤i≤k (B(ti ) + γh(ti )) < 1}. Large deviation theory
2
implies that the leading term of the latter is exp(− γ2 minx≥h,x∈Rk x⊤ Σ−1 x), hence the proof
follows using further (3).
Acknowledgement: I am extremely thankful to the Referee and Professor Martin Barlow
for several corrections and suggestions and to both Professor Enzo Orsingher and Professor
Mario Abundo for kindly providing some relevant articles.

References
[1] Abundo, M. Some conditional crossing results of Brownian motion over a piecewise linear
boundary. Statist. Prob. Letters 58 (2002),(2), 131-145.
[2] Benghin, L., and Orsingher, E. On the maximum of the generalised Brownian Bridge.
Liet. Matem. Rink, 39 (1999),(2), 200-213.
[3] Bischoff, W., Hashorva, E., H¨
usler, J., and Miller, F. Asymptotics of a boundary crossing
probability of a Brownian bridge with general trend. Methodol. Comput. Appl. Probab. 5
(2003a),(3), 271-287.
[4] Bischoff, W., Hashorva, E., H¨
usler, J., and Miller, F. Exact asymptotics for boundary
crossings of the Brownian bridge with trend with application to the Kolmogorov test.
Ann. Inst. Statist. Math. 55 (2003b),(4), 849-864.
[5] Bischoff, W., Hashorva, E., H¨
usler, J., and Miller, F. On the power of the Kolmogorov
test to detect the trend of a Brownian bridge with applications to a change-point problem
in regression models. Statist. Probab. Lett. 66 (2004),(2), 105-115.
[6] Borodin, A.N., and Salminen, P. Handbook of Brownian motion - facts and formulae.
Birkh¨
auser, Berlin, 1996.
[7] Janssen, A., and Kunz, M. Brownian type boundary crossing probabilities for piecewise
linear boundary functions. Comm. Statist. Theory Methods 33, (2004),(7), 1445-1464.
[8] Ledoux, M. Isoperimetry and Gaussian analysis. Lectures on probability theory and statistics. Lecture Notes in Math. 1648, (1996), Springer.
[9] Lifshits, M., and Shi, Z. The first exit time of the Brownian motion form a parabolic
domain. Bernulli 8 (2002), no. 6, 745-765.
[10] Novikov, A., Frishling, V., and Kordzakhia, N. Approximations of boundary crossing
probabilities for a Brownian motion. J. Appl. Probab. 36 (1999), 1019-1030.
[11] P¨otzelberger, K., and Wang, L. Boundary crossing probability for Brownian motion. J.
Appl. Probab. 38 (2001), 152-164.

Boundary Crossings of Brownian Motion

[12] Scheike, T.H. A boundary crossing result for Brownian motion. J. Appl. Probab. 29 (1992),
448-453.
[13] Wang, L., and P¨otzelberger, K. Boundary crossing probability for Brownian motion and
general boundaries. J. Appl. Probab. 34 (1997), 54-65.
[14] Varadhan, S.R.S. Large deviations and applications. S.I.A.M. Philadelphia. CBMS-NSF
Regional Conference Series in Applied Mathematics, 46. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1984.

217

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52