Paper-7-Acta23.2010. 126KB Jun 04 2011 12:03:14 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 23/2010
pp. 79-89

SOME PROPERTIES FOR CERTAIN INTEGRAL OPERATORS
Aabed Mohammed, Maslina Darus and Daniel Breaz
Abstract. Recently Breaz and Breaz [4] and Breaz et.al[5] introduced two
general integral operators Fn and Fα1 ,...,αn . Considering the classes N(γ), MT(µ, β)
and KD(µ, β) we derived some properties for Fn and Fα1 ,...,αn . Two new subclasses
KDFn (µ, β, α1 , ..., αn ) and KDFα1 ,...,αn (µ, β, α1 , ..., αn ) are defined. Necessary and
sufficient conditions for a family of functions fj to be in the KDFn (µ, β, α1 , ..., αn )
and KDFα1 ,...,αn (µ, β, α1 , ..., αn ) are determined.
AMS Subject Classification: 30C45
Keywords and phrases: Analytic and univalent functions, convex functions, integral operators.
1. Introduction.
Let A denote the class of functions of the form

X
f (z) = z +

an z n
n=2

which are analytic in the open unite disc U = {z ∈ C : |z| < 1}. We also denote by S
the subclass of A consisting of functions which are also univalent in U. Furthermore,
we denote by T the subclass of S consisting of functions whose nonzero coefficients,
from the second one, are negative and has the form:
f (z) = z −


X

an z n , an ≥ 0.

n=2

A function f ∈ A is the convex function of order α, 0 ≤ α < 1, if f satisfies the
following inequality
 ′′


zf (z)
Re
+ 1 > α, z ∈ U
f ′ (z)
and we denote this class by K(α).
Similarly, if f ∈ A satisfies the following inequality:
79

A. Mohammed, M. Darus, D. Breaz - Some properties for certain integral operators

Re



zf ′ (z)
f (z)



> α, z ∈ U


for some α, 0 ≤ α < 1, then f is said to be starlike of order α and we denote this
class by S∗ (α).
Let N(γ) be the subclass of A consisting of the functions f which satisfy the inequality
 ′′

zf (z)
Re
+
1
< γ, z ∈ U, γ > 1.
f ′ (z)
This class was studied by Owa and Srivastava [8].
Let MT(µ, β) be the subclass of A consisting of the functions f which satisfy the
analytic characterization







zf (z)
zf ′ (z)





1
+
1
<
β
µ
f (z)


f (z)

for some 0 < β ≤ 1, and 0 ≤ µ < 1,


Definition 1.([9])A function f is said to be in the class KD(µ, β), if satisfies
the following inequality:
Re



′′

zf (z)
zf ′′ (z)

+ 1 ≥ µ ′

f (z)
f (z)

for some µ ≥ 0 and 0 ≤ β < 1.

For fj (z) ∈ A and αj > 0 for all j ∈ {1, 2, 3, ..., n}, D. Breaz and N. Breaz [4]

introduced the following integral operator
Fn (z) =


Zz Y
n 
fj (t) αj
0 j=1

t

dt,

(1)

Recently Breaz et.al [5] introduced the following integral operator
Zz Y
n
 ′ αj
fj (t) dt,

Fα1 ,...,αn (z) =
0 j=1

where fj ∈ A and αj > 0, for all j ∈ {1, 2, 3, ..., n}.
80

(2)

A. Mohammed, M. Darus, D. Breaz - Some properties for certain integral operators

For univalence, starlike and convexity of these integral operators see ([4]-[7]), see
also ([1]-[3]) for several properties.
Now by using the equations (1) and (2) and the Definition 1, we introduce the
following two new subclasses of KD(µ, β).
Definition 2. A family of functions fj , j ∈ {1, ..., n} is said to be in the class
KDFn (µ, β, α1 , ..., αn ), if satisfies the inequality:
′′

 ′′
zF (z)

zFn (z)
+ β,
+ 1 ≥ µ ′n
Re

Fn (z)
Fn (z)

(3)

for some µ ≥ 0 and 0 ≤ β < 1, where Fn is defined in (1).

Definition 3. A family of functions fj , j ∈ {1, ..., n} is said to be in the class
KDFα1 ,...,αn (µ, β, α1 , ..., αn ) if satisfies the inequality:
′′


 ′′
zFα1 ,...,αn (z)
zFα1 ,...,αn (z)


+ β,
+ 1 ≥ µ ′
Re
Fα′ 1 ,...,αn (z)
Fα1 ,...,αn (z)

(4)

for some µ ≥ 0 and 0 ≤ β < 1, where Fα1 ,...,αn is defined as in (2).
2. Main results
Our first result is the following:
Theorem 1. Let αj ∈ R, αj > 0 for j ∈ {1, ..., n} and fj ∈ A and suppose that
f ′ (z)
n
P
j
αj βj (µj Mj + 1) + 1.
fj (z) < Mj .If fj ∈ M T (µj , βj ) then Fn ∈ N (σ), where σ =
j=1


Proof. From (1), we observe that Fn ∈ A. On the other hand, it is easy to see that
Fn′ (z)

=


n 
Y
fj (z) αj

j=1

z

.

Differentiating (5) logarithmically and multiply by z , we obtain
" ′
#

′′
n
zfj (z)
zFn (z) X
=
−1 .
αj
fj (z)
Fn′ (z)
j=1

81

(5)

A. Mohammed, M. Darus, D. Breaz - Some properties for certain integral operators

Thus we have


 ′
n
X
zfj (z)
zFn′′ (z)
− 1 + 1.
+1=
αj
Fn′ (z)
fj (z)
j=1

We calculate the real part from both terms of the above expression and obtain
Re



 X

 ′
n
zfj (z)
zFn′′ (z)
+1 =
− 1 + 1.
αj Re
Fn′ (z)
fj (z)

(6)

j=1

Since ℜw ≤ | w| , then
Re





 X
n

zfj (z)
zFn′′ (z)
− 1 + 1.
+1 ≤
αj

Fn (z)
fj (z)
j=1

Since fj ∈ MT (µj , βj ) for j ∈ {1, ..., n}, we have
Re





′ X
 X
n
n
n
X

fj (z)
zfj′ (z)
zFn′′ (z)


+

µ
+
1

+
1
+
1

α
β
µ
αj βj + 1
α
β
j
j
j
j
j
j
fj (z)

fj (z)
Fn′ (z)
j=1

j=1

<

n
X

αj βj µj Mj +

j=1

Hence Fn ∈ N (σ), σ =

n
X

αj βj + 1 =

j=1

n
P

n
X

j=1

αj βj (µj Mj + 1) + 1.

j=1

αj βj (µj Mj + 1) + 1.

j=1

Letting n = 1, α1 = α, α2 = ... = αn = 0, M1 = M and f1 = f, in the Theorem 1,
we have

(z)
Corollary 1. Let α ∈ R , α > 0, f ∈ A and suppose that ff (z)
< M, M fixed.

Rz
dt ∈ N(σ) , σ = αβ(µM + 1) + 1.
If f ∈ M T (µ, β) then F1 (z) = 0 f (t)
t

Letting α = 1 in Corollary 1, we have


(z)
Corollary 2. Let f ∈ A and suppose that ff (z)
< M, M fixed.

Rz
dt ∈ N(σ) , σ = β(µM + 1) + 1.
then F1 (z) = 0 f (t)
t

If f ∈ M T (µ, β)

Theorem 2. Let αj > 0 for j ∈ {1, ..., n}, let βj > 0 be real number with the
82

A. Mohammed, M. Darus, D. Breaz - Some properties for certain integral operators

property 0 ≤ βj < 1 and let fj ∈ KD(µj , βj ) for j ∈ {1, ..., n}, µj ≥ 0. If
n
P
αj (1 − βj ) ≤ 1 then the functions Fα1 ,...,αn given by (2) is convex of or0 <
j=1

der ρ = 1 −

n
P

αj (1 − βj ).

j=1

Proof. From (2), we observe that Fα1 ,...,αn ∈ A and
n
X
zFα′′1 ,...,αn (z)
+
1
=
αj
Fα′ 1 ,...,αn (z)
j=1

!
n
X
fj′′ (z)
+1 −
+1.
z ′
fj (z)
j=1

We calculate the real part from both terms of the above expression and obtain
!
 X
 ′′
n
n
X
fj′′ (z)
zFα1 ,...,αn (z)
+1 −
+1 =
αj + 1.
αj Re z ′
Re
Fα′ 1 ,...,αn (z)
fj (z)
j=1

j=1

Since fj ∈ KD(µj , βj ) for j = {1, ..., n}, we have


!
 X
 ′′
n
n
f ′′ (z)
X
zFα1 ,...,αn (z)

j
+1 >
Re
αj µj z ′
αj + 1.
+ βj −
fj (z)
Fα′ 1 ,...,αn (z)
j=1

j=1

This relation is equivalent to
Re





 X
n
n
f ′′ (z) X
zFα′′1 ,...,αn (z)

j
+
+
1
>
αj (βj − 1) + 1.
α
µ
z


j j
fj′ (z)
Fα′ 1 ,...,αn (z)
j=1

j=1

f ′′ (z)


Since αj µj z fj′ (z) > 0 we obtain
j

Re

!
′′
n
X
zFα1 ,...αn (z)
+
1

1

αj (1 − βj ),
Fα′ 1 ,...αn (z)
j=1

which implies that Fα1 ,...,αn is convex of order ρ = 1 −

n
P

αj (1 − βj ).

j=1

Letting n = 1, α1 = α, α2 = ... = αn = 0 and f1 = f, in the Theorem 2, we have
Corollary 3. Let α be a real number, α > 0. Suppose that the function fj ∈

83

A. Mohammed, M. Darus, D. Breaz - Some properties for certain integral operators

KD(µ, β) and o ≤ α(1 − β) < 1 . In these conditions the function Fα (z) =
Rz ′
(f (t))α dt is convex of order 1 − (1 − β)α.
0

Letting α = 1 in Corollary 3, we have

Corollary 4. Let f ∈ KD(µ, β) and consider the integral operator F1 (z) =

Rz

f ′ (t)dt.

0

In this condition F1 is convex of order β.

A necessary and sufficient condition for a family of analytic functions
fj ∈ KDFn (µ, β, α1 , ..., αn )
In this section, we give a necessary and sufficient condition for a family of functions
fj ∈ KDFn (µ, β, α1 , ..., αn ). Before embarking on the proof of our result, let us
′′ (z)
calculate the expression zF
F ′ (z) , required for proving our result.
n

Recall that, from (1), we have
Fj′ (z)

=


n 
Y
fj (z) αj
z

j=1

, z ∈ U.

After some calculation, we obtain that
n

Fn′′ (z) X
=
αj
Fn′ (z)
j=1

that is equivalent to

n

zFn′′ (z) X
=
αj
Fn′ (z)
j=1

Let fj (z) = z −


P



fj′ (z) 1

fj (z) z





,


zfj′ (z)
−1 .
fj (z)


P
an,j z n . Then fj′ (z) = 1 −
nan,j z n−1 and we get
n=2
n=2



P
n
z

na
z
n
n,j

zFn′′ (z) X 
n=2

=
α
− 1
j


=

P
Fn (z)
j=1
z−
an,j z n
n=2

=

n
X
j=1




αj 


1−


P

nan,j z n−1 − 1 +

n=2


P

an,j z n−1

n=2

1−


P

an,j z n−1

n=2


P

n−1
(n

1)
a
z
n
n,j
X


 n=2
=−
.

α
j




P
j=1
1−
an,j z n−1


n=2

(7)

84

A. Mohammed, M. Darus, D. Breaz - Some properties for certain integral operators

Theorem 3. Let the function fj ∈ T for j ∈ {1, ..., n}. Then the functions fj ∈
KDFn (µ, β, α1 , ..., αn ) for j ∈ {1, ..., n} if and only if

P

α
(n

1)

+
1)
a
n
n,j
X

 n=2 j
 ≤ 1 − β.

(8)



P
j=1
1−
an,j
n=2

Proof. First consider
′′
′′


′′ (z)
zF (z)
zFn (z)
zF
n
− Re 1 +
.
≤ (µ + 1) ′n
µ ′


Fn (z)
Fn (z)
Fn (z)

From (7) we obtain


P



n−1
′′

(n

1)
a
z
n,j
zF (z)
X  n=2


 ≤
= (µ + 1)
(µ + 1) ′n
α
j




P
Fn (z)

n=2
n−1
1−
an,j z


n=2

P
P




n−1
α (n − 1) an,j
α (n − 1) |an,j | |z|
n
n
X
X
 n=2 j
 n=2 j




.
 ≤ (µ + 1)
≤ (µ + 1)






P
P
n−1
j=1
j=1
1−
|an,j | |z|
1−
an,j
n=2

n=2

If (8) holds then the above expression is bounded by 1 − β, and consequently
′′


zFn (z)
zFn′′ (z)


µ ′
< −β,
− Re 1 + ′
Fn (z)
Fn (z)

which equivalent to



zF ′′ (z)
Re 1 + ′n
Fn (z)



′′
zF (z)
+ β.
≥ µ ′n
Fn (z)

Hence fj ∈ KDFn (µ, β, α1 , ..., αn ) for j ∈ {1, ..., n}.

Conversely. Let fj ∈ KDFn (µ, β, α1 , ..., αn ) for j ∈ {1, ..., n} and prove that (8)
holds. If fj ∈ KDFn (µ, β, α1 , ..., αn ) for j ∈ {1, ..., n} and z is real, we get from (3)
and (7)

P
P






n−1
n−1


(n − 1) an,j z
(n − 1) an,j z
n
X
 n=2
X  n=2








1−
αj 
αj 


 ≥ µ
 + β ≥
P
P


n−1
n−1
j=1
1−
1−
an,j z
an,j z

j=1
n=2

n=2

85

A. Mohammed, M. Darus, D. Breaz - Some properties for certain integral operators
P


n−1
(n − 1) an,j z
n
X
 n=2

 + β.
µ
αj 



P
n−1
j=1
1−
an,j z
n=2

That is equivalent to


P
P


n−1
n−1
α (n − 1) an,j z
α µ (n − 1) an,j z
n
n
X
 X

 n=2 j
 n=2 j
+
 ≤ 1 − β.








P
P
n−1
n−1
j=1
j=1
1−
an,j z
1−
an,j z
n=2

n=2

The above inequality reduce to
P


n−1
α

+
1)
(n

1)
a
z
n
n,j
X
 n=2 j


 ≤ 1 − β.



P
n−1
j=1
1−
an,j z
n=2

Let z → 1− along the real axis, then we get
P


α (µ + 1) (n − 1) an,j
n
X
 n=2 j


 ≤ 1 − β.



P
j=1
1−
an,j
n=2

Which give the required result.

A necessary and sufficient condition for a family of analytic functions
fj ∈ KDFα1 ,...,αn (µ, β, α1 , ..., αn )
In this section, we give a necessary and sufficient condition for a family of analytic
functions fj ∈ KDFα1 ,...,αn (µ, β, α1 , ..., αn ). Let us first calculate the expression,
zFα′′1 ,...,αn (z)
Fα′ 1 ,...,αn (z) ,

required for proving our result. From (2) we obtain
Fα′ 1 ,...,αn (z) =

n
Y
 ′ αj
fj (z) .

j=1

After some calculus, we obtain
n
zfj′ (z)
zFα′′1 ,...,αn (z) X
.
=
α
j
Fα′ 1 ,...,αn (z)
fj′ (z)
j=1

86

A. Mohammed, M. Darus, D. Breaz - Some properties for certain integral operators

Let fj (z) = z −
1)an,j z n−2 we get


P

n=2

an,j z n , fj′ (z) = 1 −


P

n=2

nan,j z n−1 and fj′′ (z) = −


P

n(n −

n=2


P

n−1
n(n

1)a
z
n,j

 n=2
zFα′′1 ,...,αn (z)
.

=

α
j




P
Fα1 ,...,αn (z)
n−1
j=1
nan,j z
1−
n
X

(9)

n=2

Theorem 4. Let the functions fj ∈ T for j ∈ {1, ..., n}. Then the functions
fj ∈ KDFα1 ,...,αn (µ, β, α1 , ..., αn ) for j ∈ {1, ..., n} if and only if
P


α n(n − 1)(µ + 1)an,j
n
X
 n=2 j


 ≤ 1 − β.
(10)



P
j=1
1−
nan,j
n=2

Proof. First consider



′′
′′


zFα1 ,...,αn (z)
zFα1 ,...,αn (z)
zFα′′1 ,...,αn (z)

.


− Re 1 + ′
≤ (µ + 1) ′
µ ′
Fα1 ,...,αn (z)
Fα1 ,...,αn (z)
Fα1 ,...,αn (z)

From (9) we obtain


P



n−1
′′


n
(n

1)
a
z
n,j

zFα ,...,αn (z)
X  n=2
 ≤

= (µ + 1)
α
(µ + 1) ′ 1
j





P
Fα1 ,...,αn (z)

n=2
nan,j z n−1
1−


n=2

P
P




n−1
α
n
(n

1)
|a
|
|z|
α
n
(n

1)
a
n
n
n,j
n,j
X
X
 n=2 j
 n=2 j




.
 ≤ (µ + 1)
≤ (µ + 1)






P
P
n−1
j=1
j=1
1−
n |an,j | |z|
1−
nan,j
n=2

n=2

If (10) holds then the above expression is bounded by 1 − β and consequently
′′



zFα1 ,...,αn (z)
zFα′′1 ,...,αn (z)
− Re 1 +
µ ′
< −β,
Fα1 ,...,αn (z)
Fα′ 1 ,...,αn (z)

which equivalent to

zFα′′ ,...,αn (z)
Re 1 + ′ 1
Fα1 ,...,αn (z)





′′
zFα1 ,...,αn (z)
+ β.

≥ µ ′
Fα1 ,...,αn (z)

87

A. Mohammed, M. Darus, D. Breaz - Some properties for certain integral operators

Hence fj ∈ KDFα1 ,...,αn (µ, β, α1 , ..., αn ) for j ∈ {1, ..., n}.
Conversely,Let fj ∈ KDFα1 ,...,αn (µ, β, α1 , ..., αn ) and prove that (10) holds. If fj ∈
KDFα1 ,...,αn (µ, β, α1 , ..., αn ) and z is real we get from (4) and (9)

P


P




n−1
n−1
X

n (n − 1) an,j z
n (n − 1) an,j z
n
X
n
 n=2


 n=2






αj 
1−
αj 


 ≥ µ
 + β ≥
P
P


n−1
n−1
j=1
1−
nan,j z
1−
nan,j z
j=1

n=2

n=2


P

n−1
n (n − 1) an,j z

X

 n=2
 + β,

≥µ
αj 


P
n−1
j=1
nan,j z
1−
n=2

which is equivalent to
P
P




n−1
n−1
α µn (n − 1) an,j z
α n (n − 1) an,j z
n
n
X
 n=2 j
 n=2 j
 X



+
 ≤ 1 − β.






P
P
n−1
n−1
j=1
j=1
1−
nan,j z
1−
nan,j z
n=2

n=2

The above inequality reduce to
P


n−1
α n(µ + 1) (n − 1) an,j z
n
X
 n=2 j


 ≤ 1 − β.



P
n−1
j=1
nan,j z
1−
n=2

Let z → 1− along the real axis, then we get

P

α
n(µ
+
1)
(n

1)
a
n
j
n,j
X  n=2

 ≤ 1 − β,




P
j=1
nan,j
1−
n=2

which give the required result.

Acknowledgement: The work here is supported by UKM-ST-06-FRGS0107-2009.

88

A. Mohammed, M. Darus, D. Breaz - Some properties for certain integral operators

References
[1] A. Mohammed, M.Darus and D.Breaz, Fractional Calculus for Certain Integral Operator Involving Logarithmic Coefficients, Journal of Mathematics and Statistics, 5:2(2009), 118-122.
[2] A. Mohammed, M.Darus and D.Breaz, On close-to-convex for certain integral
operators, Acta Universitatis Apulensis, No 19/2009, pp. 209-116.
[3] B.A. Frasin, Some sufficient conditions for certain integral operators, J. Math.
Ineq., 2:4 (2008), 527-335.
[4] D. Breaz and N. Breaz, Two integral operators, Studia Universitatis BabesBolyai, Mathematica, 47:3(2002), 13-19.
[5] D. Breaz, S. Owa and N. Breaz, A new integral univalent operator, Acta
Universitatis Apulensis, No 16/2008, pp. 11-16.
[6] D. Breaz, A convexity property for an integral operator on the class Sp (β),
Journal of Inequalities and Applications, vol. 2008, Article ID 143869.
[7] D. Breaz, Certain Integral Operators On the Classes M (βi ) and N (βi ), Journal of Inequalities and Applications, vol. 2008, Article ID 719354.
[8]S. Owa and H.M. Srivastava, Some generalized convolution properties associated with certain subclasses of analytic functions, JIPAM, 3(3)(2003), 42: 1-13.
[9]S. Shams, S. R. Kulkarni and J. M. Jahangiri, Classes of uniformly starlike
and convex functions, Internat. J. Math. Math. Sci., 55(2004), 2959-2961.
Aabed Mohammed and Maslina Darus
School of Mathematical Sciences,
Faculty of Science and Technology,
Universiti Kebangsaan Malaysia
43600 Bangi, Selangor D. Ehsan,
Malaysia
e-mails: [email protected], [email protected]
Daniel Breaz
Department of Mathematics
” 1 Decembrie 1918 ” University
Alba Iulia, str. N. Iorga, 510009, No. 11-13
Alba, Romania
e-mail: [email protected]

89

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52