19-21.2010. 113KB Jun 04 2011 12:07:49 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 21/2010
pp. 185-192

THE UNIVALENCE OF A NEW INTEGRAL OPERATOR

Virgil Pescar

Abstract. We derive some criteria for univalence of a new integral operator
for analytic functions in the open unit disk.
2000 Mathematics Subject Classification: 30C45.
Keywords and phrases: Integral operator, univalence, starlike.
1. Introduction
Let A be the class of the functions f (z) which are analytic in the open unit disk
U = {z ∈ C :| z |< 1} and f (0) = f ′ (0) − 1 = 0.
We denote by S the subclass of A consisting of functions f (z) ∈ A which are
univalent in U. Miller and Mocanu [4] have considered the integral operator Mα
given by
 z

α
1Z

1
Mα (z) =
(f (u)) α u−1 du
, z∈U
(1.1)
α

0

for functions f (z) belonging to the class A and for some α be complex numbers,
α 6= 0. It is well known that Mα (z) ∈ S for f (z) ∈ S ∗ and α > 0, where S ∗ denotes
the subclass of S consisting of all starlike functions f (z) in U .
In this paper, we introduce a new integral operator Jγ,n which is defined by
γ
 z

1 Z

1
+n−1
, z∈U
(1.2)
du
Jγ,n
u−n (f (u)) γ
˙ (z) =

γ
0

for functions f (z) ∈ A, n ∈ N and for some complex numbers γ , γ 6= 0.
From (1.2), for n = 1 and γ = α we obtain the integral operator Mα (z).
185

Virgil Pescar - The univalence of a new integral operator

If


1
γ

= 1 and n ∈ N − {0, 1} , from (1.2) we obtain the integral operator
Kn (z) =

Zz 

f (u)
u

0

n

du, z ∈ U

(1.3)

which is the case particular of the integral operator Kim-Merkes [2] ,for α = n.

From(1.2), for γ1 = 1, n = 1 we obtain the integral operator Alexander define by
H(z) =

Zz

f (u)
du
u

(1.4)

0

If n = 0, from (1.2) we obtain the integral operator define by
 z
γ
1 Z

1
−1

Gγ (z) =
(f (u)) γ du
γ


(1.5)

0

In the present paper, we consider some sufficient conditions for the integral
operator Jγ,n to be in the class S.
2. Preliminary results
To discuss our problems for univalence of integral operator Jγ,n , we need the
following lemmas.
Lemma 2.1 [7] Let α be a complex number with Re α > 0 and f (z) ∈ A.If f (z)
satisfies


1 − |z|2 Re α zf ′′ (z)
f ′ (z) ≤ 1

Re α

(2.1)

for all z ∈ U , then the function

1
 z
α
 Z
α−1 ′
f (u)du
Fα (z) = α u



(2.2)

0


is in the class S.

Lemma 2.2 (Schwarz [3]) Let f (z) the function regular in the disk UR = {z ∈
C : |z| < R} with |f (z)| < M, M fixed. If f (z) has in z = 0 one zero with multiply
≥ m, then
M
|f (z)| ≤ m |z|m , z ∈ UR
(2.3)
R
186

Virgil Pescar - The univalence of a new integral operator

the equality (in the inequality (2.3) for z 6= 0) can hold only if
f (z) = eiθ

M m
z ,
Rm


where θ is constant.
Lemma 2.3 (Caratheodory [1] , [5]) Let f be analytic function in U , with f (0) =
0.
If f satisfies
Re f (z) ≤ M

(2.4)

(1 − |z|) |f (z)| ≤ 2M |z| , z ∈ U

(2.5)

for some M > 0, then

2. Main results
Theorem 3.1. Let γ be a complex number, a = Re γ1 > 0, n ∈ N and f (z) ∈ A,
f (z) = z + a2 z 2 + ...
If



2a+1
zf (z)

(2a + 1) 2a |γ|


(3.1)
f (z) − 1 ≤ 2(1 + |γ| |n − 1|)
for all z ∈ U, then the integral operator Jγ,n define by (1.2) is in the class S.
Proof. We observe that
Jγ,n (z) =

 z
1 Z
γ

u

1
−1

γ

0



f (u)
u

 1 +n−1
γ

Let us consider the function

g(z) =

Zz 

f (u)
u


0

 1 +n−1

du

γ


γ

du.

The function g is regular in U .
′′ (z)
We define the function p(z) = zgg′ (z)
, z ∈ U and we obtain

 ′

zg ′′ (z)
1
zf (z)
p(z) = ′
=
+n−1
−1
g (z)
γ
f (z)
187

(3.2)



(3.3)

(3.4)

Virgil Pescar - The univalence of a new integral operator

From (3.1) and (3.4) we have
(2a + 1)
|p(z)| ≤
2

2a+1
2a

(3.5)

for all z ∈ U .
The function p satisfies the condition p(0) = 0 and applying Lemma 2.2 we
obtain
2a+1
(2a + 1) 2a
|z| , z ∈ U
(3.6)
|p(z)| ≤
2
From (3.6) we get


2a

2a+1
2a
1

|z|
′′

1 − |z| zg (z) (2a + 1) 2a
|z|
(3.7)
g ′ (z) ≤
a
2
a

for all z ∈ U.
Because

max
|z|≤1

(

)
1 − |z|2a
2
|z| =
2a+1
a
(2a + 1) 2a

from (3.7) we obtain

for all z ∈ U.



1 − |z|2a zg ′′ (z)
g ′ (z) ≤ 1
a

(3.8)


 1 +n−1
γ
From (3.8) and because g ′ (z) = f (z)
, by Lemma 2.1. we obtain that the
z
integral operator Jγ,n is in the class S.
Corallary 3.2. Let γ be a complex number, a = Re γ1 > 0 and
f (z) ∈ A, f (z) = z + a2 z 2 + ...
If


2a+1
zf (z)
(2a + 1) 2a


|γ|
f (z) − 1 ≤
2

(3.9)

for all z ∈ U, then the integral operator Mγ given by (1.1) is in the class S.
Proof. For n = 1, from Theorem 3.1 we obtain that Mγ (z) is in the class S
Corollary 3.3. Let n ∈ N − {0, 1} and f ∈ A, f (z) = z + a2 z 2 + ...
If




zf (z)
3
3


f (z) − 1 ≤ 2 (1 + |n − 1|)
188

(3.10)

Virgil Pescar - The univalence of a new integral operator

for all z ∈ U , then the integral operator Kn define by (1.3) belongs to class S.
Proof. We take

1
γ

= 1 in Theorem 3.1 and we get Kn ∈ S.

Corollary 3.4. Let the function f (z) ∈ A, f (z) = z + a2 z 2 + ...
If



zf (z)
3 3


f (z) − 1 ≤ 2 , z ∈ U

(3.11)

then, the integral operator H define by (1.4) is in the class S.
Proof. In Theorem 3.1. we take

1
γ

= 1 and n = 1.

Corollary 3.5. Let γ be a complex number a = Re γ1 > 0 and f ∈ A,
f (z) = z + a2 z 2 + a3 z 3 + ...
If


(2a + 1) 2a+1
zf (z)
|γ|
2a


·

1

f (z)
2
1 + |γ|

(3.12)

for all z ∈ U, then the integral operator Gγ given by (1.5) is in the class S.
Proof. For n = 0, from Theorem 3.1 we have Gγ ∈ S.

Theorem 3.6. Let γ be a complex number, Re γ1 > 0, f ∈ A,
f (z) = z + a2 z 2 + ...
If

  ′
|γ| Re γ1
1
iθ zf (z)
Re e
−1

, 0 < Re < 1
f (z)
4 (1 + |γ| |n − 1|)
γ
or
  ′

|γ|
1
iθ zf (z)
Re e

−1
, Re ≥ 1
f (z)
4 (1 + |γ| |n − 1|)
γ

(3.13)

(3.14)

for all z ∈ U, θ ∈ [0, 2π] and n ∈ N, then the integral operator Jγ,n is in the class
S.
Proof. The integral operator Jγ,n is the form (3.2). We consider the function
g (z) which is the form (3.3) . We have

 ′

zg ′′ (z)
1
zf (z)
=
+
n

1

1
(3.15)
g ′ (z)
γ
f (z)
Let us consider the function
 ′

iθ zf (z)
ψ (z) = e
− 1 , z ∈ U, θ ∈ [0, 2π]
f (z)
and we observe that ψ (0) = 0.
189

(3.16)

Virgil Pescar - The univalence of a new integral operator
By (3.13) and Lemma 2.3. for Re γ1 ∈ (0, 1)
we obtain
|ψ (z)| ≤

|z| |γ| Re γ1

2 (1 − |z|) (1 + |γ| |n − 1|)

, z ∈ U, n ∈ N

(3.17)

From (3.14) and Lemma 2.3, for Re γ1 ∈ [1, ∞) we have
|ψ (z)| ≤

|z| |γ|
, z ∈ U, n ∈ N
2 (1 − |z|) (1 + |γ| |n − 1|)

From (3.15) and (3.17) we get


2 Re γ1

2 Re γ1
1

|z|
|z|
′′

1
1 − |z|
zg (z) ≤
, z ∈ U, Re ∈ (0, 1)


1

g (z)
2 (1 − |z|)
γ
Re γ
2 Re

Because 1 − |z|

1
γ

(3.19)

≤ 1 − |z|2 for Re γ1 ∈ (0, 1) , z ∈ U, from (3.19) we have
2 Re

1 − |z|
Re γ1
for all z ∈ U, Re γ1 ∈ (0, 1) .
For Re γ1 ∈ [1, ∞) we have

we obtain

(3.18)

1
2 Re γ

1−|z|
Re

1
γ

′′

zg (z)


g ′ (z) ≤ 1

(3.20)

1
γ

≤ 1 − |z|2 , z ∈ U and from (3.15) and (3.18)

2 Re

1
γ

1 − |z|
Re γ1


′′
zg (z)


g ′ (z) ≤ 1

(3.21)

for all z ∈ U, Re γ1 ∈ [1, ∞) .
Using (3.20) and (3.21) by Lemma 2.1. it results that Jγ,n given by (1.2) is in
the class S.
Corollary 3.7. Let γ be a complex number, Re γ1 > 0, f ∈ A,
f (z) = z + a2 z 2 + ...
If
  ′

|γ| Re γ1
1
iθ zf (z)
−1

, Re ∈ (0, 1)
Re e
f (z)
4
γ
or
  ′

|γ|
1
iθ zf (z)
Re e
−1

, Re ∈ [1, ∞)
f (z)
4
γ
190

(3.22)

(3.23)

Virgil Pescar - The univalence of a new integral operator

for all z ∈ U and θ ∈ [0, 2π] , then the integral operator Mγ define by (1.1) is in the
class S.
Proof. In Theorem 3.6. we take n = 1.
Corollary 3.8. Let n ∈ N − {0} and f ∈ A, f (z) = z + a2 z 2 + ...If

  ′
1
iθ zf (z)
−1

Re e
f (z)
4 (1 + |n − 1|)

(3.24)

for all z ∈ U and θ ∈ [0, 2π] , then the integral operator Kn given by (1.3) is in the
class S.
Proof. For γ = 1, from Theorem 3.6. we obtain Corollary 3.8.
Corollary 3.9. Let γ be a complex number Re γ1 > 0 and f ∈ A,
f (z) = z + a2 z 2 + ...
If
  ′

|γ| Re γ1
1
iθ zf (z)
Re e
−1

, Re ∈ (0, 1)
f (z)
4 (1 + |γ|)
γ
or

  ′
|γ|
1
iθ zf (z)
−1

, Re ∈ [1, ∞)
Re e
f (z)
4 (1 + |γ|)
γ

(3.25)

(3.26)

then the integral operator Gγ given by (1.5) is in the class S.
Proof. In Theorem 3.6. we take n = 0.
References

[1] D.Blezu, On univalence criteria, General Mathematics, Volume 14, No.1,
2006, 87-93.
[2] Y.J.Kim,E.P.Merkes, On an Integral of Powers of a Spirallike Function,
Kyungpook Math.J.12 (1972), 249-253.
[3] O.Mayer, The Functions Theory of One Variable Complex, Bucure¸sti, 1981.
[4] S.S. Miller, P.T. Mocanu, Differential Subordinations, Theory and Applications, Monographs and Text Books in Pure and Applied Mathematics, 255, Marcel
Dekker, New York, 2000.
[5] S.Moldoveanu, N.N. Pascu, R.N.Pascu, On the univalence of an integral operator, Mathematica 43 (2001),113-116.
[6] Z.Nehari, Conformal Mapping, Mc Graw-Hill Book Comp., New York, 1952
(Dover. Publ. Inc., 1975).

191

Virgil Pescar - The univalence of a new integral operator

[7] N.N. Pascu, On a Univalence Criterion II, Itinerant Seminar Functional
Equations, Approximation and Convexity, (Cluj Napoca, 1985), Preprint, University
”Babe¸s-Bolyai”, Cluj Napoca, 85 (1985), 153-154.
[8] V. Pescar, Sufficient Conditions of Univalence for an Integral Operator, Libertas Mathematica, vol XXIV (2004), 191-194.
[9] V. Pescar, New Univalence Criteria, ”Transilvania” University of Bra¸sov,
2002.
[10] V. Pescar, D.V. Breaz, The Univalence of Integral Operators, Academic
Publishing House, Sofia, 2008.
[11] V. Pescar, S. Owa, Univalence Problems for Integral Operators by KimMerkes and Pfaltzgraff, Journal of Approximation Theory and Applications, New
Delhi, vol. 3, 1-2 (2007), 17-21.
[12] C. Pommerenke, Univalent functions, Gottingen, 1975,
Virgil Pescar
Department of Mathematics
”Transilvania” University of Bra¸sov
500091 Bra¸sov Romˆ
ania
E-mail: [email protected]

192

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52