art200805. 114KB Jun 04 2011 12:08:21 AM

ACTA UNIVERSITATIS APULENSIS
No 11/2006
Proceedings of the International Conference on Theory and Application of
Mathematics and Informatics ICTAMI 2005 - Alba Iulia, Romania

ON A CLASS OF α-CONVEX FUNCTIONS
Mugur Acu
Abstract. In this paper we define a general class of α-convex functions
with respect to a convex domain D contained in the right half plane by using
a generalized S˘al˘agean operator introduced by F.M. Al-Oboudi in [5] and we
give some properties of this class.
2000 Mathematical Subject Classification: 30C45
Key words and phrases: α-convex functions, Libera-Pascu integral operator, Briot-Bouquet differential subordination, generalized S˘al˘agean operator
1.Introduction
Let H(U ) be the set of functions which are regular in the unit disc U ,
A = {f ∈ H(U ) : f (0) = f ′ (0) − 1 = 0}, Hu (U ) = {f ∈ H(U ) : f is univalent
in U } and S = {f ∈ A : f is univalent in U }.
Let Dn be the S˘al˘agean differential operator ([10]) defined as:
Dn : A → A, n ∈ N
and
D0 f (z) = f (z)

D1 f (z) = Df (z) = zf ′ (z)
Dn f (z) = D(Dn−1 f (z)).
Remark 1.1 If f ∈ S, f (z) = z+


P

j=2

z+


P

j=2

j n aj z j .

aj z j , j = 2, 3, ..., z ∈ U then Dn f (z) =


The aim of this paper is to define a general class of α-convex functions
with respect to a convex domain D contained in the right half plane by using
a generalized S˘al˘agean operator introduced by F.M. Al-Oboudi in[5] and to
obtain some leftoperties of this class.
7

M. Acu - On a class of α-convex functions
2.Preliminary results
We recall here the definitions of the well - known classes of starlike functions, convex functions and α-convex functions (see [6])
(

)

zf ′ (z)
S = f ∈ A : Re
> 0, z ∈ U ,
f (z)


(


(

zf ′′ (z)
S = CV = K = f ∈ H(U ); f (0) = f (0) − 1 = 0, Re 1 + ′
f (z)
c



)

)

> 0, z ∈ U ,

Mα = {f ∈ H(U ), f (0) = f ′ (0) − 1 = 0, ReJ(α, f ; z) > 0, z ∈ U , α ∈ R}
where
zf ′′ (z)
zf ′ (z)

+α 1+ ′
J (α, f ; z) = (1 − α)
f (z)
f (z)

!

We observe that M0 = S ∗ and M1 = S c where S ∗ and S c are the class of
starlike functions, respectively the class of convex functions.
Remark 2.1. By using the subordination relation, we may define the
class Mα thus if f (z) = z + a2 z 2 + ..., z ∈ U , then f ∈ Mα if and only if
1+z
J(α, f ; z) ≺ 1−z
, z ∈ U , where by ”≺” we denote the subordination relation.
Let consider the Libera-Pascu integral operator Lα : A → A defined as:
z

1+aZ
F (t) · ta−1 dt, α ∈ C , Reα ≥ 0.
f (z) = Lα F (z) =

a
z

(1)

0

In the case a = 1, 2, 3, ... this operator was introduced by S. D. Bernardi
and it was studied by many authors in different general cases.
Definition 2.1.[5] Let n ∈ N and λ ≥ 0. We denote with Dλn the operator
defined by
Dλn : A → A ,
Dλ0 f (z) = f (z), Dλ1 f (z) = (1 − λ)f (z) + λzf ′ (z) = Dλ f (z),




Dλn f (z) = Dλ Dλn−1 f (z) .
8


M. Acu - On a class of α-convex functions
Remark 2.2.[5] We observe that Dλn is a linear operator and for f (z) =
z+


P

j=2

aj z j we have
Dλn f (z) = z +


X

(1 + (j − 1)λ)n aj z j .

j=2

Also, it is easy to observe that if we consider λ = 1 in the above definition

we obtain the S˘al˘agean differential operator.
Definition 2.2 [3] Let q(z) ∈ Hu (U ), with q(0) = 1 and q(U ) = D, where
D is a convex domain contained in the right half plane, n ∈ N and λ ≥ 0. We
Dn+1 f (z)
say that a function f (z) ∈ A is in the class SL∗n (q) if Dλ n f (z) ≺ q(z), z ∈ U .
λ

Remark 2.3. Geometric interpretation: f (z) ∈ SL∗n (q) if and only if

n+1

f (z)
n f (z)


take all values in the convex domain D contained in the right half-

plane.
Definition 2.3 [4] Let q(z) ∈ Hu (U ), with q(0) = 1 and q(U ) = D, where
D is a convex domain contained in the right half plane, n ∈ N and λ ≥ 0. We

Dn+2 f (z)
say that a function f (z) ∈ A is in the class SLcn (q) if Dλn+1 f (z) ≺ q(z), z ∈ U .
λ

Remark 2.4. Geometric interpretation: f (z) ∈ SLcn (q) if and only if

n+2

f (z)
n+1
Dλ f (z)

take all values in the convex domain D contained in the right half-

plane.
The next theorem is result of the so called ”admissible functions method”
introduced by P.T. Mocanu and S.S. Miller (see [7], [8], [9]).
Theorem 2.1. Let h convex in U and Re[βh(z) + γ] > 0, z ∈ U . If
p ∈ H(U ) with p(0) = h(0) and p satisfied the Briot-Bouquet differential
subordination

p(z) +

zp′ (z)
≺ h(z), then p(z) ≺ h(z).
βp(z) + γ

9

M. Acu - On a class of α-convex functions
3. Main results
Definition 3.1 Let q(z) ∈ Hu (U ), with q(0) = 1, q(U ) = D, where D is a
convex domain contained in the right half plane, n ∈ N, λ ≥ 0 and α ∈ [0, 1].
We say that a function f (z) ∈ A is in the class M Ln,α (q) if
Jn,λ (α, f ; z) = (1 − α)

Dλn+1 f (z)
Dλn+2 f (z)
+
α
≺ q(z), z ∈ U.

Dλn f (z)
Dλn+1 f (z)

Remark 3.1 Geometric interpretation: f (z) ∈ M Ln,α (q) if and only if
Jn,λ (α, f ; z) take all values in the convex domain D contained in the right
half-plane.
Remark 3.2 It is easy to observe that if we choose different function q(z)
we obtain variously classes of α-convex functions, such as (for example), for
λ = 1 and n = 0, the class of α-convex functions, the class of α-uniform
convex functions with respect to a convex domain (see [2]), and, for λ = 1,
the class U Dn,α (β, γ), β ≥ 0, γ ∈ [−1, 1), β + γ ≥ 0 (see [1]), the class of
α-n-uniformly convex functions with respect to a convex domain (see [2]).
Remark 3.3 We have M Ln,0 (q) = SL∗n (q) and M Ln,1 (q) = SLcn (q).
Remark 3.4 For q1 (z) ≺ q2 (z) we have M Ln,α (q1 ) ⊂ M Ln,α (q2 ) . From
1+z
the above we obtain M Ln,α (q) ⊂ M Ln,α 1−z
Theorem 3.1 For all α, α′ ∈ [0, 1], with α < α′ , we have M Ln,α′ (q) ⊂
M Ln,α (q).
Proof. From f (z) ∈ M Ln,α′ (q) we have
Dλn+2 f (z)

Dλn+1 f (z)
≺ q(z),
+ α n+1
Jn,λ (α, f ; z) = (1 − α)
Dλn f (z)
Dλ f (z)

(2)

where q(z) is univalent in U with q(0) = 1 and maps the unit disc U into the
convex domain D contained in the right half-plane.
With notation
p(z) =

Dλn+1 f (z)
Dλn f (z)
10

M. Acu - On a class of α-convex functions
where
p(z) = 1 + p1 z + . . . andf (z) = z +


X

aj z j

j=2

we have
p(z) + α′ λ ·

=

Dλn+1 f (z)
Dλn f (z)

=

+

Dλn+1 f (z)
Dλn f (z)

Dλn f (z)
α′ λ n+1
Dλ f (z)

+

·z

Dλn f (z)

α λ n+1
Dλ f (z)



′

Dλn+1 f (z) Dλn f (z) − Dλn+1 f (z) (Dλn f (z) ′

 

n+1
 z Dλ f (z)



z+

z

Dλn f (z) 
Dn+1 f (z)


+ α′ λ · n+1
= λn
Dλ f (z)
Dλ f (z) 



P

z z+

j=2



z 1+








P

Dλn+1 f (z)
Dλn f (z)

·

z

(Dλn f (z) ′ 

Dλn f (z)

n+1

(1 + (j − 1)λ)

j=2

n+1

j (1 + (j − 1)λ)

j=2

Dλn f (z)

n

j (1 + (j − 1)λ) aj z

11

Dλn f (z)






=



j=2


P

!′

j−1

!






aj z

j−1

!

=

=

!′ 

Dλn f (z)


P

aj z

j

Dλn f (z)

(1 + (j − 1)λ)n aj z j

1+

z

Dn+1 f (z)
Dλn f (z) 

= λn
+ α′ λ · n+1
Dλ f (z)
Dλ f (z) 

Dn+1 f (z)
·
− λn
Dλ f (z)

(Dλn f (z))2

Dλn f (z)



Dn+1 f (z)
·
− λn
Dλ f (z)

zp′ (z)
=
p(z)



M. Acu - On a class of α-convex functions
or

(z)

p(z)+α′ ·λ·

zp
=
p(z)



Dλn+1 f (z) ′ Dλn f (z)
+α λ· n+1
Dλn f (z)
Dλ f (z)

Dλn+1 f (z)
Dλn f (z)

z+


P

j=2

z+

n+1

j (1 + (j − 1)λ)

j

aj z = z +



j (1 + (j − 1)λ)n aj z j 
Dλn f (z)

We have

X


P
j (1 + (j − 1)λ)n+1 aj z j
z +
j=2




Dλn f (z)




X





(3)

((j − 1) + 1) (1 + (j − 1)λ)n+1 aj z j =

j=2

j=2

=z+


X

n+1

(1 + (j − 1)λ)

j

aj z +


X

(j − 1) (1 + (j − 1)λ)n+1 aj z j =

j=2

j=2

= z + Dλn+1 f (z) − z +


X

(j − 1) (1 + (j − 1)λ)n+1 aj z j =

j=2

= Dλn+1 f (z) +
= Dλn+1 f (z) +
= Dλn+1 f (z) −


1X
((j − 1)λ) (1 + (j − 1)λ)n+1 aj z j =
λ j=2


1X
(1 + (j − 1)λ − 1) (1 + (j − 1)λ)n+1 aj z j =
λ j=2



1X
1X
(1 + (j − 1)λ)n+1 aj z j +
(1 + (j − 1)λ)n+2 aj z j =
λ j=2
λ j=2



1  n+1
1  n+2
Dλ f (z) − z +
Dλ f (z) − z =
λ
λ
z
z
1
1
= Dλn+1 f (z) − Dλn+1 f (z) + + Dλn+2 f (z) − =
λ
λ λ
λ
λ − 1 n+1
1
=
Dλ f (z) + Dλn+2 f (z) =
λ
λ

= Dλn+1 f (z) −

12

M. Acu - On a class of α-convex functions

=
Similarly we have
z+


X


1
λ − 1)Dλn+1 f (z) + Dλn+2 f (z) .
λ

j (1 + (j − 1)λ)n aj z j =

j=2


1
λ − 1)Dλn f (z) + Dλn+1 f (z) .
λ

From (3) we obtain
p(z) + α′ · λ ·
=

zp′ (z)
=
p(z)

Dλn+1 f (z)
Dλn f (z) 1
Dλn+1 f (z)

+
α
λ
·


1)
+
Dλn f (z)
Dλn f (z)
Dλn+1 f (z) λ

Dλn+2 f (z)
+ n
Dλ f (z)



Dλn+1 f (z)

Dλn f (z)

− 1) −

Dλn+1 f (z)
Dλn f (z)

!2 
=

n+2
n+1
Dλn+1 f (z)
′ Dλ f (z)
′ Dλ f (z)
+ α n+1
=
−α
=
Dλn f (z)
Dλn f (z)
Dλ f (z)

=

n+2
Dλn+1 f (z)

′ Dλ f (z)
(1

α
)
+
α
= Jn,λ (α′ , f ; z)
Dλn f (z)
Dλn+1 f (z)

From (2) we have
p(z) +

zp′ (z)
≺ q(z)
1
· p(z)
α′ λ

with p(0) = q(0), Req(z) > 0, z ∈ U , α′ > 0 and λ ≥ 0. In this conditions
from Theorem 2.1 we obtain p(z) ≺ q(z) or p(z) take all values in D.
If we consider the function g : [0, α′ ] → C,
g(u) = p(z) + u ·

λzp′ (z)
,
p(z)

with g(0) = p(z) ∈ D and g(α′ ) = Jn,λ (α′ , f ; z) ∈ D, it easy to see that
λzp′ (z)
g(α) = p(z) + α ·
∈ D, 0 ≤ α < α′ .
p(z)
Thus we have
Jn,λ (α, f ; z) ≺ q(z)
13

M. Acu - On a class of α-convex functions
or
f (z) ∈ M Ln,α (q).
From the above theorem we have
Corollary 3.1 For every n ∈ N and α ∈ [0, 1], we have
M Ln,α (q) ⊂ M Ln,0 (q) = SL∗n (q)
.
Remark 3.5 If we consider λ = 1 and n = 0 we obtain the Theorem 3.1
from [2]. Also, for λ = 1 and n ∈ N, we obtain the Theorem 3.3 from [2].
Remark 3.6 If we consider λ = 1 and D = Dβ,γ (see [1] or [2]) in the
above theorem we obtain the Theorem 3.1 from [1].
Theorem 3.2 Let n ∈ N, α ∈ [0, 1] and λ ≥ 1. If F (z) ∈ M Ln,α (q)
then f (z) = La F (z) ∈ SL∗n (q), where La is the Libera-Pascu integral operator
defined by (1).
Proof.
From (1) we have
(1 + a)F (z) = af (z) + zf ′ (z)
and, by using the linear operator Dλn+1 and if we consider f (z) =
we obtain


(1 + a)Dλn+1 F (z) = aDλn+1 f (z) + Dλn+1 z +
=

aDλn+1 f (z)

+z+


X


X

j=2

P∞

j=2

aj z j ,



jaj z j  =

(1 + (j − 1)λ)n+1 jaj z j

j=2

We have (see the proof of the above theorem)

z+


X

j=2

j (1 + (j − 1)λ)n+1 aj z j =


1
λ − 1)Dλn+1 f (z) + Dλn+2 f (z)
λ

14

(4)

M. Acu - On a class of α-convex functions
Thus
(1 + a)Dλn+1 F (z) = aDλn+1 f (z) +


1
λ − 1)Dλn+1 f (z) + Dλn+2 f (z) =
λ

!

λ−1
1
= a+
Dλn+1 f (z) + Dλn+2 f (z)
λ
λ
or



λ(1 + a)Dλn+1 F (z) = (a + 1)λ − 1) Dλn+1 f (z) + Dλn+2 f (z).
Similarly, we obtain



λ(1 + a)Dλn F (z) = (a + 1)λ − 1) Dλn f (z) + Dλn+1 f (z).
Then
Dλn+1 F (z)
=
Dλn F (z)

n+2

f (z)
n+1

f (z)

·

n+1

f (z)
n f (z)


+ ((a + 1) λ − 1) ·

((a + 1) λ − 1) +

n+1

f (z)
n f (z)


n+1

f (z)
n f (z)


With notation
Dλn+1 f (z)
= p(z), p(0) = 1
Dλn f (z)
we obtain
Dλn+1 F (z)
=
Dλn F (z)

n+2

f (z)
n+1

f (z)

· p(z) + (a + 1)λ − 1 · p(z)
p(z) + (a + 1)λ − 1

(5)

Also, we obtain
Dλn+2 f (z) Dλn f (z)
1
Dλn+2 f (z)
Dλn+2 f (z)
=
=
·
·
Dλn f (z) Dλn+1 f (z)
p(z) Dλn f (z)
Dλn+1 f (z)
We have
Dλn+2 f (z)
Dλn f (z)

z+
=


P

(1 + (j − 1)λ)n+2 aj z j

j=2

P

z+

j=2

and

15

(1 + (j − 1)λ)n aj z j

(6)

M. Acu - On a class of α-convex functions



zp (z) =



′

z Dλn+1 f (z)
Dλn f (z)

z 1+


P

Dλn+1 f (z) z (Dλn f (z))′

·
=
Dλn f (z)
Dλn f (z)
n+1

(1 + (j − 1)λ)

j=2

=

−p(z) ·



z 1+

jaj z j−1

!

Dλn f (z)



n
j−1
j=2 (1 + (j − 1)λ) jaj z

P∞

Dλn f (z)



or

zp′ (z) =

z+

n+1

P∞

j=2 j (1 + (j − 1)λ)
Dλn f (z)

aj z

z+

j


P

j=2

−p(z)·

j (1 + (j − 1)λ)n aj z j
Dλn f (z)

.
(7)

By using (4) and (7) we obtain
1
zp (z) =
λ


(λ − 1)Dλn+1 f (z) + Dλn+2 f (z)
(λ − 1)Dλn f (z) + Dλn+1 f (z)

p(z)
Dλn f (z)
Dλn f (z)

1
Dλn+2 f (z)
=
− p(z)((λ − 1) + p(z)) =
(λ − 1)p(z) +
λ
Dλn f (z)
!

1
=
λ

Dλn+2 f (z)
− p(z)2
n
Dλ f (z)

Thus
λzp′ (z) =
or

!

Dλn+2 f (z)
− p(z)2
Dλn f (z)

Dλn+2 f (z)
= p(z)2 + λzp′ (z).
Dλn f (z)
From (6) we obtain
1
Dλn+2 f (z)
(p(z)2 + λzp′ (z)).
=
n+1
p(z)
Dλ f (z)
16

!

=

M. Acu - On a class of α-convex functions
Then, from (5), we obtain
p(z)2 + λzp′ (z) + ((a + 1)λ − 1) p(z)
zp′ (z)
Dλn+1 F (z)
=
=
p(z)+λ
Dλn F (z)
p(z) + ((a + 1)λ − 1)
p(z) + ((a + 1)λ − 1)
where α ∈ C, Rea ≥ 0 and λ ≥ 1.
Dn+1 F (z)
If we denote Dλ n F (z) = h(z), with h(0) = 1, we have from F (z) ∈ M Ln,α (q)
λ
(see the proof of the above Theorem):
Jn,λ (α, F ; z) = h(z) + α · λ ·

zh′ (z)
≺ q(z)
h(z)

Using the hypothesis, from Theorem 2.1, we obtain
h(z) ≺ q(z)
or
p(z) + λ

zp′ (z)
≺ q(z).
p(z) + ((a + 1)λ − 1)

By using the Theorem 2.1 and the hypothesis we have
p(z) ≺ q(z)
or

Dλn+1 f (z)
≺ q(z).
Dλn f (z)
This means f (z) = Lα F (z) ∈ SL∗n (q) .

Remark 3.7 If we consider λ = 1 and n = 0 we obtain the Theorem 3.2
from [2]. Also, for λ = 1 and n ∈ N, we obtain the Theorem 3.4 from [2].
Remark 3.8 If we consider λ = 1 and D = Dβ,γ ( see [1] or [2]) in the
above theorem we obtain the Theorem 3.2 from [1].
References

17

M. Acu - On a class of α-convex functions
[1]M. Acu, On a subclass of α-uniform convex functions, Archivum Mathematicum, no. 2, Tomus 41/2005, (to appear).
[2]M. Acu, Some subclasses of α-uniformly convex functions, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, Vol. 21(2005), (to appear).
[3]M. Acu, On a subclass of n-starlike functions, (to appear).
[4]M. Acu, On a subclass of n-convex functions, (to appear).
[5]F.M. Al-Oboudi, On univalent funtions defined by a generalized S’al’agean
operator, Ind. J. Math. Math. Sci. 2004, no. 25-28, 1429-1436.
[6]P. Duren, Univalent functions, Springer Verlag, Berlin Heildelberg, 1984.
[7]S. S. Miller and P. T. Mocanu, Differential subordination and univalent
functions, Mich. Math. 28(1981), 157-171.
[8]S. S. Miller and P. T. Mocanu, Univalent solution of Briot-Bouquet differential equation, J. Differential Equations 56(1985), 297-308.
[9]S. S. Miller and P. T. Mocanu, On some classes of first-order differential
subordination, Mich. Math. 32(1985), 185-195.
[10]Gr. S˘al˘agean, On some classes of univalent functions, Seminar of geometric function theory, Cluj-Napoca, 1983.
Mugur Acu
University ”Lucian Blaga” of Sibiu
Department of Mathematics
Str. Dr. I. Rat.iu, No. 5-7
550012 - Sibiu, Romania
E-mail address: acu [email protected]

18

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52