belbachir13. 115KB Jun 04 2011 12:08:24 AM

1

2
3

47

6

Journal of Integer Sequences, Vol. 11 (2008),
Article 08.2.6

23 11

On Some Properties of Bivariate Fibonacci
and Lucas Polynomials
Hac`ene Belbachir1 and Farid Bencherif2
USTHB/Faculty of Mathematics
P. O. Box 32
El Alia, 16111
Bab Ezzouar

Algeria
[email protected]
[email protected]
[email protected]
[email protected]
Abstract
In this paper we generalize to bivariate Fibonacci and Lucas polynomials, properties
obtained for Chebyshev polynomials. We prove that the coordinates of the bivariate
polynomials over appropriate bases are families of integers satisfying remarkable recurrence relations.

1

Introduction

In [4], the authors established that Chebyshev polynomials of the first and second kind
admit remarkable integer coordinates in a specific basis. It turns out that this property can
be extended to Jacobsthal polynomials [6, 7], Vieta polynomials [18, 10, 14, 15], MorganVoyce polynomials [13, 2, 9, 11, 1, 17, 5] and quasi-Morgan-Voyce polynomials [8], and more
generally to bivariate polynomials associated with recurrence sequences of order two.
1
2


This research is partially supported by the LAID3 Laboratory.
This research is partially supported by the LATN Laboratory.

1

The bivariate polynomials of Fibonacci and Lucas, denoted respectively by (Un ) =
(Un (x, y)) and (Vn ) = (Vn (x, y)), are polynomials belonging to Z[x, y] and defined by


U0 = 0, U1 = 1,
V0 = 2, V1 = x,
and
Un = xUn−1 + yUn−2 (n ≥ 2) ,
Vn = xVn−1 + yVn−2 (n ≥ 2) .
It is established, see for example [12, 16, 3], that
Un+1
Vn

[n/2] 


X n − k
xn−2k y k ,
=
k
k=0
[n/2]
X n n − k 
=
xn−2k y k (n ≥ 1) .
n

k
k
k=0

(1)

(2)


Let En be the Q-vector space spanned by the free family Cn = (xn−2k y k )k , (0 ≤ k ≤ ⌊n/2⌋).
Thus the relations (1) and (2) appear as the decompositions of Un+1 and Vn over the canonical
basis Cn of En .

The goal of this paper is to prove that the families Un := xk Un+1−k k and Vn :=

xk Vn−k k for n − 2 ⌊n/2⌋ ≤ k ≤ n − ⌊n/2⌋ constitute two other bases of En (Theorem 2.1)
with respect to which, the polynomials 2Un+1 and 2Vn admit remarkable integer coordinates.

2

Main results

Theorem 2.1. For any n ≥ 1, Un and Vn are bases of En
As Un+1 and Vn belong to En , the polynomials U2n+1 and V2n are elements of E2n with
basis U2n or V2n . Similarly, U2n and V2n−1 belong to E2n−1 with basis U2n−1 or V2n−1 .
Therefore, there are a priori 8 possible decompositions:
over U2n
U2n+1


U2n

1 → trivial,

ր
ց

V2n

over U2n

3 → simple,

ր
ց

over V2n

2 → T h. A,


over V2n

4 → trivial,

over U2n−1

5 → T h. B,

over U2n−1

7 → T h. C,

over V2n−1

8 → T h. D,

ր
ց

V2n−1

over V2n−1

6 → T h. E,

ր
ց

where the cases 1 and 4 are obvious since U2n+1 ∈ U2n and V2n ∈ V2n .
The decomposition of V2n in U2n is simple: we have V2n = 2U2n+1 − xU2n .
The remaining cases are established by the five following results.

2

Theorem 2.2. (A). Decomposition of 2U2n+1 over the basis V2n .
For every integer n ≥ 0, one has
2U2n+1 =

n
X


an,k xk V2n−k ,

k=0

where
an,k =

n
X

j+k

(−1)

j=0

 
j
(2 − δn,j )
.

k

Moreover, (an,k )n,k≥0 is a family of integers satisfying the following recurrence relation:

 an,k = −an−1,k + an−1,k−1 (n ≥ 1, k ≥ 1);
an,0 = 1 (n ≥ 0) ;

a0,k = δk,0 (k ≥ 0) .

(δi,j being the Kronecker symbol).

The recurrence relation permits us to obtain the following table:
n \k 0
0
1
1
1
2
1
3

1
4
1
5
1
6
1
7
1
8
1

1

2

3

4


5

6

7

1
0
1
1 −1
1
0
2 −2
1
1 −2
4 −3
1
0
3 −6
7 −4
1
1 −3
9 −13 11 −5
1
0
4 −12
22 −24 16 −6

from which it follows that
2U1
2U3
2U5
2U7

=
=
=
=

V0 ,
V2 + xV1 ,
V4 + 0V3 + x2 V2 ,
V6 + xV5 − x2 V4 + x3 V3 .

Theorem 2.3. (B). Decomposition of U2n over the basis U2n−1 .
For every integer n ≥ 1, one has
U2n =

n
X

bn,k xk U2n−k

k=1

where
k+1

bn,k = (−1)
3

 
n
.
k

8

1

Moreover, (bn,k )n,k≥0 is a family of integers satisfying the following recurrence relation:

 bn,k = bn−1,k − bn−1,k−1 (n ≥ 1, k ≥ 1);
bn,0 = −1 (n ≥ 0) ;

b0,k = −δk,0 (k ≥ 0).

The latter recurrence relation permits us to obtain the following table:
n \k
0
1
2
3
4
5
6
7
8

0
−1
−1
−1
−1
−1
−1
−1
−1
−1

1
1
2
3
4
5
6
7
8

2

−1
−3
−6
−10
−15
−21
−28

3

4

1
4
10
20
35
56

−1
−5
−15
−35
−70

5

6

7

1
6 −1
21 −7
56 −28

8

1
8 −1

from which it follows that
U2
U4
U6
U8

= xU1
= 2xU3 − x2 U2
= 3xU5 − 3x2 U4 + x3 U3
= 4xU7 − 6x2 U6 + 4x3 U5 − x4 U4

Theorem 2.4. (C). Decomposition of V2n−1 over the basis U2n−1 .
For every integer n ≥ 1, one has
V2n−1 =

n
X

cn,k xk U2n−k

k=1

where
k+1

cn,k = 2 (−1)

 
n
− δk,1 .
k

Moreover, (cn,k )n≥1,k≥0 is a family of integers satisfying the following recurrence relation:

 cn,k = cn−1,k − cn−1,k−1 − δk,2 (n ≥ 2, k ≥ 1);
cn,0 = −2 (n ≥ 1) ;

c1,k = −2δk,0 + δk,1 (k ≥ 0).

4

The latter recurrence relation permits us to obtain the following table:
n \k
1
2
3
4
5
6
7
8

0
−2
−2
−2
−2
−2
−2
−2
−2

1
1
3
5
7
9
11
13
15

2

3

−2
−6
−12
−20
−30
−42
−56

4

2
8
20
40
70
112

−2
−10
−30
−70
−140

5

6

7

2
12 −2
42 −14
112 −56

8

2
16 −2

from which we get

V1



V3
V5



V7

= xU1
= 3xU3 − 2x2 U2
= 5xU5 − 6x2 U4 + 2x3 U3
= 7xU7 − 12x2 U6 + 8x3 U5 − 2x4 U4

Theorem 2.5. (D). Decomposition of 2V2n−1 over the basis V2n−1 .
For every integer n ≥ 1, one has
2V2n−1 =

n
X

dn,k xk V2n−1−k

k=1

where
k+1

dn,k = (−1)
Moreover, (dn,k )n≥1,

k≥0

 
2n − k n
.
n
k

is a family of integers satisfying the following recurrence relation:


 dn,k = dn−1,k − dn−1,k−1 (n ≥ 2, k ≥ 1);
dn,0 = −2 (n ≥ 1) ;

d1,k = −2δk,0 + δk,1 (k ≥ 0).

The latter recurrence relation permits us to obtain the following table:
n \k
1
2
3
4
5
6
7
8

0
−2
−2
−2
−2
−2
−2
−2
−2

1
1
3
5
7
9
11
13
15

2
−1
−4
−9
−16
−25
−36
−49

3

4

1
5
14
30
55
91

5

−1
−6
−20
−50
−105

5

6

1
7 −1
27 −8
77 −35

7

8

1
9 −1

from which we obtain

2V1



2V3
2V5



2V7

= xV0
= 3xV2 − x2 V1
= 5xV4 − 4x2 V3 + x3 V2
= 7xV6 − 9x2 V5 + 5x3 V4 − x4 V3

Theorem 2.6. (E). Decomposition of 2U2n over the basis V2n−1 .
For every integer n ≥ 1, one has
2U2n =

n
X

en,k xk V2n−1−k

k=1

where
k+1

en,k = (−1)


 

n−1
2n − k n
1X
j
j+k−1
+δk,0 +
.
(−1)
(2 − δn−1,j )
k
k−1
2n
2 j=0

Moreover, (en,k )n,k≥0 is a family of integers satisfying the following recurrence relation:

 en,k = en−2,k − 2en−2,k−1 + en−2,k−2 (n ≥ 3, k ≥ 2);
en,0 = 0 and en,1 = n (n ≥ 1) ;

e1,k = δk,1 and e2,k = 2δk,1 (k ≥ 0).
The latter recurrence relation permits us to obtain the following table:
n \k
1
2
3
4
5
6
7
8

0
0
0
0
0
0
0
0
0

1
1
2
3
4
5
6
7
8

2
0
−2
−4
−8
−12
−18
−24

3

4

1
2
8
14
29
44

0
−4
−8
−28
−48

5

6

1
2
0
17 −6
32 −12

7

1
2

8

0

from which, we have

2U2



2U4
2U6



2U8

3

= xV0
= 2xV2 + 0x2 V0
= 3xV4 − 2x2 V3 + x3 V2
= 4xV6 − 4x2 V5 + 2x3 V4 + 0x4 V3

Proof of Theorems

Theorem 1 follows from the following lemma.
Lemma 3.1. For any integer n ≥ 0, by setting m = ⌊n/2⌋ , we have
detCn (Un ) = (−1)m(m+1)/2 and detCn (Vn ) = 2(−1)m(m+1)/2 .
6

Proof. Let us prove only the first equality as the proof of the other one is similar.
(m)
(m)
(m)
(m)
Let r = n−2m, Wk = xk U2m+1−k (0 ≤ k ≤ m) and ∆m = detC2m (W0 , W1 , . . . , Wm ),
we have

detCn (Un ) = detC2m+r xr+k U2m+1−k 0≤k≤m = ∆m .
The result follows by noticing that ∆0 = 1 and ∆m = (−1)m ∆m−1 for m ≥ 1. Indeed, for
m ≥ 1, we have
(m)

(m)

Wk+1 − Wk

(m−1)

= xk (xU2m−k − U2m−k+1 ) = −yWk

(0 ≤ k ≤ m − 1) .

Thus,
(m)

, W1

(m)

, −yW0

∆m = detC2m (W0

= detC2m (W0

(m)

(m)

− W0
(m−1)

(m)

(m)

(m)

, ..., Wm−1 − Wm−2 , Wm(m) − Wm−1 )
(m−1)

, −yW1

(m−1)

, . . . , −yWm−1 ).

(m)

The “component” of W0 = U2m+1 over x2m is equal to 1.
(m−1)
The “component” of −yWk
over x2n , is equal to 0, for 1 ≤ k ≤ m , so we have
(m−1)
(m−1)
(m−1)
, . . . , −Wm−1 ) = (−1)m ∆m−1 .
, −W1
∆m = detC2m−2 (−W0
Let Am , Bm , Cm , Dm and Em be the operators on (Q [x, y])N defined by
m

Am = − (x − E) + 2

m
X

E k (x − E)m−k

(m ≥ 0) ,

k=0

Bm = − (E − x)m (m ≥ 0) ,
Cm = 2E m + 2Bm − xE m−1 (m ≥ 1) ,
Dm = (E − x)m−1 (x − 2E) (m ≥ 1) ,
1
Em =
(xAm−1 + Dm ) + E m (m ≥ 1) ,
2
where E is the forward shift operator given by
E ((Wn )n ) = (Wn+1 )n
Then, we have
Am =

m
X

am,k x E

m−k

with

Bm =

m
X

bm,k xk E m−k

with

Cm =

m
X

cm,k xk E m−k

with

dm,k xk E m−k

with

em,k xk E m−k

with

k

m
X

 
j
am,k =
(−1) (2 − δm,j )
k
j=0
 
k+1 m
bm,k = (−1)
k
 
k+1 m
− δk,1
cm,k = 2 (−1)
k
 
k+1 2m − k m
dm,k = (−1)
m
k

k=0

k=0

Dm =
Em =

k=1
m
X

k=0
m
X

em,k =

k=1

7

j+k

1
(dm,k +am−1,k−1 ) + δk,0 .
2

With these notations, relations stated by Theorems A, B, C, D and E may be expressed
by means of the following relations
a.
b.
c.
d.
e.

∀n
∀n
∀n
∀n
∀n







An Vn = 2U2n+1
Bn Un = 0
Cn Un = V2n−1
Dn Vn−1 = 0
En Vn−1 = 2Un

N
N∗
N∗
N∗
N∗

which are to be proven. For this, the following lemma will be useful for us.
Lemma 3.2. For every integers n and m, we have
1. Vn = 2Un+1 − xUn (n ≥ 0) and Vn = Un+1 + yUn−1 (n ≥ 1) ,
2. (E − x)n Um = y n Um−n and (E − x)n Vm = y n Vm−n (m ≥ n ≥ 0) ,
Pn
n−k
3.
V2k = U2n+1 − (−y)n (n ≥ 0) .
k=1 (−y)

Proof.

1. See relation (2.9) and (2.8) in [16].
2. We proceed by induction on n.
P
3. For every integer n ∈ N, put Tn := U2n+1 − nk=1 (−y)n−k V2k . The relation to be proven
is equivalent to Tn = (−y)n (n ≥ 0) . Then, we remark that from the first relation of
this lemma, we have for every integer n ≥ 1
Tn + yTn−1 = U2n+1 + yU2n−1 − V2n = 0,
(Tn )n≥0 is then a geometric sequence with multiplier (−y) and of first term T0 = 1. It
follows that for every integer n ∈ N, Tn = (−y)n .
Proof of relations a., b., c., P
d. and e. Using the above Lemma, we have
n
a. An Vn = (−y) V0 + 2 nk=1 (−y)n−k V2k = 2U2n+1 .
b. Bn Un = − (E − x)n Un = −y n U0 = 0.
c. Cn Un = (2E n + 2Bn − xE n−1 ) Un = 2U2n − xU2n−1 = V2n−1 .
d. Dn Vn−1 = (E − x)n−1 (xVn−1 − 2Vn) = y n−1 (xV0 − 2V1 ) = 0.
e. En Vn−1 = 12 xAn−1 + 12 Dn + E n Vn−1 = 12 xAn−1 Vn−1 + 21 Dn Vn−1 + V2n−1 . Using
An−1 Vn−1 = 2U2n−1 and Dn Vn−1 = 0, it follows that En Vn−1 = xU2n−1 + V2n−1 = 2U2n
Remark 3.1. Theorems A, B, C, D and E generalize results obtained for the Chebyshev
polynomials [4], Indeed,
1
Vn (2x, −1) = Tn (x) is the Chebyshev polynomials of the first kind,
2
Un+1 (2x, −1) = Un (x) is the Chebyshev polynomials of the second kind,
with



Tn (x) = 2xTn−1 − Tn−2 ,
T0 = 1, T1 = x,

and
8



Un (x) = 2xUn−1 − Un−2 ,
U0 (x) = 1, U1 = 2x.

References
[1] R. Andr´e-Jeannin, A generalization of Morgan-Voyce polynomials, Fibonacci Quart. 32
(1994), 228–231.
[2] R. Andr´e-Jeannin, Differential Properties of a General Class of Polynomials, Fibonacci
Quart. 33 (1995), no. 5, 453–458.
[3] H. Belbachir and F. Bencherif, Linear recurrent sequences and powers of a square matrix.
Integers 6 (2006), A12.
[4] H. Belbachir and F. Bencherif, On some properties of Chebyshev polynomials. Discuss.
Math. Gen. Algebra Appl. 28 (2), (2008).
[5] R. X. F. Chen and L. W. Shapiro, On sequences Gn satisfying Gn = (d + 2) Gn−1 −Gn−2 ,
J. Integer Seq. 10 (2007), Art. 07.8.1.
[6] G. B. Djordjevi´c, Generalized Jacobsthal polynomials, Fibonacci Quart. 38, (2000),
239–243.
[7] A. F. Horadam, Jacobsthal representation polynomials, Fibonacci Quart. 35 (1997),
137–148.
[8] A. F. Horadam, Quasi Morgan-Voyce polynomials and Pell convolutions, Applications
of Fibonacci Numbers, Vol. 8 (Rochester, NY, 1998), pp. 179–193, Kluwer Acad. Publ.,
Dordrecht, 1999.
[9] A. F. Horadam, Associated Legendre polynomials and Morgan-Voyce polynomials,
Notes Number Theory Discrete Math. 5 (1999), no. 4, 125-134.
[10] A. F. Horadam, Vieta polynomials, Fibonacci Quart. 40 (2002), 223–232.
[11] J. Y. Lee, On the Morgan-Voyce polynomial generalization of the first kind, Fibonacci
Quart. 40 (2002), 59–65.
[12] E. Lucas, Th´eorie des Nombres, Gauthier-Villars, Paris, 1891.
[13] A. M. Morgan-Voyce, Ladder network analysis using Fibonacci numbers, IRE Trans.
Circuit Theory 6, no. 3, (1959), 321–322.
[14] N. Robbins, Vieta triangular array and a related family of polynomials. Internat. J.
Math. Math. Sci. 14 (2), (1991), 239–244.
[15] A. G. Shannon and A. F. Horadam, Some relationships among Vieta, Morgan-Voyce
and Jacobsthal polynomials, Application of Fibonacci numbers, Vol. 8, pp. 307–323, Ed.
F. Howard, Dordrecht: Kluwer, 1999.
[16] M. N. S. Swamy, Generalized Fibonacci and Lucas polynomials and their associated
diagonal polynomials, Fibonacci Quart. 37 (1999), 213–222.
9

[17] M. N. S. Swamy, Generalization of modified Morgan-Voyce polynomials, Fibonacci
Quart. 38 (2000), 8–16.
[18] F. Vieta. Opera Mathematica: Ad Angulus Sectiones. (Theorema VI). Paris, 1615 (see
[14]).

2000 Mathematics Subject Classification: Primary 11B39; Secondary 11B37 .
Keywords: bivariate Fibonacci and Lucas polynomials, linear recurrences.
(Concerned with sequences A007318, A029653, and A112468.)

Received October 8 2007; revised version received June 3 2008. Published in Journal of
Integer Sequences, June 27 2008.
Return to Journal of Integer Sequences home page.

10

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52