bordelles61. 132KB Jun 04 2011 12:08:26 AM

1

2
3

47

6

Journal of Integer Sequences, Vol. 10 (2007),
Article 07.9.2

23 11

Mean Values of Generalized gcd-sum
and lcm-sum Functions
Olivier Bordell`es
2, All´ee de la Combe
La Boriette
43000 Aiguilhe
France

borde43@wanadoo.fr
Abstract
We consider a generalization of the gcd-sum function, and obtain its average order
with a quasi-optimal error term. We also study the reciprocals of the gcd-sum and
lcm-sum functions.

1

Introduction and notation

The so-called gcd-sum function, defined by
g (n) =

n
X

(n, j)

j=1


where (a, b) denotes the greatest common divisor of a and b, was first introduced by Broughan
([3, 4]) who studied its main properties, and showed among other things that g satisfies the
convolution identity (see also the beginning of the proof of Lemma 3.1)
g = ϕ ∗ Id
where F ∗ G is the usual Dirichlet convolution product. By using the following alternative
convolution identity
g = µ ∗ (Id · τ ) ,

1

where µ is the M¨obius function and τ is the divisor function, we were able in [1] to get the
average order of g. Our result can be stated as follow. If θ is the exponent in the Dirichlet
divisor problem, then the following asymptotic formula
x2 log x
x2
g (n) =
+
2ζ (2)
2ζ (2)
n6x


X



1
γ − + log
2



A12




+ Oε x1+θ+ε




(1)

holds for any real number ε > 0, where A ≈ 1.282 427 129 . . . is the Glaisher-Kinkelin
constant. The inequality θ > 1/4 is well-known, and, from the work of Huxley [5] we know
that θ 6 131/416 ≈ 0.3149.
The aim of this paper is first to work with a function generalizing the function g and prove
an asymptotic formula for its average order similarly as in (1) . In sections 5, 6 and 7 we
will establish estimates for the lcm-sum function, and for reciprocals of the gcd-sum and
lcm-sum functions. We begin with classical notation.
1. Multiplicative functions. The following arithmetic functions are well-known.
Ida (n) = na
1 (n) = 1

(a ∈ Z∗ )

and µ, ϕ, σk and τk are respectively the M¨obius function, the Euler totient function, the sum
of kth powers of divisors function and the kth Piltz divisor function. Recall that τkP
can be
defined by τk = 1
· · ∗ 1} for any integer k > 1 and that τ2 = τ. We also have σk = d|n dk

| ∗ ·{z
and σ0 = τ.

k times

2. Exponent in the Dirichlet-Piltz divisor problem. For any integer k > 2, θk is defined to be
the smallest positive real number such that the asymptotic formula
X

τk (n) = xPk−1 (log x) + Oε,k xθk +ε
(2)
n6x

holds for any real number ε > 0. Here Pk−1 is a polynomial of degree k − 1 with real coef43
1
. It is now well-known that 31 6 θ3 6 96
and that
ficients, the leading coefficient being (k−1)!
k−1
k−1

6 θk 6 k+2 for k > 4 (see [6], for example).
2k
By convention, we set
τ0 (n) =

(

1, if n = 1;
0, otherwise;

and θ1 = 0.

2

2

A generalization of the gcd-sum function

Definition 2.1. We define the sequence of arithmetic functions fk,j (n) in the following way.
(i) For any integers j, n > 1, we set

(
1, if (n, j) = 1;
f1,j (n) =
0, otherwise;
(
(n, j), if j 6 n;
f2,j (n) =
0,
otherwise.
(ii) For any integers j > 1 and k > 3, we set
fk,j = f2,j ∗ (Id · τk−2 ) .
Definition 2.2. For any integers n, k > 1, we define the sequence of arithmetic functions
gk (n) by
n
X
gk (n) =
fk,j (n) .
j=1

Examples.

n
X

g1 (n) =

g2 (n) =
g3 (n) =

1 = ϕ (n) ,

j=1
(n,j)=1
n
X

(j, n) = g (n) ,

j=1
n X
X

j=1 d|n
d>j

n
(j, d) ,
d

..
.
gk (n) =

n
X
X

X

j=1 dk−2 |n dk−3 |dk−2

···


Xn
(j, d1 ) .
d1

d1 |d2
d1 >j

Now we are able to state the following result.
Theorem 2.3. Let ε > 0 be any real number and k > 1 any integer. Then, for any real
number x > 1 sufficiently large, we have
X
n6x

gk (n) =


x2
Rk−1 (log x) + Oε,k x1+θk +ε
2ζ (2)

3

where Rk−1 is a polynomial of degree k − 1 and leading coefficient
gives Rk−1 for k ∈ {1, 2, 3}
1

k
Rk−1

2

1
.
(k−1)!

The following table

3

1
1 X + γ − + log
2



A12




X2
+ αX + β
2

where
 12 
1
A
α = 2γ − + log
2


 12 

 12 2 
′′
A
1
ζ (2)
A
γ − log
− 3γ −
+ γ − log
β=−
2ζ (2)

2


1
12γ1 − 12γ 2 + 6γ − 1

4

and

Constant
γ ≈ 0.577 215 664 . . .
γ1 ≈ −0.072 815 845 . . .
A ≈ 1.282 427 129 . . .

3

Name
Euler − Mascheroni
Stieltjes
Glaisher − Kinkelin

Main properties of the function gk

The following lemma lists the main tools used in the proof of Theorem 2.3.
Lemma 3.1. For any integer k > 1, we have
gk+1 = gk ∗ Id
and then
gk = ϕ ∗ (Id · τk−1 ) .
Moreover, we have
gk = µ ∗ (Id · τk ) .

(3)

Thus, the Dirichlet series Gk (s) of gk is absolutely convergent in the half-plane ℜs > 2, and
has an analytic continuation to a meromorphic function defined on the whole complex plane
with value
ζ (s − 1)k
.
Gk (s) =
ζ (s)

4

Proof. Broughan already proved the first relation for k = 1 (see [3, Thm. 4.7]), but, for the
sake of completeness, we give here another proof.
X n
(g1 ∗ Id) (n) = (ϕ ∗ Id) (n) =

d
d|n

=

X
d|n

=

n
X

X

d

1=

k6n/d
(k,n/d)=1

(j, n) =

X
d|n

n
X

d

n
X

1

j=1
(j,n)=d

f2,j (n) = g2 (n) .

j=1

j=1

For k = 2, we get
(g2 ∗ Id) (n) =

d
XnX
d|n

d

(j, d) =

j=1

n X
X
n
j=1 d|n
d>j

d

(j, d) =

n
X

f3,j (n) = g3 (n) .

j=1

Now let us suppose k > 3. We have
gk+1 (n) =
=

n
X

j=1
n
X

fk+1,j (n) =

n
X

(f2,j ∗ (Id · τk−1 )) (n)

j=1

(f2,j ∗ Id · τk−2 ∗ Id) (n)

j=1

=

d
XnX
d|n

d

(f2,j ∗ (Id · τk−2 )) (d) = (gk ∗ Id) (n) .

j=1

The second relation is easily shown by induction. For the third, we have using ϕ = µ ∗ Id
gk = ϕ ∗ (Id · τk−1 ) = µ ∗ (Id ∗ (Id · τk−1 ))
= µ ∗ (Id · (1 ∗ τk−1 )) = µ ∗ (Id · τk ) .
The last proposition comes from the equality (3)
gk = µ ∗ (Id · τk ) = µ ∗ Id
· · ∗ Id}
| ∗ ·{z
k times

and the Dirichlet series of µ and Id.

4

Proof of Theorem 1

Lemma 4.1. For any integer k > 1 and any real numbers x > 1 and ε > 0, we have
X

nτk (n) = x2 Qk−1 (log x) + Oε,k x1+θk +ε
n6x

where Qk−1 is a polynomial of degree k − 1 and leading coefficient
5

1
.
2(k−1)!

Proof. Using summation by parts and (2), we get
!
Z x X
X
X
τk (n) dt
nτk (n) = x
τk (n) −
n6x

1

n6x

n6t

2

= x Pk−1 (log x) + Oε,k x

1+θk +ε

Writing
Pk−1 (X) =





Z

x

tPk−1 (log t) + Oε,k tθk +ε

1

k−1
X



dt.

aj X j

j=0

with ak−1 =

1
,
(k−1)!

X

we obtain

nτk (n) = x

2

k−1
X

j

aj (log x) −

j=0

n6x

and the formula
Z x

k−1
X

aj

j=0

t (log t)j dt = x2

1

j
X

(−1)j−i

i=0

j
X

t (log t)j dt + Oε,k x1+θk +ε

1

2j+1−i × i!

i=0

j=0

x

j!

(easily proved by induction) gives
(
j
k−1
X
X
X
j
2
(−1)j−i
nτk (n) = x
aj (log x) −
n6x

Z

(log x)i − (−1)j

j!
2j+1−i × i!

i

(log x)



j!
2j+1

)


j! aj
+ Oε,k x1+θk +ε
j+1
2
i=0
)
(
j−1
k−1
j
X
X

(log
x)
j!
(−1)j−i j+1−i
(log x)i + Oε,k x1+θk +ε

= x2
aj
2
2
× i!
i=0
j=0

+

(−1)j

which completes the proof of the lemma.
Remark. For k = 3, the following result is well-known (see [7, Exer. II.3.4], for example)
(
)
X

(log x)2
+ (3γ − 1) log x + 3γ 2 − 3γ − 3γ1 + 1 + Oε xθ3 +ε
τ3 (n) = x
2
n6x
and gives
X
n6x

nτ3 (n) = x2

(

(log x)2
+
4



6γ − 1
4



12γ1 − 12γ 2 + 6γ − 1
log x −
8

)


+ Oε x1+θ3 +ε .

(4)

6

Now we are able to prove Theorem 2.3.
Using (3) we get

X

gk (n) =

n6x

and lemma 3.1 gives

X

µ (d)

d6x

X

mτk (m) ,

m6x/d


 
x 1+θk +ε
x
+ Oε,k
Qk−1 log
gk (n) =
µ (d)
d
d
d
n6x
d6x

X µ (d)

x
2
1+θk +ε
=x
Q
log
+
O
x
.
k−1
ε,k
d2
d
d6x

X

 
x 2

X



Writing
Qk−1 (X) =

k−1
X

bj X j

j=0

with bk−1 =

1
,
2(k−1)!

we get
k−1
X µ (d) X



x j
1+θk +ε
gk (n) = x
b
log
+
O
x
j
ε,k
d2 j=0
d
n6x
d6x
j  
k−1 X
X
X

µ (d)
j
2
(−1)h 2 (log d)h + Oε,k x1+θk +ε
bj (log x)j−h
=x
d
h
j=0 h=0
d6x

X

2

and the equality

X
X
µ (d)
µ (d)
h
h
h µ (d)
(−1)
(log
d)
=
(log
d)

(−1)h 2 (log d)h
(−1)
2
2
d
d
d
d6x
d>x
d=1
!

 h 
(log x)h
1
d
+O
,
=
dsh ζ (s) [s=2]
x

X

h

implies
!

j    h 
k−1 X
X
d
j
1
gk (n) = x2
bj (log x)j−h
h
h
ds
ζ (s) [s=2]
j=0 h=0
n6x



+ O x (log x)k−1 + Oε,k x1+θk +ε
!

j    h 
k−1 X
X

d
j
1
j−h
1+θk +ε
b
(log
x)
+
O
x
,
= x2
j
ε,k
h
dsh ζ (s) [s=2]
j=0 h=0

X

and writing



dh
dsh



1
ζ (s)



=

[s=2]

7

Ah
2ζ (2)h+1

with Ah ∈ R (and A0 = 2), we obtain
k−1 j  

x2 X X j Ah bj (log x)j−h
1+θk +ε
gk (n) =
+
O
x
ε,k
2ζ (2) j=0 h=0 h
ζ (2)h
n6x

X



k−1
0

which is the desired result. The leading coefficient is
cases are easy to check.

A0 bk−1 =

1
.
(k−1)!

The particular

(i) For k = 1, the result is well-known (see [2, Exer. 4.14])
X
X
x2
+ O (x log x) .
g1 (n) =
ϕ (n) =
2ζ (2)
n6x
n6x
(ii) For k = 2, see [1].
(iii) For k = 3, we use (4) and the computations made above. The proof of Theorem 2.3 is
now complete.

5

Sums of reciprocals of the gcd

The purpose of this section is to prove the following estimate.
Theorem 5.1. For any real number x > e sufficiently large, we have
!
n


X X
1
ζ (3) 2
2/3
4/3
.
x + O x (log x) (log log x)
=
(j, n)
2ζ (2)
j=1
n6x
Proof. For any integer n > 1, we set
G (n) =

n
X
j=1

1
.
(j, n)

With a similar argument used in the proof of the identity g = ϕ ∗ Id (see lemma 3.1), it is
easy to check that
G = ϕ ∗ Id−1 ,
and thus

X
n6x

G (n) =

X1 X
d6x

d

ϕ (m) .

m6x/d

The well-known result (see [8], for example)


X
x2
2/3
4/3
+ O x (log x) (log log x)
,
ϕ (n) =
2ζ (2)
n6x
combined with some classical computations, allows us to conclude the proof of Theorem 5.1.

8

6

The lcm-sum function

Definition 6.1. For any integer n > 1, we define
n
X

l (n) =

[n, j]

j=1

where [a, b] is the least common multiple of a and b.
Lemma 6.2. We have the following convolution identity
l=
Proof. We have
n
X
j=1


1
(Id2 · (ϕ + τ0 )) ∗ Id .
2

n
X1 X
X1 X
X
j
j=
=
kd =
(n, j)
d j=1
d
d|n

d|n

k6n/d
(k,n/d)=1

(n,j)=d

d|n

X

k,

k6n/d
(k,n/d)=1

with
X

k6N
(k,N )=1

k=

X

dµ (d)

d|N

X

m

m6N/d


N
+1
d
d|N


NX
N
N
=
+1 =
(ϕ + τ0 ) (N ) ,
µ (d)
2
d
2
1X
dµ (d)
=
2



N
d



d|N

and hence

n
X
j=1

n 1
1Xn
j
=
(ϕ + τ0 )
= ((Id · (ϕ + τ0 )) ∗ 1) (n) ,
(n, j)
2
d
d
2
d|n

and we conclude by noting that
l (n) = n

n
X
j=1

j
(n, j)

which completes the proof, since Id is completely multiplicative.
Theorem 6.3. For any real number x > e sufficiently large, we have the following estimate
!
n


X X
ζ (3) 4
2/3
4/3
3
x + O x (log x) (log log x)
.
[n, j] =
8ζ (2)
j=1
n6x

9

Proof. Using lemma 6.2, we get
X

l (n) =

n6x

1X X 2
d
m (ϕ + τ0 ) (m)
2 d6x
m6x/d

=

1X
2

d6x

d

X

m2 ϕ (m) + O x2

m6x/d



and the estimation (see [8])


x4
2/3
4/3
3
+ O x (log x) (log log x)
n ϕ (n) =
4ζ (2)
n6x

X

2

implies
1X
d
l (n) =
2 d6x
n6x

X





 

1  x 4
x 3
2/3
4/3
+ O x2
+O
(log x) (log log x)
4ζ (2) d
d




x4 X 1
2/3
4/3
3
+
O
x
(log
x)
(log
log
x)
+ O x2 ,
=
3
8ζ (2) d=1 d

which is the desired result.

7

Sum of reciprocals of the lcm

We will prove the following result.
Theorem 7.1. For any real number x > 1 sufficiently large, we have
!

 12 
n
X X
(log x)3 (log x)2
A
1
=
+
γ + log
+ O (log x) .
[n, j]
6ζ (2)
2ζ (2)

j=1
n6x
Some useful estimates are needed.
 12 
A
≈ 1.147 176 . . . For any real number x > 1, we have
Lemma 7.2. Set Cϕ = log



X ϕ (n)

log x
log ex
(i) :
.
+
+O
=
n2
ζ (2) ζ (2)
x
n6x
 x  (log x)2 C log x
X ϕ (n)
ϕ
(ii) :
log
+
+ O (1) .
=
2
n
n
2ζ (2)
ζ (2)
n6x
1 X ϕ (n)   x 2 (log x)3 Cϕ (log x)2
log
(iii) :
+
+ O (log x) .
=
2 n6x n2
n
6ζ (2)
2ζ (2)
10

Proof. (i) . Using ϕ = µ∗ Id, we get
X ϕ (n)
n6x

n2

X µ (d) X 1
d2
m
d6x
m6x/d

 
x
X µ (d)
d
=
log
+
γ
+
O
d2
d
x
d6x
=

= (log x + γ)

X µ (d)
d6x

d2



X µ (d) log d

log x
γ
ζ ′ (2)
+O
=
+

ζ (2) ζ (2) (ζ (2))2
Recall that

d2

d6x



log ex
x

+O



1X1
x d6x d

!

.

ζ ′ (2)
= γ − Cϕ .
ζ (2)

(ii) and (iii) . Abel’s summation and estimate (i) . We leave the details to the reader.
Now we are able to show Theorem 7.1. For any integer n > 1, we set
L (n) =

n
X
j=1

1
.
[n, j]

Since
n
n
1X X 1
1 X (n, j)
=
d
L (n) =
n j=1 j
n
j
j=1
d|n

(j,n)=d

X 1
1X
1X
=
=
d
n
kd
n
d|n

k6n/d
(k,n/d)=1

11

d|n

X 1
,
k

k6n/d
(k,n/d)=1

we get
X

L (n) =

n6x

X1X
n
n6x
d|n

=

X 1
k

k6n/d
(k,n/d)=1

X1 X 1 X 1
d
h k6h k
d6x
h6x/d

(k,h)=1

X 1 X 1 X µ (δ) X 1
=
d
h
δ
m
d6x
h6x/d

δ|h

X 1 X µ (δ)
=
d
δ2
d6x
δ6x/d

m6h/δ

X

a6x/(dδ)

1X 1
a m6a m

X X 1 µ (δ) X 1 X 1
=
d δ2
a m6a m
d6x δd6x
a6x/(dδ)
X 1 X n X 1 X 1
,

=
2
n
d
a
m
m6a
n6x
d|n

a6x/n

and the convolution identity ϕ = µ ∗ Id implies that
X

L (n) =

n6x

X ϕ (n) X 1 X 1
.
2
n
a
m
n6x
m6a
a6x/n

Thus
 
X ϕ (n) X 1 
1
L (n) =
log a + γ + O
2
n
a
a
n6x
n6x
a6x/n



X ϕ (n) 1 
x 2
x
log
+ O (1)
+ γ log
=
2
n
2
n
n
n6x

X

=
where Cϕ = log

8



A12




(log x)3 Cϕ (log x)2 γ (log x)2
+
+
+ O (log x)
6ζ (2)
2ζ (2)
2ζ (2)

, which concludes the proof.

Acknowledgment

I am indebted to the referee for his valuable suggestions.

12

References
[1] O. Bordell`es, A note on the average order of the gcd-sum function, J. Integer Sequences
10 (2007), Article 07.3.3.
[2] O. Bordell`es, Th`emes d’Arithm´etique, Editions Ellipses, 2006.

[3] K. A. Broughan, The gcd-sum function, J. Integer Sequences 4 (2001), Article 01.2.2.
Errata, April 16, 2007, http://www.cs.uwaterloo.ca/journals/JIS/VOL4/BROUGHAN/errata1.pdf
[4] K. A. Broughan, The average order of the Dirichlet series of the gcd-sum function, J.
Integer Sequences 10 (2007), Article 07.4.2.
[5] M. N. Huxley, Exponential sums and lattice points III, Proc. London Math. Soc. 87
(2003), 591–609.
[6] A. Ivi´c, E. Kr¨atzel, M. K¨
uhleitner, and W. G. Nowak, Lattice points in large regions and
related arithmetic functions: Recent developments in a very classic topic, in W. Schwarz
and J. Steuding, eds., Conference on Elementary and Analytic Number Theory, Frank
Steiner Verlag, 2006, pp. 89–128.
[7] G. Tenenbaum, Introduction `
a la Th´eorie Analytique et Probabiliste des Nombres, Soci´et´e
Math´ematique de France, 1995.
[8] A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Leipzig BG
Teubner, 1963.

2000 Mathematics Subject Classification: Primary 11A25; Secondary 11N37.
Keywords: greatest common divisor, average order, Dirichlet convolution.

Received July 2 2007; revised version received August 27 2007. Published in Journal of
Integer Sequences, August 27 2007.
Return to Journal of Integer Sequences home page.

13

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52