sigma08-041. 239KB Jun 04 2011 12:10:16 AM

Symmetry, Integrability and Geometry: Methods and Applications

SIGMA 4 (2008), 041, 16 pages

Integrable String Models in Terms
of Chiral Invariants of SU (n), SO(n), SP (n) Groups⋆
Victor D. GERSHUN
ITP, NSC Kharkiv Institute of Physics and Technology, Kharkiv, Ukraine
E-mail: gershun@kipt.kharkov.ua
Received October 30, 2007, in final form April 22, 2008; Published online May 06, 2008
Original article is available at http://www.emis.de/journals/SIGMA/2008/041/
Abstract. We considered two types of string models: on the Riemmann space of string
coordinates with null torsion and on the Riemman–Cartan space of string coordinates with
constant torsion. We used the hydrodynamic approach of Dubrovin, Novikov to integrable
systems and Dubrovin solutions of WDVV associativity equation to construct new integrable
string equations of hydrodynamic type on the torsionless Riemmann space of chiral currents
in first case. We used the invariant local chiral currents of principal chiral models for SU (n),
SO(n), SP (n) groups to construct new integrable string equations of hydrodynamic type
on the Riemmann space of the chiral primitive invariant currents and on the chiral nonprimitive Casimir operators as Hamiltonians in second case. We also used Pohlmeyer tensor
nonlocal currents to construct new nonlocal string equation.
Key words: string; integrable models; Poisson brackets; Casimir operators; chiral currents

2000 Mathematics Subject Classification: 81T20; 81T30; 81T40; 37J35; 53Z05; 22E70

1

Introduction

String theory is a very promising candidate for a unified quantum theory of gravity and all
the other forces of nature. For quantum description of string model we must have classical
solutions of the string in the background fields. String theory in suitable space-time backgrounds
can be considered as principal chiral model. The integrability of the classical principal chiral
model is manifested through an infinite set of conserved charges, which can form non-Abelian
algebra. Any charge from the commuting subset of charges and any Casimir operators of charge
algebra can be considered as Hamiltonian in bi-Hamiltonian approach to integrable models.
The bi-Hamiltonian approach to integrable systems was initiated by Magri [1]. Two Poisson
brackets (PBs)
{φa (x), φb (y)}0 = P0ab (x, y)(φ),

{φa (x), φb (y)}1 = P1ab (x, y)(φ)

are called compatible if any linear combination of these PBs

{∗, ∗}0 + λ{∗, ∗}1
is PB also for arbitrary constant λ. The functions φa (t, x), a = 1, 2, . . . , n are local coordinates
on a certain given smooth n-dimensional manifold M n . The Hamiltonian operators P0ab (x, y)(φ),
P1ab (x, y)(φ) are functions of local coordinates φa (x). It is possible to find such Hamiltonians H0
and H1 which satisfy bi-Hamiltonian condition [2]
dφa (x)
= {φa (x), H0 }0 = {φa (x), H1 }1 ,
dt

This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in
Nonlinear Mathematical Physics” (June 24–30, 2007, Kyiv, Ukraine). The full collection is available at
http://www.emis.de/journals/SIGMA/symmetry2007.html

2

V.D. Gershun

R 2π
where HM = 0 hM (φ(y))dy, M = 0, 1. Two branches of hierarchies arise under two equations
of motion under two different parameters of evolution t0M and tM 0 [2]

Z 2π
Z 2π
∂h0
dφa (x)
∂h0
Rca (x, z)P0cb (z, y) b dy,
P1ab (x, y) b dy =
= {φa (x), H0 }1 =
dt01
∂φ (y)
∂φ (y)
0
0
Z 2π
Z 2π
a
∂h0
∂h1
dφ (x)
(R−1 )ac (x, z)P0cb (z, y) b dy.

= {φa (x), H1 }0 =
P0ab (x, y) b dy =
dt10
∂φ (y)
∂φ (y)
0
0
There Rba (x, y) is a recursion operator and (R−1 )ab (x, y) is its inverse
Z 2π
a
Rc (x, y) =
P1ab (x, z)(P0 )−1
bc (z, y)dz.
0

The first branch of the hierarchies of dynamical systems has the following form
Z 2π
dφa (x)
∂h0
=

(R(x, y1 )· · ·R(yN −1 ))ac P0cb (yN −1 , yN ) b
dy1 · · ·dyN , N = 1, 2, . . . , ∞.
dt0N
∂φ
(yN )
0
The second branch of the hierarchies can be obtained by replacement R → R−1 and t0N → tN 0 .
We will consider only the first branch of the hierarchies.
The local PBs of hydrodynamic type were introduced by Dubrovin, Novikov [3, 4] for Hamiltonian description of equations of hydrodynamics. They were generalized by Ferapontov [5] and
Mokhov, Ferapontov [6] to the non-local PBs of hydrodynamic type. The hydrodynamic type
systems were considered by Tsarev [8], Maltsev [9], Ferapontov [10], Mokhov [12] (see also [7]),
Pavlov [13] (see also [14]), Maltsev, Novikov [15]. The polynomials of local chiral currents were
considered by Goldshmidt and Witten [16] (see also [17]). The local conserved chiral charges in
principal chiral models were considered by Evans, Hassan, MacKay, Mountain [24]. The tensor
nonlocal chiral charges were introduced by Pohlmeyer [26] (see also [27, 28]). The string models of hydrodynamic type were considered by author [18, 19]. In Section 3, the author applied
hydrodynamic approach to integrable systems to obtain new integrable string equations. In Section 4, the author used the nonlocal Pohlmeyer charges to obtain a new string equation in terms
of the nonlocal currents. In Section 5, the author applied the local invariant chiral currents to
a simple Lie algebra to construct new integrable string equations.

2


String model of principal chiral model type

A string model is described by the Lagrangian
Z
∂φa (t, x) ∂φb (t, x)
1 2π αβ
η gab (φ(t, x))
L=
dx
2 0
∂xα
∂xβ
and by two first kind constraints

 a
∂φ (x) ∂φb (x) ∂φa (x) ∂φb (x)
+
≈ 0,
gab (φ(x))

∂t
∂t
∂x
∂x

(1)

gab (φ(x))

∂φa (x) ∂φb (x)
≈ 0.
∂t
∂x

The target space local coordinates φa (x), a = 1, . . . , n belong to certain given smooth n-dimensional manifold M n with nondegenerate metric tensor
gab (φ(x)) = ηµν eµa (φ(x))eνb (φ(x)),
where µ, ν = 1, . . . , n are indices of tangent space to manifold M n on some point φa (x). The
veilbein eµa (φ) and its inverse eaµ (φ) satisfy the conditions
eµa ebµ = δab ,


eµa eaν = η µν .

Integrable String Models in Terms of Chiral Invariants of SU (n), SO(n), SP (n) Groups

3

The coordinates xα (x0 = t, x1 = x) belong to world sheet with metric tensor gαβ in conformal
gauge. The string equations of motion have the form
η αβ [∂αβ φa + Γabc (φ)∂α φb ∂β φc ] = 0,

∂α =


,
∂xα

α = 0, 1,

where
Γabc (φ)



 µ
1 a ∂eb
∂eµc
= eµ
+
2
∂φc ∂φb

is the connection. In terms of canonical currents
Jαµ (φ) = eµa (φ)∂α φa
the equations of motion have the form
η αβ ∂α Jβµ (φ(t, x)) = 0,

µ
∂α Jβµ (φ) − ∂β Jαµ (φ) − Cνλ
(φ)Jαν (φ)Jβλ (φ) = 0,

where

µ
Cνλ
(φ) = eaν ebλ



∂eµb
∂eµa

∂φb ∂φa



is the torsion. The Hamiltonian has the form
Z
1 2π µν
[η J0µ J0ν + ηµν J1µ J1ν ]dx,
H=
2 0


∂ b
∂ a
φ and pa (t, x) = ηµν eµa eνb ∂t
φ is the canonical momenwhere J0µ (φ) = eaµ (φ)pa , J1µ (φ) = eµa ∂x
tum. The canonical commutation relations of currents are as follows
λ
(φ(x))J0λ (φ(x))δ(x − y),
{J0µ (φ(x)), J0ν (φ(y))} = Cµν

1 ∂
ν
{J0µ (φ(x)), J1ν (φ(y))} = Cµλ
(φ(x))J1λ (φ(x))δ(x − y) − δµν δ(x − y),
2 ∂x
µ
ν
{J1 (φ(x)), J1 (φ(y))} = 0.
Let us introduce chiral currents
U µ = η µν J0ν + J1µ ,

V µ = η µν J0ν − J1µ

The commutation relations of chiral currents are the following


3 λ
1 λ

µν
µ
ν
{U (φ(x)), U (φ(y))} = Cλ (φ(x)) U (φ(x)) − V (φ(x)) δ(x − y) − η µν δ(x − y),
2
2
∂x

{U µ (φ(x)), V ν (φ(y))} = Cλµν (φ(x))[U λ (φ(x)) + V λ (φ(x))]δ(x − y),


1 λ

3 λ
µν
µ
ν
{V (φ(x)), V (φ(y))} = Cλ (φ(x)) V (φ(x)) − U (φ(x)) δ(x − y) + η µν δ(x − y).
2
2
∂x

Equations of motion in light-cone coordinates
1
x± = (t ± x),
2
have the form




=
±
±
∂x
∂t ∂x

µ
∂− U µ = Cνλ
(φ(x))U ν V λ ,

In the case of the null torsion
∂eµ
µ
Cνλ
= 0,
eµa (φ) =
,
∂φa

µ
∂− V µ = Cνλ
(φ(x))V ν U λ .

Γabc (φ) = eaµ

∂ 2 eµ
,
∂φb ∂φc

µ
Rνλρ
(φ) = 0

the string model is integrable.The Hamiltonian equations of motion under Hamiltonian (1) are
described by two independent left and right movers: U µ (t + x) and V µ (t − x).

4

3

V.D. Gershun

Integrable string models of hydrodynamic type
with null torsion

We want to construct new integrable string models with Hamiltonians as polynomials of the
initial chiral currents U µ (φ(x)). The PB of chiral currents U µ (x) coincides with the flat PB of
Dubrovin, Novikov
{U µ (x), U ν (y)}0 = −η µν


δ(x − y).
∂x

Let us introduce a local Dubrovin, Novikov PB [3, 4]. It has the form
{U µ (x), U ν (y)}1 = g µν (U (x))

∂U λ (x)

δ(x − y) − Γµν
(U (x))
δ(x − y).
λ
∂x
∂x

This PB is skew-symmetric if g µν (U ) = g νµ (U ) and it satisfies Jacobi identity if Γabc (U ) = Γacb (U ),
a (U ) = 0, Ra (U ) = 0. In the case of non-zero curvature tensor we must include Weingarten
Cbc
bcd
d −1
) δ(x − y)=ν(x − y)
operators into right side of the PB with the step-function sgn (x − y)=( dx
[5, 6]. The PBs {∗, ∗}0 and {∗, ∗}1 are compatible by Magri [1] if the pencil {∗, ∗}0 + λ{∗, ∗}1 is
also PB . As a result, Mokhov [12, 11] obtained the compatible pair of PBs

δ(x − y),
∂x
∂ 2 F (U ) ∂
∂ 3 F (U ) ∂U λ
P1µν (U )(x, y) = 2 µ ν
δ(x − y) +
δ(x − y).
∂U ∂U ∂x
∂U µ ∂U ν ∂U λ ∂x

P0µν (U )(x, y) = −ηµν

The function F (U ) satisfies the equation
∂ 3 F (U )
∂ 3 F (U )
∂ 3 F (U )
∂ 3 F (U )
λρ
λρ
=
.
η
η
∂U ν ∂U σ ∂U ρ
∂U µ ∂U σ ∂U ρ
∂U µ ∂U ρ ∂U λ
∂U ν ∂U ρ ∂U λ
This equation is WDVV [20, 21] associativity equation and it was obtained in 2D topological
field theory. Dubrovin [22, 23] obtained a lot of solutions of WDVV equation. He showed
that local fields U µ (x) must belong Frobenius manifolds to solve the WDVV equation and gave
examples of Frobenius structures. Associative Frobenius algebra may be written in the following
form




:= dλµν (U ) λ .
µ
ν
∂U
∂U
∂U
Totally symmetric structure function has the form
dµνλ (U ) =

∂F (U )
,
∂U µ ∂U ν ∂U λ

µ, ν, λ = 1, . . . , n

and associativity condition














=
∂U µ ∂U ν
∂U µ
∂U ν ∂U λ
∂U λ
leads to the WDVV equation. Function F (U ) is quasihomogeneous function of its variables


µ ∂
F (U ) = dF F (U ) + Aµν U µ U ν + Bµ U µ + C,
dµ U
∂U µ
here numbers dµ , dF , Aµν , Bµ , C depend on the type of polynomial function F (U ). Here are
some Dubrovin examples of solutions of the WDVV equation
n = 1,

F (U ) = U13 ;

Integrable String Models in Terms of Chiral Invariants of SU (n), SO(n), SP (n) Groups
n = 2,

1
F (U ) = U12 U2 + eU2 ,
2

d1 = 1,

d2 = 2,

dF = 2,

A11 = 1

5
(2)

and quasihomogeneity condition for n = 2 has the form




d1 U1
F (U ) = dF F (U ) + A11 U12 .
+ d2
∂U1
∂U2
We used local fields Uµ with low indices here for convenience. One of the Dubrovin polynomial
solutions is
1
1
1
F (U ) = (U12 U3 + U1 U22 ) + U22 U32 + U35 ,
(3)
2
4
60
here d1 = 1, d2 = 32 , d3 = 2, dF = 4 and the polynomial function
1
1
f (U2 , U3 ) = U22 U32 + U35
4
60
is a solution of the additional PDE.
In the bi-Hamiltonian approach to an integrable string model we must construct the recursion
operator to generate a hierarchy of PBs and a hierarchy of Hamiltonians
Z 2π
µ
P1µλ (x, z)(P0−1 (z, y))λν dz
Rν (x, y) =
0

=2

∂U λ (y)
∂ 2 F (U (x))
∂ 3 F (U (x))
δ(x

y)
+
ν(x − y).
∂U µ (x)∂U ν (x)
∂U µ (x)∂U ν (x)∂U λ (x) ∂y

The Hamiltonian equation of motion with Hamiltonian H0 is the following
Z 2π
∂U µ
∂U µ
=
.
ηµν U µ (x)U ν (x)dx,
H0 =
∂t
∂x
0
First of the new equations of motion under the new time t1 has the form [12]


Z 2π
∂U µ (y)
∂F (x)
∂U µ
µ
µν d
.
Rν (x, y)
=
dy = η
∂t1
∂y
dx
∂U ν
0

(4)

This equation of motion can be obtained as Hamiltonian equation with new Hamiltonian H1
Z 2π
∂F (U (x)) µ
H1 =
U (x)dx,
∂U µ
0
where F (U ) is each of Dubrovin solutions WDVV associativity equation (2), (3). Any system
of the following hierarchy [12]
Z 2π
∂U ν
∂U µ
(R(x, y1 ) · · · R(yM −1 , yM ))µν
=
dy1 · · · dyM
∂tM
∂yM
0

is an integrable system. As result we obtain chiral currents U µ (φ(tM , x)) = f µ (φ(tM , x), where
f µ (φ) is a solution of the equation of motion. In the case of the Hamiltonian H1 and of the
equation of motion (4) we can introduce new currents
J0µ (t1 , x) = U µ (t1 , x), J1µ (t1 , x) = η µν

∂F (U (t1 , x))
.
∂U ν

Consequently, we can introduce a new metric tensor and a new veilbein depending of the new
time coordinate. The equation for the new metric tensor has the form
eµa (φ(t1 , x))

deµ (φ(t1 , x))
∂F (f (φ(t1 , x)))
∂φa (t1 , x)
=
= η µν
.
∂x
dx
∂f ν (φ(t1 , x))

6

4

V.D. Gershun

New string equation in terms
of Pohlmeyer tensor nonlocal currents

µ
In the case of the flat space Cνλ
= 0 there exist nonlocal totally symmetric tensor chiral currents
called “Pohlmeyer” currents [26, 27, 28]

R(M ) (U (x)) ≡ R(µ1 µ2 ...µM ) (U (x))
Z
Z x
µ2
(µ1
U (x1 )dx1 · · ·
= U (x)
0

xM −2

U µM ) (xM −1 )dxM −1 ,

0

where round brackets the mean totally symmetric product of chiral currents U µ (U ). The new
Hamiltonians may have the following forms
Z
1 2π (M )
(M )
R (U (x))d2M R(M ) (U (x))dx,
H
=
2 0
where dM ≡ d(µ1 µ2 ...µM ) is totally symmetric invariant constant tensor, which can be constructed
from Kronecker deltas. For example
Zx
Z x
1 µ
ν
ν
R ≡ R (U (x)) = [U (x) U (x1 )dx1 + U (x)
U µ (x1 )dx1 ],
2
0
0
Z x
Z x
Z 2π "
1
(2)
ν
µ
µ
U ν (x2 )dx2
H =
U (x1 )dx1
U (x)U (x)
2 0
0
0
#
Z
Z
(2)

µν

x

+ U µ (x)U ν (x)

x

U µ (x1 )dx1

U ν (x2 )dx2 dx.

0

0

R 2π
The Hamiltonian H (2) commutes with the Hamiltonian H (1) = 12 0 U µ (x)U µ (x)dx and it
R 2π
commutes with the Casimir 0 U µ (x)dx. The equation of motion under the Hamiltonian H (2)
is as follows
#
"
Z x
Z x
Z x
Z x

∂U µ (x)
ν
ν
ν
µ
µ
ν
U (x2 )dx2
U (x2 )dx2 + U (x)
U (x1 )dx1
U (x)
U (x1 )dx1
=
∂t
∂x
0
0
0
0
Z x
Z x
µ
µ
ν
ν
ν
U ν (x1 )dx1 .
U (x1 )dx1 − U (x)U (x)
− U (x)U (x)
0

In the variables
Z
µ
S (x) =

x

0

U µ (y)dy

0

the latter equation can be rewritten as follows


Z x
2 ν
∂S µ

µ
ν ν
µ
ν∂ S
=
(S (S S )) +
S S
dy,
∂t
∂x
∂2y
0

5

µ, ν = 1, 2, . . . , n.

Integrable string models with constant torsion

µ
Let us go back to the commutation relations of chiral currents. Let the torsion Cνλ
(φ(x)) 6= 0
and Cµνλ = fµνλ be structure constant of s simple Lie algebra. We will consider a string model
with the constant torsion in light-cone gauge in target space. This model coincides with the

Integrable String Models in Terms of Chiral Invariants of SU (n), SO(n), SP (n) Groups

7

principal chiral model on compact simple Lie group. We cannot divide the motion on right and
µ
µ
left mover because of chiral currents ∂− U µ = fνλ
U ν V λ , ∂− V µ = fνλ
V ν U λ are not conserved.
The correspondent charges are not Casimirs. The present paper was stimulated by paper [24].
Evans, Hassan, MacKay, Mountain (see [24] and references therein) constructed local invariant
chiral currents as polynomials of the initial chiral currents of SU (n), SO(n), SP (n) principal
chiral models and they found such combination of them that the corresponding charges are
Casimir operators of these dynamical systems. Their paper was based on the paper of de
Azcarraga, Macfarlane, MacKay, Perez Bueno (see [25] and references therein) about invariant
tensors for simple Lie algebras. Let tµ be n ⊗ n traceless hermitian matrix representations of
generators Lie algebra
[tµ , tν ] = 2ifµνλ tλ ,

Tr(tµ tν ) = 2δµν .

Here is an additional relation for SU (n) algebra
{tµ , tν } =

4
δµν + 2dµνλ tλ ,
n

µ = 1, . . . , n2 − 1.

De Azcarraga et al. gave some examples of invariant tensors of simple Lie algebras and they
gave a general method to calculate them. Invariant tensors may be constructed as invariant
symmetric polynomials on SU (n)
(M )

d(µ1 ...µM ) =

1
STr(tµ1 · · · tµM ),
M!
(M )

where STr means the completely symmetrized product of matrices and d(µ1 ...µM ) is the totally
symmetric tensor and M = 2, 3, . . . , ∞. Another family of invariant symmetric tensors [29, 30]
(see also [25]) called D-family based on the product of the symmetric structure constant dµνλ
of the SU (n) algebra is as follows:
(M )

k

kM −3 kM −3
dµM −1 µM ) ,

−2
D(µ1 ...µM ) = dk(µ11 µ2 dkµ13k2 · · · dµM
M −2

(2)

(3)

where Dµν = δµν , Dµνλ = dµνλ and M = 4, 5, . . . , ∞.
Here are n − 1 primitive invariant tensors on SU (n). The invariant tensors for M ≥ n are
functions of primitive tensors. The Casimir operators on SU (n) algebra have the form
C (M ) (t) = dM
(µ1 ...µM ) tµ1 · · · tµM .
Evans et al. introduced local chiral currents based on the invariant symmetric polynomials on
simple Lie groups
µ1
)
· · · U µM ,
J (M ) (U ) = STr(U · · · U ) ≡ STr U M = d(M
µ1 ...µM U

(5)

where U = tµ U µ and µ = 1, . . . , n2 − 1 . It is possible to decompose the invariant symmetric
chiral currents J (M ) (U ) into product of the basic invariant chiral currents D(M ) (U )
µ ν
µ ν
D(2) (U ) = d(2)
µν U U = ηµν U U ,
k

D(3)(U ) = dµνλ U µ U ν U λ ,
kM −3 kM −3
dµM −1 µM Uµ1 Uµ2

−2
D(M ) (U (x)) = dkµ11 µ2 dkµ13k2 · · · dµM
M −2

· · · UµM ,

where M = 4, 5, . . . , ∞. The author obtained the following expressions for local invariant chiral
currents J (M ) (U )
J (2) = 2D(2) ,

J (3) = 2D(3) ,

J (4) = 2D(4) +

4 (2)2
D ,
n

8

V.D. Gershun
4
8
8
8 (2) (3)
D D ,
J (6) = 2D(6) + D(3)2 + D(2) D(4) + 2 D(2)3 ,
n
n
n
n
8
8
24
= 2D(7) + D(3) D(4) + D(2) D(5) + 2 D(2)2 D(3) ,
n
n
n
4 (4)2 8 (3) (5) 8 (2) (6) 24 (2) (3)2 24 (2)2 (4) 16 (2)4
(8)
+ D D + D D + 2D D
+ 2D D + 3D ,
= 2D + D
n
n
n
n
n
n
8
8
8
8
48
= 2D(9) + D(4) D(5) + D(3) D(6) + D(2) D(7) + 2 D(3)3 + 2 D(2) D(3) D(4)
n
n
n
n
n
24 (2)2 (5) 64 (2)3 (3)
+ 2D D + 3D D .
n
n

J (5) = 2D(5) +
J (7)
J (8)
J (9)

Both families of invariant chiral currents J (M ) (U (x)) and D(M ) (U (x)) satisfy the conservation
equations ∂− J (M ) (U (x)) = 0, ∂− D(M ) (U (x)) = 0.
The commutation relations of invariant chiral currents J (M ) (U (x)) show that these currents
are not densities of dynamical Casimir operators for SU (n) group. Therefore, we will not
consider these currents in the following.
We considered abasic family of invariant chiral currents D(M ) (U ) and we proved that the
invariant chiral currents D(M ) (U ) form closed algebra under canonical PB and corresponding
charges are dynamical Casimir operators. The commutation relations of invariant chiral currents
D(M ) (U (x)) and D(N ) (U (y)) for M, N = 2, 3, 4 and for M = 2, N = 2, 3, . . . , ∞ are as follows

δ(x − y)
∂x
M N (N − 1) ∂D(M +N −2) (x)
δ(x − y).

M +N −2
∂x

{D(M ) (x), D(N ) (y)} = −M N D(M +N −2) (x)

The commutation relations for M ≥ 5, N ≥ 3 are as follows
{D(5) (x), D(3) (y)} = −[12D(6) (x) + 3D(6,1) (x)]


δ(x − y)
∂x

1 ∂
[12D(6) (x) + 3D(6,1) (x)]δ(x − y),
3 ∂x

{D(5) (x), D(4) (y)} = −[16D(7) (x) + 4D(7,1) (x)] δ(x − y)
∂x
3 ∂

[16D(7) (x) + 4D(7,1) (x)]δ(x − y),
7 ∂x

{D(6) (x), D(3) (y)} = −[12D(7) (x) + 6D(7,1) (x)] δ(x − y)
∂x
2 ∂
(7)
(7,1)

[12D (x) + 6D
(x)]δ(x − y),
7 ∂x

{D(5) (x), D(5) (y)} = −[16D(8) (x) + 8D(8,1) (x) + D(8,2) (x)] δ(x − y)
∂x
1 ∂
(8)
(8,1)
(8,2)

[16D (x) + 8D
(x) + D
(x)]δ(x − y),
2 ∂x

{D(6) (x), D(4) (y)} = −[16D(8) (x) + 8D(8,3) (x)] δ(x − y)
∂x
3 ∂
[16D(8) (x) + 8D(8,3) (x)]δ(x − y),

8 ∂x

{D(7) (x), D(3) (y)} = −[12D(8) (x) + 6D(8,1) (x) + 3D(8,3) (x)] δ(x − y)
∂x
1 ∂
[12D(8) (x) + 6D(8,1) (x) + 3D(8,3) (x)]δ(x − y),

4 ∂x

{D(8) (x), D(3) (y)} = −[12D(9) (x) + 6D(9,1) (x) + 6D(9,2) (x)] δ(x − y)
∂x


Integrable String Models in Terms of Chiral Invariants of SU (n), SO(n), SP (n) Groups

9

2 ∂
[12D(9) (x) + 6D(9,1) (x) + 6D(9,2) (x)]δ(x − y),
9 ∂x

{D(7) (x), D(4) (y)} = −[16D(9) (x) + 8D(9,2) (x) + 4D(9,3) (x)] δ(x − y)
∂x
1 ∂
[16D(9) (x) + 8D(9,2) (x) + 4D(9,3) (x)]δ(x − y),

3 ∂x

{D(6) (x), D(5)(y) } = −[16D(9) (x) + 4D(9,1) (x) + 8D(9,2) (x) + 2D(9,4) (x)] δ(x − y)
∂x
4 ∂
[16D(9) (x) + 4D(9,1) (x) + 8D(9,2) (x) + 2D(9,4) (x)]δ(x − y),

9 ∂x

{D(9) (x), D(3) (y)} = −[12D(10) (x) + 6D(10,1) (x) + 6D(10,2) (x) + 3D(10,3) (x)] δ(x − y)
∂x
1 ∂
(10)
(10,1)
(10,2)
(10,3)
[12D (x) + 6D
(x) + 6D
(x) + 3D
(x)]δ(x − y),

5 ∂x

{D(8) (x), D(4) (y)} = −[16D(10) (x) + 8D(10,2) (x) + 8D(10,4) (x)] δ(x − y)
∂x
3 ∂
(10)
(10,2)
(10,4)
[16D (x) + 8D
(x) + 8D
(x)]δ(x − y),

10 ∂x
{D(7) (x), D(5) (y)} = −[16D(10) (x) + 8D(10,3) (x) + 4D(10,1) (x)

+ 4D(10,4) (x) + 2D(10,5) (x) + D(10,6) (x)] δ(x − y)
∂x
2 ∂
(10)
(10,3)
(10,1)
[16D (x) + 8D
(x) + 4D
(x) + 4D(10,4) (x)

5 ∂x
+ 2D(10,5) (x) + D(10,6) (x)]δ(x − y),

{D(6) (x), D(6) (y)} = −[16D(10) (x) + 16D(10,2) (x) + 4D(10,7) (x)] δ(x − y)
∂x
1 ∂
(10)
(10,2)
(10,7)
[16D (x) + 16D
(x) + 4D
(x)]δ(x − y).

2 ∂x


The new dependent invariant chiral currents D(6,1) , D(7,1) , D(8,1) − D(8,3) , D(9,1) − D(9,4) ,
− D(10,7) (see Appendix A) have the form

D(10,1)

D(6,1) = dkµν dlλρ dnσϕ dkln U µ U ν U λ U ρ U σ U ϕ ,
klm µ ν λ ρ σ ϕ τ
D(7,1) = dkµν dlλρ dnσϕ dnm
U U U U U U U ,
τ d
p
ln
m
nmp µ ν λ ρ σ ϕ τ θ
D(8,1) = [dkµν dkl
U U U U U U U U ,
λ dρ ][dσϕ ][dτ θ ]d
klp nmp µ ν λ ρ σ ϕ τ θ
d
U U U U U U U U ,
D(8,2) = [dkµν ][dlλρ ][dnσϕ ][dm
τ θ ]d
p
lmp µ ν λ ρ σ ϕ τ θ
n nm
U U U U U U U U ,
D(8,3) = [dkµν dkl
λ ][dρσ dϕ ][dτ θ ]d
ln nm
p
r
mpr µ ν λ ρ σ ϕ τ θ ω
U U U U U U U U U ,
D(9,1) = [dkµν dkl
λ dρ dσ ][dϕτ ][dθω ]d
r
npr µ ν λ ρ σ ϕ τ θ ω
m mp
ln
U U U U U U U U U ,
D(9,2) = [dkµν dkl
λ dρ ][dσϕ dτ ][dθω ]d
p pr lmr µ ν λ ρ σ ϕ τ θ ω
n nm
U U U U U U U U U ,
D(9,3) = [dkµν dkl
λ ][dρσ dϕ ][dτ θ dω ]d
p
lnr mpr µ ν λ ρ σ ϕ τ θ ω
m
n
d U U U U U U U U U ,
D(9,4) = [dkµν dkl
λ ][dρσ ][dϕτ ][dθω ]d
r
s
prs µ ν λ ρ σ ϕ τ θ ω β
ln nm mp
U U U U U U U U U U ,
D(10,1) = [dkµν dkl
λ dρ dσ dϕ ][dτ θ ][dωβ ]d
pr
ln nm
p
s
mrs µ ν λ ρ σ ϕ τ θ ω β
U U U U U U U U U U ,
D(10,2) = [dkµν dkl
λ dρ dσ ][dϕτ dθ ][dωβ ]d
ln
m mp pr
s
nrs µ ν λ ρ σ ϕ τ θ ω β
D(10,3) = [dkµν dkl
U U U U U U U U U U ,
λ dρ ][dσϕ dϕ dτ ][dωβ ]d
ln
m mp
r
rs nps µ ν λ ρ σ ϕ τ θ ω β
D(10,4) = [dkµν dkl
U U U U U U U U U U ,
λ dρ ][dσϕ dτ ][dθω dβ ]d
p
ln
m
r
nms prs µ ν λ ρ σ ϕ τ θ ω β
d U U U U U U U U U U ,
D(10,5) = [dkµν dkl
λ dρ ][dσϕ ][dτ θ ][dωβ ]d

10

V.D. Gershun
p
r
lms prs µ ν λ ρ σ ϕ τ θ ω β
n nm
D(10,6) = [dkµν dkl
d U U U U U U U U U U ,
λ ][dρσ dϕ ][dτ θ ][dωβ ]d
mp
n
m
r
lns prs µ ν λ ρ σ ϕ τ θ ω β
D(10,7) = [dkµν dkl
d U U U U U U U U U U .
λ ][dρσ ]dϕ ][dτ θ ][dωβ ]d

Let us apply the hydrodynamic approach to integrable string models with constant torsion. In this case we must consider the conserved primitive chiral currents D(M ) (U (x)), (M =
2, 3, . . . , n − 1) as local fields of the Riemmann manifold. The non-primitive local charges of invariant chiral currents with M ≥ n form the hierarchy of new Hamiltonians in the bi-Hamiltonian
approach to integrable systems. The commutation relations of invariant chiral currents are local
PBs of hydrodynamic type.
The invariant chiral currents D(M ) with M ≥ 3 for the SU (3) group can be obtained from
the following relation
1
dkln dkmp + dklm dknp + dklp dknm = (δln δmp + δlm δnp + δlp δnm ).
3
The corresponding invariant chiral currents for SU (3) group have the form
D(2N ) =

1
3N −1

D(2N +1) =

(ηµν U µ U ν )N =

1
3N −1

D(2)N ,

1
1
(ηµν U µ U ν )N −1 dkln U k U l U n = N −1 D(2)N −1 D(3) .
3N −1
3

The invariant chiral currents D(2) , D(3) are local coordinates of the Riemmann manifold M 2 .
The local charges D(2N ) , N ≥ 2 form a hierarchy of Hamiltonians. The new nonlinear equations
of motion for chiral currents are as follows


Z 2π
∂D(k) (U (x))
(2)N
(k)
D
(U (y))dy ,
k = 2, 3,
N = 2, . . . , ∞.
= D (U (x)),
∂tN
0
∂D(2) (U (x))
∂D(2)N (U (x))
= −2(2N − 1)
,
∂tN
∂x
∂D(2)N −1 (U (x))
∂D(3) (U (x))
∂D(3) (U (x))
= −6N D(3) (U (x))
− 2N D(2)N −1 (U (x))
.
∂tN
∂x
∂x

The construction of integrable equations with SU (n) symmetries for n ≥ 4 has difficulties in
reduction of non-primitive invariant currents to primitive currents.
The similar method of construction of chiral currents for SO(2l + 1) = Bl , SP (2l) = Cl
groups was used by Evans et al. [24] on the base of symmetric invariant tensors of de Azcarraga
et al. [25]. In the defining representation these group generators corresponding to algebras tµ
satisfy the rules
λ
[tµ , tν ] = 2ifµν
tλ ,

Tr(tµ tν ) = 2δµν ,

tµ η = −ηttµ ,

where η is a Euclidean or symplectic structure.
The symmetric tensor structure constants for these groups were introduced through completely symmetrized product of three generators of corresponding algebras
ρ
t(µ tν tλ) = vµνλ
tρ ,

where vµνλρ is a totally symmetric tensor. The basic invariant symmetric tensors have the
form [25]
(2N )

ν

ν1
−3
(2)
,
Vµν
= δµν , V(µ1 µ2 ...µ2N −1 µ2N ) = v(µ
v ν1 ν2 · · · vµ2N
1 µ 2 µ3 µ 4 µ5
2N −2 µ2N −1 µ2N )

N = 2, . . . , ∞.

Integrable String Models in Terms of Chiral Invariants of SU (n), SO(n), SP (n) Groups

11

The invariant chiral currents J (2N ) (5) coincide with the basis invariant chiral currents V (2N )
(2N )

J (2N ) = 2Vµ1...µ2N U µ1 · · · U µ2N .
The commutation relations of invariant chiral currents are PBs of hydrodynamic type

δ(x − y)
∂x
M N (N − 1) ∂J (M +N −2) (x)
δ(x − y).

M +N −2
∂x

{J (M ) (x), J (N ) (y)} = −M N J (M +N −2) (x)

(6)

The commuting charges of these invariant chiral currents are dynamical Casimir operators on
SO(2l + 1), SP (2l). The metric tensor of Riemmann space of invariant chiral currents is as
follows
gM N (J(x)) = −M N (M + N − 2)J (M +N −2) (x).
The commutation relations (6) coincide with commutation relations, which was obtained by
Evans at al. [24].
(2N,1)
We used relations for new symmetric invariant tensors V(µ1 ...µ2N ) (see Appendix B), which
we obtained during calculation PB (6)
(10)

k
v kln = V(µ1 ...µ10 ) ,
vn
v(µ
vl
1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10 )
(12)

k
vm
v klnm = V(µ1 ...µ12 ) ,
vn
v(µ
vl
1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10 µ11 µ12 )
(14)

k
v klp v nmp = V(µ1 ...µ14 ) .
vm
vn
v(µ
vl
1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10 µ11 µ12 µ13 µ14 )

Appendix A
The new dependent invariant chiral currents and the new dependent totally symmetric invariant
tensors for SU (N ) group can be obtained under different order of calculation of trace of the product of the generators of SU (n) algebra. Let us mark the matrix product of two generators tµ , tν
in round brackets
(tµ tν ) =

2
k
)tk .
δµν + (dkµν + ifµν
n

(7)

The expression of invariant chiral currents JM (U ) depends on the position of the matrix product
of two generators in the general list of generators. For example
4 (3)2 8 (2) (4)
8
D
+ D D + 2 D(2)3 ,
n
n
n
8
12
= Tr[(tt)(tt)(tt)] = 2D(6,1) + D(2) D(4) + 2 D(2)3 ,
n
n
8 (3) (4)
8 (2) (5) 24 (2)2 (3)
(7)
= Tr[t(tt)t(tt)t] = 2D + D D + 2 D D + 2 D D ,
n
n
n
4 (3) (4) 12 (2) (5) 24 (2)2 (3)
(7,1)
= Tr[(tt)(tt)(tt)t] = 2D
+ D D + 2D D + 2D D ,
n
n
n
4
8
8
= Tr[t(tt)tt(tt)t] = 2D(8) + D(4)2 + D(3) D(5) + D(2) D(6)
n
n
n
24 (2) (3)2 24 (2)2 (4) 16 (2)4
+ 2D D
+ 2D D + 3D ,
n
n
n

J (6) = Tr[t(tt)(tt)t] = 2D(6) +
J (6)
J (7)
J (7)
J (8)

12

V.D. Gershun
4 (4)2 4 (3) (5) 24 (2) (3)2
D
+ D D + 2D D
n
n
n
12 (2) (6) 24 (2)2 (4) 16 (2)4
+ D D + 2D D + 3D ,
n
n
n
4 (4)2 16 (2) (6,1) 32 (2)2 (4) 16 (2)4
(8,2)
+ D D
+ 2D D + 3D ,
= Tr[(tt)(tt)(tt)(tt)] = 2D
+ D
n
n
n
n
12
8
= Tr[t(tt)(tt)(tt)t] = 2D(8,3) + D(2) D(6) + D(3) D(5)
n
n
24 (2)2 (4) 24 (2) (3)2 16 (2)4
+ 2D D + 2D D
+ D ,
n
n
n
8
8
8
8
= Tr[t(tt)ttt(tt)t] = 2D(9) + D(4) D(5) + D(3) D(6) + D(2) D(7) + 2 D(3)3
n
n
n
n
48 (2) (3) (4) 24 (2)2 (5) 64 (2)3 (3)
+ 2D D D + 2D D + 3D D ,
n
n
n
= Tr[t(tt)tt(tt)(tt)]

4
4
8
4


2D(9,1) + D(4) D(5) + D(2) D(7) + D(2) D(7,1) + D(3) D(6,1)


n
n
n
n




32
64
32


+ 2 D(2) D(3) D(4) + 2 D(2)2 D(5) + 3 D(2)3 D(3) ,



n
n
n
= ······················································



2D(9,4) + 4 D(2) D(7) + 4 D(2) D(7,1) + 12 D(3) D(6,1)



n
n
n




32
32

(2)
(3)
(4)
(2)2
(5)
 + D D D + D D + 64 D(2)3 D(3) ,
n2
n2
n3
= Tr[t(tt)t(tt)t(tt)]

2D(9,2) + 4 D(4) D(5) + 8 D(3) D(6) + 8 D(2) D(7) + 4 D(2) D(7,1)



n
n
n
n




8
40
32
64

(3)3
(2)
(3)
(4)
(2)2
(5)

+ 2D
+ 2 D D D + 2 D D + 3 D(2)3 D(3) ,



n
n
n
n
= ······················································



4
12
8
8


2D(9,3) + D(2) D(7) + D(2) D(71) + D(3) D(6) + D(3)3


n
n
n
n




40
32
64

 + D(2) D(3) D(4) + D(2)2 D(5) + D(2)3 D(3) ,
n2
n2
n3

J (8) = Tr[(tt)(tt)t(tt)t] = 2D(8,1) +

J (8)
J (8)

J (9)

J (9)

J (9)

where t = tµ U µ and two variants of two last expressions for J (9) (U ) were obtained from two
variants of expression for J (6) (U ) during calculation J (9) (U ). Because the result of calculation
does not depend on the order of calculation, we can obtain relations between new invariant
chiral currents and basic invariant currents D(M ) (U )
2 (3)2 2 (2) (4)
D
− D D ,
n
n
4
4
D(7,1) = D(7) + D(3) D(4) − D(2) D(5) ,
n
n
2 (3) (5) 2 (2) (6)
(81)
(8)
D
=D + D D − D D ,
n
n
4 (3) (5) 4 (2) (6)
4
4
(8,2)
(8)
D
= D + D D − D D − 2 D(2) D(3)2 + 2 D(2)2 D(4) ,
n
n
n
n
2
2
D(8,3) = D(8) + D(4)2 − D(2) D(6) ,
n
n
2 (4) (5)
4
8
4
(9,1)
(9)
D
= D + D D − 2 D(3)3 + 2 D(2) D(3) D(4) + 2 D(2)2 D(5) ,
n
n
n
n
D(6,1) = D(6) +

Integrable String Models in Terms of Chiral Invariants of SU (n), SO(n), SP (n) Groups
2 (4) (5)
D D −
n
4
= D(9) + D(4) D(5) −
n
4
(9)
= D + D(4) D(5) −
n

D(9,2) = D(9) +
D(9,3)
D(9,4)

2 (2) (7)
D D −
n
2 (2) (7)
D D −
n
2 (3) (6)
D D −
n

13

4 (2) (3) (4)
4
D D D + 2 D(2)2 D(5) ,
n2
n
2 (3) (6)
4
4
D D − 2 D(2) D(3) D(4) + 2 D(2)2 D(5) ,
n
n
n
8 (3)3 12 (2) (3) (4)
4 (2)2 (5)
D
+ 2D D D + 2D D .
n2
n
n

Hence we can obtain the new relations for symmetric tensors
2
2
d(µνλ dρσϕ) − δ(µν dkλρ dkσϕ) ,
n
n
4
4
k
l
n nm klm
k
kl ln nm m
l
d(µν dλρ dσϕ dτ ) d
= d(µν dλ dρ dσ dϕτ ) + d(µνλ dkρσ dkϕτ ) − δ(µν dkλρ dkl
σ dϕτ ) ,
n
n
4
2
mp klp
ln nm mp p
k kl l
k kl ln n
dk(µν dlλρ dnσϕ dnm
= dk(µν dkl
τ dτ ) d
λ dρ dσ dϕ dτ θ) + d(µνλ dρσ dϕ dτ θ) − δ(µν dλρ dσ dϕ dτ θ) ,
n
n
4
klp nmp
ln nm mp p
k kl l
d
= dk(µν dkl
dk(µν dlλρ dnσϕ dm
λ dρ dσ dϕ dτ θ) + d(µνλ dρσ dϕ dτ θ)
τ θ) d
n
4
4
4
k
ln n
k
− δ(µν dkλρ dkl
σ dϕ dτ θ) − 2 δ(µν dλρσ dϕτ θ) + 2 δ(µν δλρ dσϕ dτ θ) .
n
n
n
ln n
dk(µν dlλρ dnσϕ) dkln = dk(µν dkl
λ dρ dσϕ) +

It is possible to obtain similar relations for invariant symmetric tensors of ninth order. The
commutation relations of chiral currents in terms of the basic invariant currents are as follows


6 (3)2
6 (2)

(4)
(5)
(3)
(6)
δ(x − y)
{D (x), D (y)} = − 15D (x) + D (x) − D (x)D (x)
n
n
∂x


1 ∂
6 (2)
6 (3)2
(4)
(6)

15D (x) + D (x) − D (x)D (x) δ(x − y),
3 ∂x
n
n


16 (2)

16 (3)
(4)
(5)
(5)
(4)
(7)
δ(x − y)
{D (x), D (y)} = − 20D (x) + D (x)D (x) − D (x)D (x)
n
n
∂x


3 ∂
16
16

20D(7) (x)+ D(3) (x)D(4) (x)− D(2) (x)D(5) (x) δ(x − y),
7 ∂x
n
n

36
20
{D(5) (x), D(5) (y)} = − 25D(8) (x) + D(3) (x)D(5) (x) − D(2) (x)D(6) (x)
n
n

4

4
− D(2) (x)D(3)2 (x) + 2 D(2)2 (x)D(4) (x)
δ(x − y)
n
n
∂x

1 ∂
20
36

25D(8) (x) + D(3) (x)D(5) (x) − D(2) (x)D(6) (x)
2 ∂x
n
n

4
4
− D(2) (x)D(3)2 (x) + 2 D(2)2 (x)D(4) (x) ,
n
n


12 (4)2 12 (2) (6) ∂
(6)
(4)
(8)
− D D
δ(x − y)
{D (x), D (y)} = − 24D + D
n
n
∂x


3 ∂
12 (4)2 12 (2) (6)
(8)

− D D
δ(x − y),
24D + D
8 ∂x
n
n


6 (4)2 12 (3) (5) 18 (2) (6) ∂
(7)
(3)
(8)
+ D D − D D
δ(x − y)
{D (x), D (y)} = − 21D + D
n
n
n
∂x


1 ∂
6 (4)2 12 (3) (5) 18 (2) (6)
(8)
δ(x − y),

21D + D
+ D D − D D
4 ∂x
n
n
n

12
24
24
24
{D(8) (x), D(3) (y)} = − 24D(9) − D(2) D(7) + D(4) D(5) − 2 D(3)3 + 2 D(2) D(3) D(4)
n
n
n
n



2 ∂
12
48
δ(x − y) −
24D(9) − D(2) D(7)
+ 2 D(2)2 D(5)
n
∂x
9 ∂x
n

14

V.D. Gershun

24 (4) (5) 24 (3)3 24 (2) (3) (4) 48 (2)2 (5)
+ D D − 2D
δ(x − y),
+ 2D D D + 2D D
n
n
n
n

8
24
32
{D(7) (x), D(4) (y)} = − 28D(9) − D(3) D(6) − D(2) D(7) + D(4) D(5)
n
n
n

48

48
− 2 D(2) D(3) D(4) + 2 D(2)2 D(5)
δ(x − y)
n
n
∂x

8
24
32
1 ∂
28D(9) − D(3) D(6) − D(2) D(7) + D(4) D(5)

3 ∂x
n
n
n

48
48
− 2 D(2) D(3) D(4) + 2 D(2)2 D(5) δ(x − y),
n
n

12
32
32
4
{D(6) (x), D(5) (y)} = − 30D(9) − D(3) D(6) − D(2) D(7) + D(4) D(5) − 2 D(3)3
n
n
n
n

24 (2) (3) (4) 56 (2)2 (5) ∂
+ 2D D D + 2D D
δ(x − y)
n
n
∂x

4
12
32
4 ∂
30D(9) − D(3) D(6) − D(2) D(7) + D(4) D(5)

9 ∂x
n
n
n

32 (3)3 24 (2) (3) (4) 56 (2)2 (5)
− 2D
δ(x − y).
+ 2D D D + 2D D
n
n
n

Appendix B
The invariant chiral currents J (2N ) and V (2N ) and the new dependent totally symmetric invariant
tensors for SO(2l + 1), SP (2l) groups can be obtained under different order of calculation of
trace of the product of the generators of corresponding algebras. Let us mark the matrix product
of three generators tµ in round brackets
(t(µ tν tλ) ) = vµνλρ tρ .
A different position of this triplet inside of J 2N produces different expressions for V 2N
k
kl ln n
J (10) = Tr[((t1 t2 t3 )t4 (t5 t6 t7 )(t8 t9 t10 ))]U1 · · · U10 = 2v123
v45
v67 v8910 U1 · · · U10 = 2V (10) ,
k
l
n
kln
J (10) = Tr[((t1 t2 t3 )(t4 t5 t6 )(t7 t8 t9 )t10 )]U1 · · · U10 = 2v123
v456
v789
v10
U1 · · · U10 = 2V (10,1) ,

J (12) = Tr[(t1 (t2 t3 t4 )t5 (t6 t7 t8 )t9 (t10 t11 t12 ))]U1 · · · U12
kl ln nm m
k
v67 v89 v101112 U1 · · · U12 = 2V (12) ,
v45
= 2v123

J (12) = Tr[((t1 t2 t3 )(t4 t5 t6 )(t7 t8 t9 )(t10 t11 t12 ))]U1 · · · U12
k
l
n
m
= 2v123
v456
v789
v101112
v klnm U1 · · · U12 = 2V (12,1) ,

J (14) = Tr[((t1 t2 t3 )t4 (t5 t6 t7 )t8 (t9 t10 t11 )(t12 t13 t14 ))]U1 · · · U14
k
kl ln nm mp p
= 2v123
v45
v67 v89 v1011 v121314 U1 · · · U14 = 2V (14) ,

J (14) = Tr[((t1 t2 t3 )(t4 t5 t6 )(t7 t8 t9 )(t10 t11 t12 )t13 t14 )]U1 · · · U14
klp nmp
k
l
n
m
= 2v123
v456
v789
v101112
v13
v14 U1 · · · U14 = 2V (14,1) .
k . New invariant
Here we introduced the short notation tµk = tk , U µk = Uk and vµkl µn µm =vlnm
chiral tensors do not lead to new invariant chiral currents.

Integrable String Models in Terms of Chiral Invariants of SU (n), SO(n), SP (n) Groups

15

Acknowledgments
The author would like to thank J.A. de Azcarraga for the stimulating discussion about nonprimitive invariant tensors on simple Lie algebras.

References
[1] Magri F., A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), 1156–1162.
[2] Okubo S., Das A., The integrability condition for dynamical systems, Phys. Lett. B 209 (1988), 311–314.
[3] Dubrovin B.A., Novikov S.P., Hamiltonian formalism of one-dimensional systems of hydrodynamic type and
the Bogolyubov–Whitham averaging method, Dokl. Akad. Nauk SSSR 270 (1983), 781–785 (in Russian).
[4] Dubrovin B.A., Novikov S.P., Hydrodynamics of weakly deformed soliton lattices. Differential geometry and
Hamiltonian theory, Russian Math. Surveys 44 (1989), no. 6, 35–124.
[5] Ferapontov E.V., Differential geometry of nonlocal Hamiltonian of hydrodynamic type, Funct. Anal. Appl.
25 (1991), 195–204.
[6] Mokhov O.I., Ferapontov E.V., Nonlocal Hamiltonian operators of hydrodynamic type that are connected
with metrics of constant curvature, Russian Math. Surveys 45 (1990), no. 3, 218–219.
[7] Mokhov O.I., Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems,
Russian Math. Surveys 53 (1998), no. 3, 515–622.
[8] Tsarev S.P., Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type, Dokl. Akad.
Nauk SSSR 282 (1985), 534–537.
[9] Maltsev A.Ya., On the compatible weakly nonlocal Poisson brackets of hydrodynamic type, Int. J. Math.
Math. Sci. 32 (2002), 587–614, nlin.SI/0111015.
[10] Ferapontov E.V., Nonlocal Hamiltonian operators of hydrodynamic type: differential geometry and applications, Amer. Math. Soc. Transl. (2) 170 (1995), 33–58.
[11] Mokhov O.I., The Liouville canonical form of compatible nonlocal Poisson brackets of hydrodynamic type,
and integrable hierarchies, Funct. Anal. Appl. 37 (2003), no 2, 103–113, math.DG/0201223.
[12] Mokhov O.I., Compatible Dubrovin–Novikov Hamiltonian operators, Lie derivative and integrable systems
of hydrodynamic type, Theoret. and Math. Phys. 133 (2002), 1557–1564, math.DG/0201281.
[13] Pavlov M.V., Multi-Hamiltonian structures of the Whitham equations, Russian Acad. Sci. Dokl. Math. 50
(1995), no 2, 220–223.
[14] Pavlov M.V., Integrability of Egorov systems of hydrodynamic type, Theoret. and Math. Phys. 150 (2007),
no. 2, 225–243, nlin.SI/0606017.
[15] Maltsev A.Ya., Novikov S.P., On the local systems Hamiltonian in the weakly non-local Poisson brackets,
Phys. D 156 (2001), 53–80, nlin.SI/0006030.
[16] Goldschmidt Y.Y., Witten E., Conservation laws in some two-dimensional models, Phys. Lett. B 91 (1980),
392–396.
[17] Aref’eva I.Ya., Kulish P.P., Nissimov E R., Pacheva S.J., Infinite set of conservation laws of the quantum
chiral field in 2D spacetime, preprint LOMI E-I-1978, unpublished.
[18] Gershun V.D., Integrable string models of hydrodynamic type, J. Kharkov University, Phys. Ser. Nucl.,
Part., Fields 657 (2005), no. 1 (26), 109–113.
[19] Gershun V.D., Integrable string models and sigma-models of hydrodynamic type in terms of invariant chiral
currents, Problems of Atomic Science and Technology 3(1) (2007), Part 1, 16–21.
[20] Dijkgraaf R., Witten E., Mean field theory, topological field theory, and multi-matrix models, Nuclear
Phys. B 342 (1990), 486–522.
[21] Dijkgraaf R., Verlinde H., Verlinde E., Topological strings in d < 1, Nuclear Phys. B 352 (1991), 59–86.
[22] Dubrovin B.A., Geometry of 2D topological field theories, Lecture Notes in Math. 1620 (1996), 120–348,
hep-th/9407018.
[23] Dubrovin B., Zhang Y., Bi-Hamiltonian hierarchies in 2D topological field theory at one-loop approximation,
Comm. Math. Phys. 198 (1998), 311–361, hep-th/9712232.
[24] Evans J.M., Hassan M., MacKay N.J., Mountain A.J., Local conserved charges in principal chiral models,
Nuclear Phys. B 561 (1999), 385–412, hep-th/9902008.

16

V.D. Gershun

[25] de Azcarraga J.A., Macfarlane A.J., Mountain A.J., Perez Bueno J.C., Invariant tensors for simple groups,
Nuclear Phys. B 510 (1998), 657–687, physics/9706006.
[26] Pohlmeyer K., A group-theoretical approach to the quantization of the free relativistic closed string, Phys.
Lett. B 119 (1982), 100–104.
[27] Meusburger C., Rehren K.-H., Algebraic quantization of the closed bosonic string, Comm. Math. Phys. 237
(2003), 69-85, math-ph/0202041.
[28] Thiemann T., The LQS string-loop quantum gravity quantization of string theory. I. Flat target space,
Classical Quantum Gravity 23 (2006), 1923–1970, math-ph/0401172.
[29] Klein A., Invariant operators of the unitary unimodular group in n dimensions, J. Math. Phys. 4 (1963),
1283–1284.
[30] Sudbery A., Some aspects of chiral [δ]u(3) × [δ]u(3) symmetry in hadron dynamics, PhD Thesis, Cambridge
University, 1970.
Sudbery A., Computer-friendly d-tensor identities for SU (n), J. Phys. A: Math. Gen. 23 (1990), L705–L710.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52