sigma09-024. 201KB Jun 04 2011 12:10:24 AM

Symmetry, Integrability and Geometry: Methods and Applications

SIGMA 5 (2009), 024, 11 pages


acklund Transformations
for First and Second Painlev´
e Hierarchies
Ayman Hashem SAKKA
Department of Mathematics, Islamic University of Gaza, P.O. Box 108, Rimal, Gaza, Palestine
E-mail: [email protected]
Received November 25, 2008, in final form February 24, 2009; Published online March 02, 2009
doi:10.3842/SIGMA.2009.024
Abstract. We give B¨acklund transformations for first and second Painlev´e hierarchies.
These B¨acklund transformations are generalization of known B¨acklund transformations of
the first and second Painlev´e equations and they relate the considered hierarchies to new
hierarchies of Painlev´e-type equations.
Key words: Painlev´e hierarchies; B¨acklund transformations
2000 Mathematics Subject Classification: 34M55; 33E17

1


Introduction

One century ago Painlev´e and Gambier have discovered the six Painlev´e equations, PI–PVI.
These equations are the only second-order ordinary differential equations whose general solutions
can not be expressed in terms of elementary and classical special functions; thus they define new
transcendental functions. Painlev´e transcendental functions appear in many areas of modern
mathematics and physics and they paly the same role in nonlinear problems as the classical
special functions play in linear problems.
In recent years there is a considerable interest in studying hierarchies of Painlev´e equations.
This interest is due to the connection between these hierarchies of Painlev´e equations and completely integrable partial differential equations. A Painlev´e hierarchy is an infinite sequence of
nonlinear ordinary differential equations whose first member is a Painlev´e equation. Airault [1]
was the first to derive a Painlev´e hierarchy, namely a second Painlev´e hierarchy, as the similarity reduction of the modified Korteweg–de Vries (mKdV) hierarchy. A first Painlev´e hierarchy
was given by Kudryashov [2]. Later on several hierarchies of Painlev´e equations were introduced [3, 4, 5, 6, 7, 8, 9, 10, 11].
As it is well known, Painlev´e equations possess B¨
acklund transformations; that is, mappings
between solutions of the same Painlev´e equation or between solutions of a particular Painlev´e
equation and other second-order Painlev´e-type equations. Various methods to derive these

acklund transformations can be found for example in [12, 13, 14, 15]. B¨acklund transformations

are nowadays considered to be one of the main properties of integrable nonlinear ordinary
differential equations, and there is much interest in their derivation.
In the present article, we generalize known B¨
acklund transformations of the first and second Painlev´e equations to the first and second Painlev´e hierarchies given in [6, 11]. We give
a B¨
acklund transformation between the considered first Painlev´e hierarchy and a new hierarchy
of Painlev´e-type equations. In addition, we give two new hierarchies of Painlev´e-type equations
related, via B¨acklund transformations, to the considered second Painlev´e hierarchy. Then we
derive auto-B¨
acklund transformations for this second Painlev´e hierarchy. B¨acklund transformations of the second Painlev´e hierarchy have been studied in [6, 16].

2

2

A.H. Sakka


acklund transformations for PI hierarchy


In this section, we will derive a B¨acklund transformation for the first Painlev´e hierarchy (PI
hierarchy) [6]
n+1
X

γj Lj [u] = γx,

(2.1)

j=2

where the operator Lj [u] satisfies the Lenard recursion relation

L1 [u] = u.
Dx Lj+1 [u] = Dx3 − 4uDx − 2ux Lj [u],

(2.2)

The special case γj = 0, 2 ≤ j ≤ n, of this hierarchy is a similarity reduction of the Schwarz–
Korteweg–de Vries hierarchy [2, 4]. Moreover its members may define new transcendental functions.

The PI hierarchy (2.1) can be written in the following form [11]
n

RI u +

n
X

κj Rn−j
u = x,
I

(2.3)

j=2

where RI is the recursion operator
RI = Dx2 − 8u + 4Dx−1 ux .
In [17, 18], it is shown that the B¨
acklund transformation


u = −yx ,
y = 12 u2x − 4u3 − 2xu ,

(2.4)

defines a one-to-one correspondence between the first Painlev´e equation
uxx = 6u2 + x.

(2.5)

and the SD-I.e equation of Cosgrove and Scoufis [17]
2
= −4yx3 − 2(xyx − y).
yxx

(2.6)

We will show that there is a generalization of this B¨
acklund transformation to all members

of the PI hierarchy (2.3). Let
"
#
n
X
y = −xu + Dx−1 ux RnI u +
κj Rn−j
u .
(2.7)
I
j=2

Differentiating (2.7) and using (2.3), we find
u = −yx .

(2.8)

Substituting u = −yx into (2.7), we obtain the following hierarchy of differential equation for y
"
#

n
X
−1
n
n−j
Dx yxx SI yx +
κj SI yx + (xyx − y) = 0,
(2.9)
j=2

where SI is the recursion operator
SI = Dx2 + 8yx − 4Dx−1 yxx .


acklund Transformations for First and Second Painlev´e Hierarchies

3

The first member of the hierarchy (2.9) is the SD-I.e equation (2.6). Thus we shall call this
hierarchy SD-I.e hierarchy.

Therefor we have derived the B¨
acklund transformation (2.7)–(2.8) between solutions u of the
first Painlev´e hierarchy (2.3) and solutions y of the SD-I.e hierarchy (2.9).
When n = 1, the B¨acklund transformation (2.7)–(2.8) gives the B¨acklund transformation (2.4)
between the first Painlev´e equation (2.5) and the SD-I.e equation (2.6). Next we will consider
the cases n = 2 and n = 3.
Example 1 (n = 2). The second member of the PI hierarchy (2.3) is the fourth-order equation
uxxxx = 20uuxx + 10u2x − 40u3 − κ2 u + x.

(2.10)

In this case, the B¨
acklund transformation (2.7) reads

2ux uxxx − u2xx − 20uu2x + 20u4 + κ2 u2 − 2xu .

(2.11)

2
2

+ 20yx4 + κ2 yx2 + 2(xyx − y) = 0.
+ 20yx yxx
2yxx yxxxx − yxxx

(2.12)

y=

1
2

Equations (2.11) and (2.8) give one-to-one correspondence between (2.10) and the following
equation
Equation (2.12) and the B¨
acklund transformation (2.8) and (2.11) were given before [19].
Example 2 (n = 3). The third member of the PI hierarchy (2.3) reads
uxxxxxx = 28uuxxxx + 56ux uxxx + 42u2xx − 280u2 uxx

− 280uu2x + 280u4 − κ2 uxx − 6u2 − κ3 u + x.


In this case, the B¨
acklund transformation (2.7) has the form

1
y = 2 2ux uxxxxx − 2uxx uxxxx + u2xxx − 56uux uxxx + 28uu2xx


− 56u2x uxx + 280u2 u2x − 112u5 + κ2 u2x − 4u3 + κ3 u2 − 2xu .

(2.13)

(2.14)

Equations (2.8) and (2.14) give one-to-one correspondence between solutions u of (2.13) and
solutions y of the following equation
2
2
+ 56yx yxx yxxxx − 28yx yxxx
2yxx yxxxxxx − 2yxxx yxxxxx + yxxxx


2
2
2
+ 4yx3 + κ3 yx2 + 2(xyx − y) = 0.
+ 112yx5 + κ2 yxx
yxxx + 280yx2 yxxx
+ 56yxx

(2.15)

Equation (2.15) is a new sixth-order Painlev´e-type equation.

3


acklund transformations for second Painlev´
e hierarchy

In the present section, we will study B¨
acklund transformations of the second Painlev´e hierarchy
(PII hierarchy) [6]
(Dx − 2u)

n
X
j=1



γj Lj ux + u2 + 2γxu − γ − 4δ = 0,

where the operator Lj [u] is defined by (2.2). The special case γj = 0, 1 ≤ j ≤ n − 1, of
this hierarchy is a similarity reduction of the modified Korteweg–de Vries hierarchy [2, 4]. The
members of this hierarchy may define new transcendental functions.
This hierarchy can be written in the following alternative form [11]
RnII u +

n−1
X

κj RjII u − (xu + α) = 0,

j=1

where RII is the recursion operator
RII = Dx2 − 4u2 + 4uDx−1 ux .

(3.1)

4

A.H. Sakka

3.1

A hierarchy of SD-I.d equation

As a first B¨
acklund transformation for the PII hierarchy (3.1), we will generalize the B¨acklund
transformation between the second Painlev´e equation and the SD-I.d equation of Cosgrove and
Scoufis [17, 18].
Let
"
!#
n−1
X
y = Dx−1 ux RnII u +
κj RjII u
− 12 xu2 − 12 (2α − ǫ)u,
(3.2)
j=1

where ǫ = ±1. Differentiating (3.2) and using (3.1), we find

ux = ǫ u2 + 2yx .
Now we will show that


Dx−1 ux RjII u = 12 u2 H j [yx ] + Dx−1 yx Hxj [yx ] ,

where the operator H j [p] satisfies the Lenard recursion relation

Dx H j+1 [p] = Dx3 + 8pDx + 4px H j [p],
H 1 [p] = 4p.

(3.3)

(3.4)

(3.5)

Firstly, we will use induction to show that for any j = 1, 2, . . . ,
RjII u = 21 (ǫDx + 2u)H j [yx ].

(3.6)

For j = 1, RII u = uxx − 2u3 . Using (3.3), we find that
uxx = 2u3 + 4yx u + 2ǫyxx .

(3.7)

Thus
RII u = 4uyx + 2ǫyxx = 12 (ǫDx + 2u)H 1 [yx ].
Assume that it is true for j = k. Then
k
k
u = RII (ǫDx + 2u)H k [yx ] = ǫHxxx
[yx ] + 2uHxx
[yx ] + 4ux Hxk [yx ] + 2uxx H k [yx ]
2Rk+1
II


− 4u2 ǫHxk [yx ] + 2uH k [yx ] + 4uDx−1 ǫux Hxk [yx ] + 2uux H k [yx ] .
(3.8)

Integration by parts gives





Dx−1 ǫux Hxk [yx ] + 2uux H k [yx ] = u2 H k [yx ] + Dx−1 ǫux − u2 Hxk [yx ] .

Hence (3.8) can be written as


k
k
u = ǫHxxx
[yx ] + 2uHxx
[yx ] + 4ux Hxk [yx ] + 2uxx H k [yx ] − 4u2 ǫHxk [yx ] + 2uH k [yx ]
2Rk+1
II



(3.9)
+ 4u u2 H k [yx ] + Dx−1 ǫux − u2 Hxk [yx ] .

Using (3.3) to substitute ux and (3.7) to substitute uxx , (3.9) becomes

k
2Rk+1
u = ǫ Hxxx
[yx ] + 8yx Hxk [yx ] + 4yxx H k [yx ]
II

k
+ 2u Hxx
[yx ] + 4yx H k [yx ] + 4Dx−1 yx Hxk [yx ]

k
= (ǫDx + 2u) Hxx
[yx ] + 4yx H k [yx ] + 4Dx−1 yx Hxk [yx ] .


acklund Transformations for First and Second Painlev´e Hierarchies

5

Since

k
k
[yx ] + 8yx Hxk [yx ] + 4yxx H k [yx ],
[yx ] + 4yx H k [yx ] + 4Dx−1 yx Hxk [yx ] = Hxxx
Dx Hxx

k [y ] + 4y H k [y ] + 4D −1 y H k [y ] = H k+1 [y ], see (3.5), and hence the proof by
we have Hxx
x
x
x
x x x
x
x
induction is finished.
Now using (3.6) we find


2ux RkII (u) = ǫux − u2 Hxk [yx ] + Dx u2 H k [yx ] .
(3.10)

Using (3.3) to substitute ux into (3.10) and then integrating, we obtain (3.4).
Therefore (3.2) can be used to obtain the following quadratic equation for u
!
n−1
X
n
j
− x + H [yx ] +
κj H [yx ] u2 − (2α − ǫ)u
j=1

+

2Dx−1 yx

Hxn [yx ]

+

n−1
X

!

κj Hxj [yx ]

j=1

− 2y = 0.

(3.11)

Eliminating u between (3.3) and (3.11) gives a one-to-one correspondence between the second
Painlev´e hierarchy (3.1) and the following hierarchy of second-degree equations
!2
!
n−1
n−1
X
X
n
n
j
j
Hx [yx ] +
κj Hx [yx ] − 1 + 8 H [yx ] +
κj H [yx ] − x
j=1

×

Dx−1 yx Hxn [yx ]

j=1

+

n−1
X

κj Dx−1 yx Hxj [yx ]

−y

j=1

!

= (2α − ǫ)2 .

(3.12)

Therefore we have derived the B¨
acklund transformation (3.2) and (3.11) between the PII
hierarchy (3.1) and the new hierarchy (3.12).
Next we will give the explicit forms of the above results when n = 1, 2, 3.
Example 3 (n = 1). The first member of the second Painlev´e hierarchy (3.1) is the second
Painlev´e equation
uxx = 2u3 + xu + α.
In this case, (3.2) and (3.11) read


y = 12 u2x − u4 − xu2 − (2α − ǫ)u
and

(4yx − x)u2 − (2α − ǫ)u + 4yx2 − 2y = 0,
respectively. The second-degree equation for y is

(4yxx − 1)2 + 8(4yx − x) 2yx2 − y = (2α − ǫ)2 .

(3.13)

The change of variables w = y − 81 x2 transforms (3.13) into the SD-I.d equation of Cosgrove and
Scoufis [17]
2
wxx
+ 4wx3 + 2wx (xwx − w) =

1
16 (2α

− ǫ)2 .

Thus when n = 1, the B¨acklund transformation (3.2) and (3.11) is the known B¨acklund
transformation between the second Painlev´e equation and the SD-I.d equation (3.12). Since the
first member of the hierarchy (3.12) is the SD-I.d equation, we shall call it SD-I.d hierarchy.

6

A.H. Sakka

Example 4 (n = 2). The second member of the second Painlev´e hierarchy (3.1) reads

(3.14)
uxxxx = 10u2 uxx + 10uu2x − 6u5 − κ1 uxx − 2u3 + xu + α.
Equation (3.14) is labelled in [20, 21] as F-XVII.
In this case, (3.2) and (3.11) read



y = 12 2ux uxxx − u2xx − 10u2 u2x + 2u6 + κ1 u2x − u4 − xu2 − (2α − ǫ)u

(3.15)

and


2
+ 32yx3 + 4κ1 yx2 − 2y = 0, (3.16)
4yxxx + 24yx2 + 4κ1 yx − x u2 − (2α − ǫ)u + 8yx yxxx − 4yxx

respectively. Equations (3.15) and (3.16) give one-to-one correspondence between (3.14) and
the following fourth-order second-degree equation
[4yxxxx + 48yx yxx + 4κ1 yxx − 1]2
(3.17)



2
3
2
2
2
+ 8 4yxxx + 24yx + 4κ1 yx − x 4yx yxxx − 2yxx + 16yx + 2κ1 yx − y = (2α − ǫ) .

Equation (3.17) is a first integral of the following fifth-order equation
2
− 40yx3 − κ1 yxxx − 6κ1 yx2 + xyx + y.
yxxxxx = −20yx yxxx − 10yxx

(3.18)

The transformation y = −(w + 12 γz + 5γ 3 ), z = x + 30γ 2 transforms (3.18) into the equation
2
wzzzzz = 20wz wzzz + 10wzz
− 40wz3 + zwz + w + γz.

(3.19)

The B¨
acklund transformation [22]
v = wz ,

w = vzzzz − 20vvzz − 10vz2 + 40v 3 − zv − γz,

(3.20)

gives a one-to-one correspondence between (3.19) and Cosgrove’s Fif-III equation [20]
vzzzzz = 20vvzzz + 40vz vzz − 120v 2 vz + zvz + 2v + γ.

(3.21)

Therefore we have rederived the known relation
v=−


1
ǫux − u2 + γ ,
2

u=

−ǫ[vzzz − 12vvz + 4γvz + 2ǫ α]
.
2[vzz − 6v 2 + 4γv + 41 z − 4γ 2 ]

between Cosgrove’s equations Fif-III (3.21) and F-XVII (3.14) [20].
Example 5 (n = 3). The third member of the second Painlev´e hierarchy (3.1) reads
uxxxxxx = 14u2 uxxxx + 56uux uxxx + 42uu2xx + 70u2x uxx − 70u4 uxx − 140u3 u2x + 20u7
− κ2 (uxxxx − 10u2 uxx − 10uu2x + 6u5 ) − κ1 (uxx − 2u3 ) + xu + α.

(3.22)

In this case, (3.2) and (3.11) have the following forms respectively
2y = 2ux uxxxxx − 2uxx uxxxx + u2xxx − 28u2 ux uxxx + 14u2 u2xx − 56uu2x uxx − 21u4x + 70u4 u2x
− 5u8 + κ2 (2ux uxxx − u2xx − 10u2 u2x + 2u6 ) + κ1 (u2x − u4 ) − xu2 − (2α − ǫ)u
and



2
4 yxxxxx + 20yx yxx + 10yxx
+ 40yx3 + κ2 yxxx + 6yx2 + κ1 yx − 14 x u2

(3.23)


acklund Transformations for First and Second Painlev´e Hierarchies
2
− (2α − ǫ)u + 4 2yx yxxxxx − 2yxx yxxxx + yxxx
+ 40yx2 yxxx + 60yx4

2
+ 4κ2 2yx yxxx − yxx
+ 8yx3 + 4κ1 yx2 − 2y = 0.

7


(3.24)

Equations (3.23) and (3.24) give one-to-one correspondence between (3.22) and the following
six-order second-degree equation

2
yxxxxxx + 20yx yxxxx + 40yxx yxxx + 120yx2 yxx + κ2 (yxxxx + 12yx yxx ) + κ1 yxx − 41



2
+ 40yx3 + κ2 yxxx + 6yx2 + κ1 yx − 41 x
+ 2 yxxxxx + 20yx yxx + 10yxx

2
× 4yx yxxxxx − 4yxx yxxxx + 2yxxx
+ 80yx2 yxxx + 120yx4


2
1
(2α − ǫ)2 .
(3.25)
+ 2κ2 2yx yxxx − yxx
+ 8yx3 + 2κ1 yx2 − y = 16

The B¨
acklund transformation (3.23), (3.24) and the equation (3.25) are not given before.

3.2

A hierarchy of a second-order fourth-degree equation

In this subsection, we will generalize the B¨
acklund transformation given in [23] between the
second Painlev´e equation and a second-order fourth-degree equation.
Let
"
!#
n−1
X
−1
n
j
y = Dx ux RII u +
κj RII u
− 12 xu2 − αu.
(3.26)
j=1

Differentiating (3.26) and using (3.1), we find
u2 + 2yx = 0.

(3.27)

acklund transformation between the second Painlev´e
Equations (3.26) and (3.27) define a B¨
hierarchy (3.1) and a new hierarchy of differential equations for y.
In order to obtain the new hierarchy, we will prove that



−1 yxx j
j
−1
(3.28)
S yx ,
Dx ux RII u = −Dx
yx II
where SII is the recursion operator
SII = Dx2 −

2
yxx
yxxx 3yxx
yxx
+ 8yx − 4yx Dx−1
Dx −
+
.
yx
2yx
4yx2
yx

First of all, we will use induction to prove that
2
RjII u = − SIIj yx .
u

(3.29)

Using (3.27), we find
yxx
,
ux = −
u

uxx

1
=−
u



y2
yxxx − xx
2yx



(3.30)

.

Hence
1
RII u = uxx − 2u = −
u
3

Thus (3.29) is true for j = 1.



y2
yxxx − xx + 8yx2
2yx



2
= − SII yx .
u

8

A.H. Sakka
Assume it is true for j = k. Then


2ux
2
uxx 2u2x
1 k
2
2
2 −1 ux
k+1
Dx −
Dx −
+ 2 − 4u + 4u Dx
SIIk yx .
RII u = −2RII SII yx = −
u
u
u
u
u
u

Using (3.30) to substitute ux and uxx and using (3.27) to substitute u2 , we find the result.
As a second step, we use (3.29) to find
u


x k
Dx−1 ux RkII u = −2Dx−1
SII yx .
u
Thus using (3.30) to substitute ux and using (3.27) to substitute u2 we find (3.28).
Therefore (3.26) implies
"
!#
n−1
X
−1 yxx
n
j
αu = −y + xyx − Dx
SII yx +
κj SII yx .
yx

(3.31)

j=1

If α 6= 0, then substituting u from (3.31) into (3.27) we obtain the following hierarchy of
differential equations for y
"
!#
!2
n−1
X
n
j
−1 yxx
SII yx +
(3.32)
κj SII yx
Dx
− xyx + y + 2α2 yx = 0.
yx
j=1

If α = 0, then y satisfies the hierarchy
!#
"
n−1
X
y
xx
SIIn yx +
κj SIIj yx
− xyx + y = 0.
Dx−1
yx
j=1

The first member of the hierarchy (3.32) is a fourth-degree equation, whereas the other
members are second-degree equations. Now we give some examples.
Example 6 (n = 1). In the present case, (3.26) reads
2y = u2x − u4 − xu2 − 2αu.

(3.33)

Eliminating u between (3.27) and (3.33) yields the following second-order fourth-degree equation
for y
2
 2
(3.34)
yxx + 8yx3 − 4yx (xyx − y) + 32α2 yx3 = 0.
The change of variables w = 2y transform (3.34) into the following equation
 2
2
wxx + 4wx3 − 4wx (xwx − w) + 16α2 yx3 = 0.

(3.35)

Equation (3.35) was derived before [23].

Example 7 (n = 2). When n = 2, (3.26) reads

2y = 2ux uxxx − u2xx − 10u2 u2x + 2u6 − xu2 − 2αu + κ1 u2x − u4 .

(3.36)

acklund transformation between the second member of PII
Equations (3.27) and (3.36) give a B¨
hierarchy (3.14) and the following fourth-order second-degree equation for y
"


2

2
2
2
3yxx
yxx
1
yxx
yxx yxxxx −
yxxx −

yxxx −
2yx
2yx
2
2yx
#2

1
2
3
2
4
+ 8α2 yx3 = 0.
(3.37)
+ 10yx yxx + 16yx − 2yx (xyx − y) + κ1 yxx + 8yx
2
Equation (3.37) was given before [19].


acklund Transformations for First and Second Painlev´e Hierarchies

9

Example 8 (n = 3). In this case, (3.26) read
2y = 2ux uxxxxx − 2uxx uxxxx + u2xxx − 28u2 ux uxxx + 14u2 u2xx − 56uu2x uxx − 21u4x
(3.38)


+ 70u4 u2x − 5u8 + κ2 2ux uxxx − u2xx − 10u2 u2x + 2u6 + κ1 u2x − u4 − xu2 − 2αu,

and (3.32) has the form
"

 
2

3
5yxx yxxxx
3yxx yxxx 3yxx
3y 2
yxxxxx +
+ yxxxx −
+
2yxx yxxxxxx − 2yxxx + xx
yx
yx
2yx
4yx2



2
2
2
2 y
2yxx yxxxx 3yxxx
9yxx
15yxx
yxx
xxx
2
+ 2yxxx −
+
− 7yxx − 14yx yxxx
+

yx
yx
2yx
2yx2
8yx3


4
2
2 y
4
7yxx
15yxx
5yxx
21yxx
xxx
2
2
3y

+
+
+ 280yx2 yxx
− 150yx5 − 4yx (xyx − y)
+
xxx
2yx2
yx
4yx3
2yx
"
#


2

2
2
2
3yxx
yxx
1
yxx
2
+ 2κ2 yxx yxxxx −
+ 10yx yxx
+ 16yx4
yxxx −

yxxx −
2yx
2yx
2
2yx
#2

2
+ κ1 yxx
+ 32α2 yx3 = 0.
(3.39)
+ 8yx3
The B¨acklund transformation between the third member of PII hierarchy (3.22) and the new
equation (3.39) is given by (3.27) and (3.38).

3.3

Auto-B¨
acklund transformations for PII hierarchy

In this subsection, we will use the SD-I.d hierarchy (3.12) to derive auto-B¨
acklund transformations for PII hierarchy (3.1).
Let u be solution of (3.1) with parameter α and let u
¯ be solution of (3.1) with parameter α
¯.
Since (3.12) is invariant under the transformation 2α − ǫ = −2¯
α + ǫ, a solution y of (3.12)
corresponds to two solutions u and u
¯ of (3.1). The relation between y and u is given by (3.11)
and the relation between y and u
¯ is given by
!
n−1
X
n
j
− x + H [yx ] +
κj H [yx ] u
¯2 − (2¯
α − ǫ)¯
u
j=1

+

2Dx−1 yx

Hxn [yx ]

+

n−1
X
j=1

!

κj Hxj [yx ]

− 2y = 0.

Subtracting (3.11) from (3.40), we obtain
!
n−1
X

− x + H n [yx ] +
¯2 − u2 − (2¯
α − ǫ)¯
u + (2α − ǫ)u = 0.
κj H j [yx ] u

(3.40)

(3.41)

j=1

Using 2α − ǫ = −2¯
α + ǫ and dividing by u
¯ + u, (3.41) yields
!
n−1
X
n
j
− x + H [yx ] +
κj H [yx ] (¯
u − u) + (2α − ǫ) = 0.
j=1

Now using (3.3) to substitute yx , we obtain the following two auto-B¨acklund transformations
for PII hierarchy (3.1)
α
¯ = −α + ǫ,

ǫ = ±1,

10

A.H. Sakka
u
¯=u− 

(2α − ǫ)
.
n−1
P
1
1
j
n
2
2
κj H [ 2 (ǫux − u )]
− x + H [ 2 (ǫux − u )] +

(3.42)

j=1

These auto-B¨acklund transformations and the discrete symmetry u
¯ = −u, α
¯ = −α can be used
to derive the auto-B¨
acklund transformations given in [6, 16].
The auto-B¨
acklund transformations (3.42) can be used to obtain infinite hierarchies of solutions of the PII hierarchy (3.1). For example, starting by the solution u = 0, α = 0 of (3.1), the
auto-B¨
acklund transformations (3.42) yields the new solution u
¯ = − xǫ , α
¯ = ǫ. Now applying the
1
¯ = −1, we obtain the
¯ = x, α
auto-B¨
acklund transformations (3.42) with ǫ = 1 to the solution u
−2(x3 −2κ1 )

¯ = 2.
new solution u
¯=
3
x(x +4κ1 )

References
[1] Airault H., Rational solutions of Painlev´e equations, Stud. Appl. Math. 61 (1979), 31–53.
[2] Kudryashov N.A., The first and second Painlev´e equations of higher order and some relations between them,
Phys. Lett. A 224 (1997), 353–360.
[3] Hone A.N.W., Non-autonomous H´enon–Heiles systems, Phys. D 118 (1998), 1–16, solv-int/9703005.
[4] Kudryashov N.A., Soukharev M.B., Uniformization and transcendence of solutions for the first and second
Painlev´e hierarchies, Phys. Lett. A 237 (1998), 206–216.
[5] Kudryashov N.A., Fourth-order analogies of the Painlev´e equations, J. Phys. A: Math. Gen. 35 (2002),
4617–4632.
[6] Kudryashov N.A., Amalgamations of the Painlev´e equations, J. Math. Phys. 44 (2003), 6160–6178.
[7] Mu˘
gan U., Jrad F., Painlev´e test and the first Painlev´e hierarchy, J. Phys. A: Math. Gen. 32 (1999),
7933–7952.
[8] Mu˘
gan U., Jrad F., Painlev´e test and higher order differntial equations, J. Nonlinear Math. Phys. 9 (2002),
282–310, nlin.SI/0301043.
[9] Gordoa P.R., Pickering A., Nonisospectral scattering problems: a key to integrable hierarchies, J. Math.
Phys. 40 (1999), 5749–5786.
[10] Gordoa P.R., Joshi N., Pickering A., On a generalized 2 + 1 dispersive water wave hierarchy, Publ. Res. Inst.
Math. Sci. 37 (2001), 327–347.
[11] Sakka A., Linear problems and hierarchies of Painlev´e equations, J. Phys. A: Math. Theor. 42 (2009),
025210, 19 pages.
[12] Fokas A.S., Ablowitz M.J., On a unified approach to transformations and elementary solutions of Painlev´e
equations, J. Math. Phys. 23 (1982), 2033–2042.
[13] Okamoto K., Studies on the Painlev´e equations. III. Second and fourth Painlev´e equations, PII and PIV ,
Math. Ann. 275 (1986), 221–255.
[14] Gordoa P. R., Joshi N., Pickering A., Mappings preserving locations of movable poles: a new extension of the
truncation method to ordinary differential equations, Nonlinearity 12 (1999), 955–968, solv-int/9904023.
[15] Gromak V., Laine I., Shimomura S., Painlev´e differential equations in the complex plane, de Gruyter Studies
in Mathematics, Vol. 28, Walter de Gruyter & Co., Berlin, 2002.
[16] Clarkson P.A., Joshi N., Pickering A., B¨
acklund transformations for the second Pianlev´e hierarchy: a modified truncation approach, Inverse Problems 15 (1999), 175–187, solv-int/9811014.
[17] Cosgrove C.M., Scoufis G., Painlev´e classification of a class of differential equations of the second order and
second degree, Stud. Appl. Math. 88 (1993), 25–87.
[18] Mu˘
gan U., Sakka A., Second-order second-degree Painlev´e equations related with Painlev´e I–VI equations
and Fuchsian-type transformations, J. Math. Phys. 40 (1999), 3569–3587.
[19] Sakka A., Elshamy S., B¨
acklund transformations for fourth-order Painlev´e-type equations, The Islamic
University Journal, Natural Science Series 14 (2006), 105–120.


acklund Transformations for First and Second Painlev´e Hierarchies

11

[20] Cosgrove C. M., Higher-order Painlev´e equations in the polynomial class. I. Bureau symbol P2, Stud. Appl.
Math. 104 (2000), 1–65.
[21] Cosgrove C.M., Higher-order Painlev´e equations in the polynomial class. II. Bureau symbol P1, Stud. Appl.
Math. 116 (2006), 321–413.
[22] Sakka A., B¨
acklund transformations for fifth-order Painlev´e equations, Z. Naturforsch. A 60 (2005), 681–
686.
[23] Sakka A., Second-order fourth-degree Painlev´e-type equations, J. Phys. A: Math. Gen. 34 (2001), 623–631.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52