Paper-2-Acta24.2010. 110KB Jun 04 2011 12:03:12 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 24/2010
pp. 15-22

ON CERTAIN CLASSES OF ANALYTIC FUNCTIONS DEFINED
BY MEANS OF A LINEAR OPERATOR

Ali Muhammad
Abstract. In this paper, we introduce certain classes of analytic functions in
the unit disk. The object of the present paper is to derive some interesting properties
of functions belonging to these classes.
2000 Mathematics Subject Classification: 30C45, 30C50.
Keywords.Analytic functions, convex and starlike functions of order alpha,
Quasi-convex functions, Functions with positive real part, integral operator.
1.IN T RODU T ION
Let A denote the class of functions of the form
f (z) = z +



X

an z n ,

(1.1)

n=2

which are analytic in the unit disc E = {z : z ∈ C, |z| < 1}.Let the functions fi bqe
defined for i = 1, 2,by

X
fi (z) = z +
an,i z n ,
(1.2)
n=2

The modified Hadamard product(convolution) of f1 and f2 is defined here by
(f1 ∗ f2 )(z) = z +



X

an,1 an,2 z n .

n=2

Let Pk (ρ) be the class of functions h(z) analytic in E satisfying the properties
h(0) = 1 and

Z2π
Reh(z) − ρ


(1.3)
1 − ρ dθ ≤ kπ,
0

15


A. Muhammad - On certain classes of analytic functions defined ...

where z = reiθ , k ≥ 2 and 0 ≤ ρ < 1. This class has been introduced in
[10]. We note, for ρ = 0, we obtain the class Pk defined and studied in [11], and
for ρ = 0, k = 2, we have the well-known class P of functions with positive real
part. The case k = 2 gives the class P (ρ) of functions with positive real part greater
than ρ. From (1.3) we can easily deduce that h ∈ Pk (ρ) if and only if, there exists
h1 , h2 ∈ P (ρ) such that for z ∈ E,




k 1
k 1
+

h(z) =
h1 (z) −
h2 (z).
(1.4)

4 2
4 2
where hi (z) ∈ P (ρ), i = 1, 2 and z ∈ E.
We have the following classes


zf ′ (z)
Rk (α) = f : f ∈ A and
∈ Pk (α), z ∈ E, 0 ≤ α < 1 ,
f (z)
we note that R2 (α) = S ∗ (α) is the class of starlike functions of order α.


(zf ′ (z))′
∈ Pk (α), z ∈ E, 0 ≤ α < 1 .
Vk (α) = f : f ∈ A and
f ′ (z)
Note that V2 (α) = C(α) is the class of convex functions of order α.





zf ′ (z)
Tk (ρ, α) =
f : f ∈ A, g ∈ R2 (α) and
∈ Pk (ρ), z ∈ E, 0 ≤ α, ρ < 1 .
f (z)


(zf ′ (z))′

Tk (ρ, α) =
f : f ∈ A, g ∈ V2 (α) and
∈ Pk (ρ), z ∈ E, 0 ≤ α, ρ < 1 .
f (z)
In particular, the class T2∗ (ρ, α) = C(ρ, α) was introduced by Noor [8] and for
T2∗ (0, 0) = C ∗ is the class of quasi-convex univalent functions which was first introduced and studied in [7].
It is obvious from the above definition that
f (z) ∈ Vk (α) ⇐⇒ zf ′ (z) ∈ Rk (α),
f (z) ∈


Tk∗ (ρ, α)



⇐⇒ zf (z) ∈ Tk (ρ, α).

Let f ∈ A.Denote Dλ : A −→ A the operator defined by
Dλ f (z) =

z
∗ f (z),
(1 − z)λ+1
16

(λ > −1).

(1.5)
(1.6)


A. Muhammad - On certain classes of analytic functions defined ...
It is obvious that D0 f (z) = f (z), D1 f (z) = zf ′ (z) and
Dk f (z) =

z(z k−1 f (z))(k)
,
k!

k ∈ N0 = {0, 1, 2, ...}.

The operator Dk f (z) is called the kth order Ruscheweyh derivative of f.Recently
Noor [6] and Noor [9] defined and studied an integral operator In : A −→ A analogous to Dk f as follows.
(−1)
z
Let fn (z) = (1−z)
be defined such that
n+1 , n ∈ N0 and let fn
fn (z) ∗ fn(−1) (z) =

z

.
(1 − z)2

Then
In =

fn(−1) (z)



z
∗f =
(1 − z)n+1

(−1)

∗ f.

We note that I0 f (z) = zf ′ (z) and I1 f (z) = f (z).The operator In is called the Noor
integral operator of nth order, see [2, 5].

For any complex numbers a, b, c other than 0, −1, −2... the hypergeometric series
is defined by
2 F1 (a, b; c; z)

=1+

a(a + 1)b(b + 1) 2
ab
z+
z + ....
c1!
c(c + 1)2!

(1.7)

We note that the series (1.7) converges absolutely for all z so that it represents an
analytic function in E.Also an incomplete beta function φ(a, c, z) is related to the
Gauss hypergeometric function 2 F1 (a, b; c; z) as
2 F1 (1, b; c; z)


= φ(a, c, z),

z
and we note that φ(2, 1, z) = (1−z)
a , where φ(2, 1, z) is the Koebe function. Using
φ(a, c, z) a convolution operator, see [1] was defined by Carlson and Shaffer.We
introduce a function (z 2 F1 (a, b; c; z))(−1) given by

(z 2 F1 (a, b; c; z)) ∗ (z2 F1 (a, b; c; z))(−1) =

z
,
(1 − z)λ+1

(λ > −1),

and obtain the following linear operator:
Iλ (a, b, c)f (z) = (z 2 F1 (a, b; c; z))(−1) ∗ f (z),

(1.8)


where a, b, c are real numbers other 0, −1, −2, −3, ..., λ > −1, z ∈ E and f ∈ A. The
operator Iλ is known as the generalized Noor integral operator. In particular, with
17

A. Muhammad - On certain classes of analytic functions defined ...

b = 1, the operator was studied in [3] for p-valent functions.By some computation
we note that

X
(c)k (λ + 1)k
ak+1 z k=1 ,
(1.9)
Iλ (a, b, c)f (z) = z +
(a)k (b)k (1)k
k=1

where (x)k is the Pochhammer symbol defined by (x)k = x(x + 1)...(x + k − 1),
k = 1, 2, ... and (x)k = 1, k = 0.
From (1.8), we note that
Iλ (a, λ + 1, a)f (z) = f (z),

Iλ (a, 1, a)f (z) = zf ′ (z).

Also it can easily be verified that
z(Iλ (a, b, c)f (z))′ = (λ + 1)Iλ+1 (a, b, c)f (z) − λIλ (a, b, c)f (z).


z(Iλ (a + 1, b, c)f (z))

(1.10)

= aIλ (a, b, c)f (z) − (a − 1)Iλ (a + 1, b, c)f (z). (1.11)

We define the following subclasses.
Definition 1.1. Let f ∈ A.Then f ∈ Rk (a, b, c, λ, α) if and only if Iλ (a, b, c)f (z) ∈
Rk (α), for z ∈ E.
Definition 1.2. Let f ∈ A.Then f ∈ Vk (a, b, c, λ, α) if and only if Iλ (a, b, c)f (z) ∈
Vk (α), for z ∈ E.
Definition 1.4. Let f ∈ A.Then f ∈ Tk (a, b, c, λ, ρ, α) if and only if Iλ (a, b, c)f (z)
∈ Tk (ρ, α), for z ∈ E.
Definition 1.5. Let f ∈ A.Then f ∈ Tk∗ (a, b, c, λ, ρ, α) if and only if Iλ (a, b, c)f (z)
∈ Tk∗ (ρ, α), for z ∈ E.
We shall .need the following result.
Lemma 1.1 [4].Let u = u1 + iu2 , v = v1 + iv2 and Ψ (u, v) be a complex valued
function satisfying the conditions: (i) . Ψ (u, v) is continuous in a domain D ⊂ C2 ,
(ii) . (1, 0) ∈ D and Re
 Ψ (1, 0) > 0, (iii) . Re Ψ (iu2 , v1 ) ≤ 0, whenever (iu2 , v1 ) ∈ D
and v1 ≤ − 21 1 + u22 .
If h (z) = 1 + c1 z + · · · is a function analytic in E such that (h(z), zh′ (z)) ∈ D and
Re {Ψ (h(z), zh′ (z))} > 0 for z ∈ E, then Re h(z) > 0 in E.
2.Main results
Theorem 2.1. Let f ∈ A. Then
Rk (a, b, c, λ + 1, α) ⊂ Rk (a, b, c, λ, α),
where α is given by
α=

2
p
.
(2λ + 1) + (2λ + 1)2 + 8
18

(2.1)

A. Muhammad - On certain classes of analytic functions defined ...

Proof. Let f ∈ Rk (a, b, c, λ + 1, α) and let
z(Iλ (a, b, c)f (z))′
k 1
k 1
= p(z) = ( + )p1 (z) − ( − )p2 (z).
Iλ (a, b, c)f (z)
4 2
4 2

(2.2)

Then p(z) is analytic in E with p(0) = 1. Some computation and use of (1.10) yields


z(Iλ+1 (a, b, c)f (z))′
zp′ (z)
= p(z) +
∈ Pk , z ∈ E.
Iλ+1 (a, b, c)f (z)
p(z) + λ
Let
Φλ (z) =


X
λ+j
j=1

λ+1

zj =

z
z
λ
1
+
.
λ + 1 (1 − z) λ + 1 (1 − z)2

Then
p(z) ∗ Φλ (z) = p(z) +
k
= ( +
4
k
= ( +
4

zp′ (z)
.
p(z) + λ

1
k 1
) {p1 (z) ∗ Φλ (z)} − ( − ) {p2 (z) ∗ Φλ (z)}
2 

4 2

1
zp′1 (z)
zp′2 (z)
k 1
) p1 (z) +
− ( − ) p2 (z) +
,
2
p1 (z) + λ
4 2
p2 (z) + λ

and implies that


zp′i (z)
∈ P, i = 1, 2, z ∈ E.
pi (z) +
pi (z) + λ
We want to show that pi (z) ∈ P (α), where α is given by (2.1) and this will show
that p ∈ Pk for z ∈ E. Let
pi (z) = (1 − α)hi (z) + α, i = 1, 2.
Then



(1 − α)zh′i (z)
∈ P.
(1 − α)hi (z) + α +
hi (z) + α + λ

We form the functional Ψ(u, v) by choosing u = hi (z), v = zh′i (z).


(1 − α)v
Ψ(u, v) = (1 − α)u + α +
.
(1 − α)u + α + λ
The first two conditions of Lemma 1.1 are clearly satisfied.We verify the condition
(iii) as follows.


(1 − α)(α + λ)v1
2
.
Re{Ψ(iu2 , v1 )} = α +
(α + λ)2 + (1 − α)2 u22
19

A. Muhammad - On certain classes of analytic functions defined ...
(1+u22 )
,
2

we obtain


1 (1 − α)(α + λ)(1 + u22 )
.
Re{Ψ(iu22 , v1 )} ≤ α −
2 (α + λ)2 + (1 − α)2 u22
2α(α + λ)2 + 2α(1 − α)2 u22 − (1 − α)(α + λ) − (1 − α)(α + λ)u22
=
2{(α + λ)2 + (1 − α)2 u22 }
A + Bu22
=
,
2C
By putting v ≤ −

where
A = 2α(α + λ)2 − (1 − α)(α + λ),
B = 2α(1 − α)2 − (1 − α)(α + λ),
C = (α + λ)2 + (1 − α)2 u22 > 0.
We notic that Re{Ψ(iu22 , v1 )} ≤ 0 if and only if A ≤ 0, B ≤ 0. From A ≤ 0, we
obtain α as given by (2.1) and B ≤ 0 gives us 0 ≤ ρ < 1. Therefore applying Lemma
1.1, hi ∈ P, i = 1, 2 and consequently h ∈ Pk (ρ) for z ∈ E.This completes the proof.
Theorem 2.2. For λ > −1,
Vk (a, b, c, λ + 1, 0) ⊂ Vk (a, b, c, λ, α),
where α is given by (2.1).
Proof. Let f ∈ Vk (a, b, c, λ + 1, 0).Then Iλ+1 (a, b, c)f (z) ∈ Vk (0) = Vk and
by (1.5), z(Iλ+1 (a, b, c)f (z))′ ∈ Rk (0) = Rk .This implies that Iλ+1 (a, b, c)(zf ′ (z) ∈
Rk ⇒ zf ′ (z) ∈ Rk (a, b, c, λ+1, 0) ⊂ Rk (a, b, c, λ, α). Consequently f ∈ Vk (a, b, c, λ, α),
where α is given by (2.1).
Theorem 2.3. Let λ > −1. Then
Tk (a, b, c, λ + 1, ρ, 0) ⊂ Tk (a, b, c, λ, γ, α),
where α is given by (2.1) and γ ≤ ρ is defined in the proof.
Proof. Let f ∈ Tk (a, b, c, λ + 1, ρ, 0).Then there exist g ∈ R2 (a, b, c, λ + 1, ρ, 0)
such that
z(Iλ+1 (a, b, c)f (z))′
∈ Pk (ρ), for z ∈ E, 0 ≤ ρ < 1.
Iλ+1 (a, b, c)g(z)
Let
z(Iλ (a, b, c)f (z))′
Iλ (a, b, c)g(z)

= (1 − γ)p(z) + γ
k 1
k 1
= ( + ){(1 − γ)p1 (z) + γ} − ( − ){(1 − γ)p2 (z) + γ},
4 2
4 2
20

A. Muhammad - On certain classes of analytic functions defined ...

where p(0) = 1, and p(z) is analytic in E.Making use of (1.10) and Theorem 2.1
with k = 2, we have


z(Iλ+1 (a, b, c)f (z))′
−ρ
(2.3)
Iλ+1 (a, b, c)g(z)


(1 − γ)zp′ (z)
=
(1 − γ)p(z) + (γ − ρ) +
∈ Pk ,
(1 − α)q(z) + α + λ
and q ∈ P, where
(1 − α)q(z) + α =

z(Iλ (a, b, c)g(z))′
,
Iλ (a, b, c)g(z)

z ∈ E.

Using (1.4) we form the functional ϕ(u, v) by taking u = u1 + iu2 = pi (z), v =
v1 + iv2 = zp′i (z) in (2.3) as
ϕ(u, v) = (1 − γ)u + (γ − ρ) +

(1 − γ)v
.
(1 − α)q(z) + α + λ

(2.4)

It can be easily seen that the function ϕ(u, v) defined by (2.4) satisfies the conditions
(i) and (ii) of Lemma 1.1.To verify the condition (iii), we proceed with q(z) =
q1 + iq2 , as follows;


(1 − γ)v1
Re {ϕ(iu2 , v1 )} = (γ − ρ) + Re
(1 − α)(q1 + iq2 ) + α + λ
(1 − γ)(1 − α)v1 q1 + (1 − γ)(α + λ)v1
= (γ − ρ) +
[(1 − α)q1 + α + λ]2 + (1 − α)2 q22
1 (1 − γ)(1 − α)(1 + u22 )q1 + (1 − γ)(α + λ)(1 + u22 )
= (γ − ρ) −
≤ 0, γ ≤ ρ < 1.
2
[(1 − α)q1 + α + λ]2 + (1 − α)2 q22
Therefore applying Lemma 1.1, pi ∈ P, i = 1, 2 and consequently p ∈ Pk and thus
f ∈ Tk (a, b, c, λ, γ, α).
Using the same technique and relation (1.6) with Theorem 2.3, we have the
following result.
Theorem 2.4. For λ > −1,
Tk∗ (a, b, c, λ + 1, ρ, α) ⊂ Tk∗ (a, b, c, λ, ρ, α),
where γ and α are given in Theorem 2.3.
We note that for different choices of parameters a, b, c, k and λ we obtain several
intersting special cases for the result proved in this paper.
21

A. Muhammad - On certain classes of analytic functions defined ...

Acknowledgement: The author would like to express gratitude to Director
Finance Sarwar Khan for his support and providing excellent research facilities.

REF REN CES
[1] B. C. Carlson and B. D. Shaffer, Starlike and prestarlike hypergeometric
functions, SIAM J. Math. Anal. 15 (1984), 737-745.
[2] N. E. Cho, The Noor integral operator and strongly close-to-convex functions,
J. Math. Anal. Appl., 238 (2003), 202-212.
[3] N. E. Cho, O.H. Kown and H. M. Srivastava, Inclusion relationships and
argument properties for certain subclasses of multivalent functions associated with
a family of linear operators J. Math. Anal. Appl., 292 (2004), 470-483.
[4] S. S. Miller, Differential inequalities and Caratheodary functions, Bull. Amer.
Math. Soc., 81 (1975), 79-81.
[5] J. Liu, The Noor integral operator and strongly starlike functions, J. Math.
Anal. Appl. 261 (2001), 441-447.
[6] K. I. Noor, On new classes of integral operator, J. Natur. Geo, 16 (1999),
71-81.
[7] K. I. Noor, On close-to-convex and related functions, PhD. Thesis, University
of Wales, U. K., 1972.
[8] K. I. Noor, On quasi-convex functions and related topics, Int. J. Math. Math
Sci 10 (1987), 241-258.
[9] K. I. Noor and M. A. Noor, On integral operators, J, Math. Anal. App. 238
(1999), 341-352.
[10] K.Padmanabhan and R. Parvatham, Properties of a class of functions with
bounded boundary rotation, Anal. Polan. Math., 31 (1975), 311-323.
[11] B. Pinchuk, Functions with bounded boundary rotation, Isr. J. Math., 10
(1971), 7-16.
Ali Muhammad, Ph.D.
Department of Basic Sciences
University of Engineering and Technology .
Peshawar, Pakistan.
mail: E-mail: [email protected]

22

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52