Paper-01-22-2010. 112KB Jun 04 2011 12:03:08 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 22/2010
pp. 7-15

CLASSES OF MEROMORPHIC FUNCTIONS WITH RESPECT TO
N-SYMMETRIC POINTS

Maslina Darus, Rabha W. Ibrahim, Nikola Tuneski and Acu Mugur
Abstract. New subclasses of meromorphic functions with respect to N-symmetric
points are defined and studied. Some properties of these classes are discussed. Moreover, subordination for meromorphic functions with respect to N-symmetric points
is established.
2000 Mathematics Subject Classification: 30C45.

1. Introduction
Let H be the class of functions analytic in U := {z ∈ C : |z| < 1} and H[a, n] be
the subclass of H consisting of functions of the form f (z) = a+an z n +an+1 z n+1 +... .
Let A be the subclass of H consisting of functions of the form f (z) = z + a2 z 2 + ...
and S = {f ∈ A : f is univalent ∈ U }. Let Σ be the class of meromorphic function
in U := {z ∈ C : 0 < |z| < 1}, which takes the form



f (z) =

1 X
+
an z n , (z ∈ U ).
z
n=0

Also let Θ be the class of the analytic functions in U := {z ∈ C∞ : |z| > 1}, which
takes the form

X
an
g(z) = z + a0 +
, (z ∈ U )
zn
n=1


such that g(∞) = ∞ and g ′ (∞) = 1.

7

M. Darus, R. Ibrahim, N. Tuneski, M. Acu - Classes of meromorphic functions ...


Definition 1.1. A function f (z) ∈ Σ is belongs to the class S if and only if
ℜ{−

zf ′ (z)
} > 0, (z ∈ U ).
f (z)

And a function g ∈ Θ is belongs to the class S ∗ if and only if
ℜ{

zg ′ (z)
} > 0, (z ∈ U ).
g(z)


Note that some classes in Θ defined and established in [1,4].
Sakaguchi (see [6]) introduced the class of functions that are starlike with respect
to N -symmetric points, N = 1, 2, 3, . . . , as follows


zf ′ (z)
SSP N = f ∈ A : ℜ{
} > 0, z ∈ U ,
fN (z)
where
fN (z) = z +


X

am·N +1 z m·N +1 .

m=2


In order to give geometric characterization of the class SSP N for N ≥ 2 we define
ε := exp(2πi/N ) and we consider the weighted mean of f ∈ A,
1
Mf,N (z) = PN −1
j=1

ε−j

·

N
−1
X

ε−j · f (εj z).

j=1

It is easy to verify that
N −1

f (z) − Mf,N (z)
1 X −j
=
·
ε · f (εj z) = fN (z)
N
N
j=0

and further
fN (εj z) = εj fN (z),

fN
(εj z)

=


fN
(z)


N −1
1 X ′ j
f (ε z),
=
N
j=0

′′
′′ j
(z) =
(ε z) = fN
εj fN

8

1
N

N

−1
X
j=0

εj f ′′ (εj z).

M. Darus, R. Ibrahim, N. Tuneski, M. Acu - Classes of meromorphic functions ...

Now, the class SSP N is a collection of functions f ∈ A such that for any r close to
1, r < 1, the angular velocity of f (z) about the point Mf,N (z0 ) is positive at z = z0
as z traverses the circle |z| = r in the positive direction. The authors received
results concerning inclusion properties, some sufficient conditions for starlikeness
with respect to N -symmetric points and sharp upper bound of the Fekete-Szeg¨o
functional |a3 − µa22 | over the classes SSP N and KN [7] where the class KN of
convex functions with respect to N -symmetric points is defined by
ℜ{

[zf ′ (z)]′
′ (z) } > 0,
fN


z ∈ U.

For N = 1 we receive the well-known class of starlike functions, S ∗ ≡ SSP 1 , such
that f (U ) is a starlike region with respect to the origin. And for N = 2 we receive
2f2 (z) = f (z) − f (−z), Mf,2 (z) = f (−z) and


zf ′ (z)
} > 0, z ∈ U
SSP 2 = f ∈ A : ℜ{
f (z) − f (−z)
is the class of starlike functions with respect to symmetric points.
Now we introduce classes of functions with N-symmetric points belong to the
classes Σ and Θ as follows


S N (α) := {f ∈ Σ : ℜ{−

zf ′ (z)

} > α, z ∈ U , α < 1}
fN (z)

where N = 1, 2, 3, .. and


1 X
an.N +1 z n.N +1 , (z ∈ U ).
fN (z) = +
z

(1)

n=0

And the class
S ∗N (α) := {g ∈ Θ : ℜ{

zg ′ (z)
} > α, z ∈ U , 0 ≤ α < 1}

gN (z)

where N = 1, 2, 3, .. and
gN (z) = z + a0 +


X
an.N +1

n=1

z n.N +1

, (z ∈ U ).

(2)

Note that when N = 1, the class S ∗N (α) reduces to the class which investigated by
Mocanu et [4] and Acu [1].
9


M. Darus, R. Ibrahim, N. Tuneski, M. Acu - Classes of meromorphic functions ...

Moreover, we define the following subclasses
C N (α) := {f ∈ Σ : ℜ{−
And
C N (α) := {g ∈ Θ : ℜ{

(zf ′ (z))′
′ (z) } > α, z ∈ U , α < 1}.
fN

(zg ′ (z))′
′ (z) } > α, z ∈ U , 0 ≤ α < 1}.
gN

2. Some properties


In this section, we study some properties of the classes S N , S ∗N , C N , and C N in
the following results.
Theorem 2.1. Let f ∈ Σ. Then




f (z) ∈ S N (α) implies fN (z) ∈ S (α),




where S (α) := S 1 (α) is the class of starlike functions in U .


Proof. Suppose that f (z) ∈ S N (α), then from the definition we have
ℜ{−

zf ′ (z)
} > α, (z ∈ U ).
fN (z)

Substituting z by zεj , where εj = 1, j = 0, 1, ..., N − 1 yields
zf ′ (z)
} > α, (z ∈ U ) ⇒
fN (z)
zεj f ′ (zεj )
ℜ{−
} > α, (z ∈ U ) ⇒
fN (zεj )
zεj f ′ (zεj )
ℜ{−
} > α, (z ∈ U ) ⇒
fN (z)
P −1 j ′ j
z N
j=0 ε f (zε )
ℜ{−
} > α, (z ∈ U ) ⇒
fN (z)
zf ′ (z)
} > α, (z ∈ U ).
ℜ{− N
fN (z)
ℜ{−



Hence fN (z) ∈ S (α).
By using the same method of Theorem 2.1, we have the following result.

10

M. Darus, R. Ibrahim, N. Tuneski, M. Acu - Classes of meromorphic functions ...

Theorem 2.2. Let g ∈ Θ. Then
g(z) ∈ S ∗N (α) implies gN (z) ∈ S ∗ (α),
where S ∗ (α) := S ∗1 (α) is the class of starlike functions in U .
Theorem 2.3. Let f ∈ Σ. Then
f (z) ∈ C N (α) implies fN (z) ∈ C(α),
where C(α) := C 1 (α) is the class of convex functions in U .
Proof. Suppose that f (z) ∈ C N (α), then from the definition we have
ℜ{−

(zf ′ (z))′
′ (z) } > α, (z ∈ U ).
fN

Substituting z by zεj , where εj = 1, j = 0, 1, ..., N − 1 yields
′
′′
fN (zεj ) + zεj fN (zεj )
} > α, (z ∈ U ) ⇒
ℜ{−
(fN (zεj ))′
′
′′
fN (zεj ) + zεj fN (zεj )
ℜ{−
} > α, (z ∈ U ) ⇒
(fN (z))′


PN −1
PN −1 j
j ′′
j ′
j=0 fN (zε ) + z
j=0 ε fN (zε )
ℜ{−
} > α, (z ∈ U ) ⇒
(fN (zεj ))′
z(fN (z))′′ + (fN (z))′
ℜ{−
} > α, (z ∈ U ) ⇒
(fN (z))′
(zf ′ (z))′
} > α, (z ∈ U )
ℜ{− ′N
fN (z)
Hence fN (z) ∈ C(α).
By using the same method of Theorems 2.3, we have the following result.
Theorem 2.4. Let g ∈ Θ. Then
g(z) ∈ C N (α) implies gN (z) ∈ C(α).
where C(α) := C 1 (α) is the class of convex functions in U .
Theorem 2.5. Let f ∈ Σ. Then


f (z) ∈ C N (α) ⇔ zf ′ (z) ∈ S N (α).
11

M. Darus, R. Ibrahim, N. Tuneski, M. Acu - Classes of meromorphic functions ...

′ (z) and
Proof. Let h(z) = zf ′ (z). Then hN (z) = zfN

f ∈ C N (α) ⇔ ℜ{−

zh′ (z)
[zf ′ (z)]′

} > α ⇔ zf ′ (z) ∈ S N (α).
}
>
α

ℜ{−
′ (z)
fN
hN (z)

In the same manner, we can receive the following result
Theorem 2.6. Let g ∈ Θ. Then
g(z) ∈ C N (α) ⇔ zg ′ (z) ∈ S ∗N (α).

3. Subordination results
Recall that the function F is subordinate to G, written F ≺ G, if G is univalent,
F (0) = G(0) and F (U ) ⊂ G(U ). In general, given two functions F (z) and G(z),
which are analytic in U, the function F (z) is said to be subordination to G(z)
in U if there exists a function h(z), analytic in U with h(0) = 0 and |h(z)| <
1 f or all z ∈ U such that F (z) = G(h(z)) f or all z ∈ U (see[2,3]).
We need to the following result in sequel.
Lemma 3.1. [2] Let q(z) be univalent in the unit disk U and θ and φ be
analytic in a domain D containing q(U ) with φ(w) 6= 0 when w ∈ q(U ). Set
Q(z) := zq ′ (z)φ(q(z)), h(z) := θ(q(z)) + Q(z). Suppose that
1. Q(z) is starlike univalent in U , and
′ (z)
2. ℜ zh
Q(z) > 0 for z ∈ U.
If p(z) is analytic in U and
θ(p(z)) + zp′ (z)φ(p(z)) ≺ θ(q(z)) + zq ′ (z)φ(q(z))
then p(z) ≺ q(z) and q(z) is the best dominant.
Theorem 3.1. Let q(z) be univalent and q(z) 6= 0 in U and
′ (z)
is starlike univalent in U, and
(1) zqq(z)
(2) ℜ{1 +
If f ∈ Σ and

zq ′′ (z)
q ′ (z)

−[(1 − γ)



zq ′ (z)
q(z)



q(z)
γ }

> 0 for z ∈ U, γ 6= 0.

zf ′′ (z) 
zq ′ (z)
zf ′ (z)
+γ 1+ ′
,
] ≺ q(z) − γ
fN (z)
fN (z)
q(z)

then


zf ′ (z)
≺ q(z)
fN (z)
12

(3)

M. Darus, R. Ibrahim, N. Tuneski, M. Acu - Classes of meromorphic functions ...

and q(z) is the best dominant.
Proof. Define the function p(z) by
p(z) := −

zf ′ (z)
.
fN (z)

A computation gives
p(z) − γ

zf ′ (z)
zf ′′ (z) 
zp′ (z)
]
= −[(1 − γ)
+γ 1+ ′
p(z)
fN (z)
fN (z)

where the functions θ and φ defined by
γ
θ(ω) := ω and φ(ω) := − .
ω
It can be easily observed that θ(ω) is analytic in C and φ(ω) is analytic in C\{0}
and that φ(ω) 6= 0 when ω ∈ C\{0}. Also, by letting
Q(z) = zq ′ (z)φ(q(z)) = −γz

q ′ (z)
q(z)

and
h(z) = θ(q(z)) + Q(z) = q(z) − γz

q ′ (z)
,
q(z)

we find that Q(z) is starlike univalent in U and that
ℜ{

zh′ (z)
zq ′′ (z) zq ′ (z) q(z)
} = ℜ{1 + ′


} > 0.
Q(z)
q (z)
q(z)
γ

Then the relation (5) follows by an application of Lemma 3.1.
The next result can be found in [5].
Corollary 3.1. Let the assumptions of Theorem 3.1 hold. Then


zf ′ (z)
≺ q(z)
f (z)

(4)

and q(z) is the best dominant.
Proof. By letting N = 1 in the above theorem the result follows immediately.
In Theorem 3.1, let
q(z) :=

1 + (1 − 2α)z
,
1−z
13

M. Darus, R. Ibrahim, N. Tuneski, M. Acu - Classes of meromorphic functions ...

we have the following result
Corollary 3.2. Let α < 0, γ 6= 0. If f ∈ Σ and
−[(1 − γ)

zf ′′ (z) 
1 + 2[1 − γ + (α − 1)γ]z + (1 − 2α)2 z 2
zf ′ (z)
+γ 1+ ′
,
]≺
fN (z)
fN (z)
1 − 2αz − (1 − 2α)z 2

then
−ℜ{

zf ′ (z)
} > α.
fN (z)

(5)

Note that when N = 1, Corollary 3.2. reduces to result in [5, Corollary 3.1].
Acknowledgement: The work of the first two authors was supported by eScienceFund:
04-01-02-SF0425, MOSTI, Malaysia. The work of the third author was supported by The
Ministry of Education and Science of the Republic of Macedonia (Research Project No.171383/1). Also, this paper is part of the activities contained in the Romanian-Malaysian
Mathematical Research Center.

References
[1] Acu M., Some subclasses of meromorphic functions, Filomat 21:2(2007), 1-9.
[2] Miller S.S., Mocanu P. T., Differential Subordinations. Theory and Applications, Marcel Dekker, New York-Basel, 2000.
[3] Miller S.S., Mocanu P.T., Subordinants of differential superordinations, Complex Variables, 48(10)(2003), 815-826.
[4] Mocanu P. T., Bulboaca T., Sˇ
alˇagean G.S., Teoria geometrica a functiilor
univalente, Casa Cartii de Stiinta(Cluj), 1999.
[5] Ravichandran V., Kumar S., Darus M., On a subordination theorem for a
class of meromorphic functions, J. Ineq. Pure and Appli. Math., 5(8)(2004),1-4.
[6] Sakaguchi, K., On a certain univalent mapping, J. Math. Soc. Japan 11
(1959), 72-75.
[7] Tuneski N., Darus M., Ibrahim R.W., Some results for univalent functions
defined with respect to N -symmetric points, submited.
Maslina Darus, Rabha W. Ibrahim
School of Mathematical Sciences, Faculty of science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600, Selangor Darul Ehsan, Malaysia
email: [email protected] , [email protected]
Nikola Tuneski
Faculty of Mechanical Engineering

14

M. Darus, R. Ibrahim, N. Tuneski, M. Acu - Classes of meromorphic functions ...

Karpoˇs II b.b., 1000 Skopje, Republic of Macedonia
email: [email protected]
Acu Mugur Alexandru
Department of Mathematics
University ”Lucian Blaga” of Sibiu
Str. Dr. I. Rat.iu, No. 5-7, 550012 - Sibiu, Romania
email: acu [email protected]

15

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52