Paper-22-20-2009. 98KB Jun 04 2011 12:03:12 AM

ACTA UNIVERSITATIS APULENSIS

No 20/2009

ON THE FIBONACCI Q-MATRICES OF THE ORDER m

Serpil Halıcı, Tuna Batu
Abstract. In this paper, the Fibonacci Q-matrices of the order m and their
properties are considered. In addition to this, we introduce the Fibonacci Q-matrices
of the order a negative real number m and the pure imaginary m. Further, we
examine some properties of these matrices.
2000 Mathematics Subject Classification: 11B37, 11B39,11B50.
1. Introduction
In the last decades the theory of Fibonacci numbers was complemented by the
theory of the so-called Fibonacci Q-matrix (see [1], [2], [5]). This 2×2 square matrix
is defined in [5] as follows.
#
"
1 1
.
(1)

Q=
1 0
It is well known that, (see [7]), the nth power of the Q-matrix is
n

Q =

"

Fn+1 Fn
Fn Fn−1

#

(2)

,

where n = 0, ±1, ±2, · · ·, and Fn is n th Fibonacci number. Qn matrix is expressed
by the formula

n

Q =

"

Fn + Fn−1 Fn−1 + Fn−2
Fn−1 + Fn−2 Fn−2 + Fn−3

#

=

"

Fn Fn−1
Fn−1 Fn−2

#


+

"

Fn−1 Fn−2
Fn−2 Fn−3

#

.

The Fibonacci Q-matrices of the order m are considered by Stakhov in [1] . These
matrices are defined by Stakhov as follows, for m ∈ R+
Gm =

"

m 1
1 0


211

#

.

(3)

S. Halıcı, T. Batu - On the Fibonacci Q-matrices of the order m

It is well known that the Fibonacci numbers of order m is defined by the following
recurrence relation for n ∈ Z,
Fm (n + 2) = mFm (n + 1) + Fm (n)

(4)

where Fm (0) = 0 and Fm (1) = 1. The entries of these matrices of order m can be
represented by Fibonacci numbers of order m as follows,
Gnm


=

"

Fm (n + 1)
Fm (n)
Fm (n)
Fm (n − 1)

#

(5)

,

where m ∈ R+ and n ∈ Z. If we consider the determinants of the Gnm matrices of the
order m, then we can see that
Det (Gnm )



F (n + 1)
Fm (n)

= m
Fm (n)
Fm (n − 1)




n
= (−1) .


(6)

It can be seen that the Cassini Formula for the Fibonacci numbers of the order
m is
Fm (n + 1) Fm (n − 1) − [Fm (n)]2 = (−1)n .
(7)

Theorem 1. For m ∈ R+ and n ∈ Z,

n−2
Gnm = mGn−1
m + Gm .

(8)

Proof. Since,
Gn−1
=
m

"

Fm (n)
Fm (n − 1)
Fm (n − 1) Fm (n − 2)

#


(9)

Gn−2
m

"

Fm (n − 1) Fm (n − 2)
Fm (n − 2) Fm (n − 3)

#

(10)

and
=

,


one can write
n−2
n−1
mGm
+ Gm
=



mFm (n) + Fm (n − 1)
mFm (n − 1) + Fm (n − 2)
mFm (n − 1) + Fm (n − 2) mFm (n − 2) + Fm (n − 3)
"
#

n−2
mGn−1
=
m + Gm


Fm (n + 1)
Fm (n)
Fm (n)
Fm (n − 1)

Thus, the proof is completed.

212

.



(11)

(12)

S. Halıcı, T. Batu - On the Fibonacci Q-matrices of the order m

2. The Fibonacci Q-Matrices of the Order m

For m ∈ R+ , the Fibonacci Q-matrices of order −m can be defined by
G−m =

"

−m 1
1 0

#

(13)

.

Since, the Fibonacci numbers of order −m can be defined by the following
recurrence relation , for m ∈ R+ , n ∈ Z
F−m (n + 2) = −mF−m (n + 1) + F−m (n)

(14)

where F−m (0) = 0, F−m (1) = 1.The following theorem sets a connection of the
G−m matrix with the generalized Fibonacci numbers of order −m.
Theorem 2.For m ∈ R+ and n ∈ Z,
Gn−m =

"

F−m (n + 1)
F−m (n)
F−m (n)
F−m (n − 1)

#

.

(15)

Proof. Since, F−m (0) = 0, F−m (1) = 1 and
F−m (2) = −m,
F−m (3) = m2 + 1,
F−m (4) = −m3 − 2m,
F−m (5) = m4 + 3m2 + 1, ...
we can write
#
"
# "
−m
1
F
(2)
F
(1)
−m
−m
G1−m =
,
=
F−m (1) F−m (0)
1 0
G2−m =



−m 1
1
0



G3−m



=

−m 1
1
0



=

−m3 − 2m
m2 + 1



 

m2 + 1 −m
F−m (3) F−m (2)
=
,
−m
1
F−m (2) F−m (1)

 
F−m (5) F−m (4)
m2 + 1
.
=
F−m (4) F−m (3)
−m

(16)
(17)
(18)

By the inductive method, we can easily verify that
Gn−m

=



F−m (n + 1)
F−m (n)
F−m (n)
F−m (n − 1)



.

(19)

Theorem 3. For a given integer n and a positive real m number we have that

213

S. Halıcı, T. Batu - On the Fibonacci Q-matrices of the order m
Det Gn−m = (−1)n .


(20)

Proof. Using general properties of the determinants the proof can be easily seen.
It is clear that the above equation is a generalized of the famous Cassini formula.
Theorem 4. For a given integer n and a positive real number m we have that
n−2
Gn−m = −mGn−1
−m + G−m .

(21)

Proof. From the recursive relation F−m (n + 2) = −mF−m (n + 1) + F−m (n) we
can write

 
F−m (n − 1) F−m (n − 2)
,
+
F−m (n − 2) F−m (n − 3)

(22)
−mF−m (n) + F−m (n − 1)
−mF−m (n − 1) + F−m (n − 2)
=
= Gn−m .
−mF−m (n − 1) + F−m (n − 2) −mF−m (n − 2) + F−m (n − 3)
(23)

n−1
n−2
+G−m
=
−mG−m

n−2
−mGn−1
−m +G−m



−mF−m (n)
−mF−m (n − 1)
−mF−m (n − 1) −mF−m (n − 2)

3. The Fibonacci Q-Matrices of the Order



−m


The Fibonacci Q-matrices with the order −m can be defined by the following
expression
" √
#
−m
1
,
(24)
G√−m =
1
0

where m is a positive number. The Fibonacci numbers with order −m is defined
by the following recurrence relation,

(25)
F√−m (n + 2) = −mF√−m (n + 1) + F√−m (n) ,
F√−m (0) = 0, F√−m (1) = 1 and m ∈ R+ , n ∈ Z.
Theorem 5. For a given integer n and a positive real m numberwe have that

n

G√−m =

"

F√−m (n + 1)
F√−m (n)
F√−m (n − 1)
F√−m (n)

214

#

.

(26)

S. Halıcı, T. Batu - On the Fibonacci Q-matrices of the order m

Proof. Since, F√−m (2) =

2 mi, · · · one can write
G1√

−m

=




mi , F√−m (3) = −m + 1 , F√−m (4) = −m mi +

" √

mi 1
1
0

#

=

"

F√−m (2) F√−m (1)
F√−m (1) F√−m (0)

#

(27)

and
G4√

−m

=



#
 " √


2
F −m (5) F√−m (4)
m√
− 3m +√1
−m mi + 2 mi
=
.
F√−m (4) F√−m (3)
−m mi + 2 mi
−m + 1

(28)

Thus, by the inductive method we obtain that
n

G√−m =

"

F√−m (n)
F√−m (n + 1)
F√−m (n − 1)
F√−m (n)

#

.

(29)

Taking into account the Cassini formula we can write




Det Gn√−m = (−1)n .
Thus, we can also write

h

(30)

i2

F√−m (n + 1) F√−m (n − 1) − F√−m (n)

= (−1)n .

(31)

This
equation can be called Cassini Formula of Fibonacci numbers of the order

−m.

Using the recursive relation F√−m (n + 2) = −mF√−m (n + 1) + F√−m (n) we
write the following theorem.
Theorem 6.
Gn√−m =





+ Gn−2
.
−mGn−1
−m
−m

(32)

Proof. The proof is immediately follows from the definition Gn√−m .

Aknowledgement. Research of the first author is supported by Sakarya University, Scientific Research Project Unit.

215

S. Halıcı, T. Batu - On the Fibonacci Q-matrices of the order m

References
[1] A. P. Stakhov, The golden matrices and a new kind of cryptography, Chaos,
Solitions and Fractals 32(2007), 1138-1146.
[2] A. Stakhov and B. Rozin, The golden shofar, Chaos, Solitions and Fractals,
26 (2005), 677-684.
[3] A. P. Stakhov, Fibonacci matrices, a generalization of the Cassini formula
and a new coding theory, Solitions and Fractals, 30 (2006), 56-66.
[4] http://www.goldenmuseum.com/0905 HyperFibLuck engl.html
[5] T. Koshy, Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience
publication, U.S.A, (2001).
[6] F. E. Hohn,Elementary Matrix Algebra, Macmillan Company, New York,
(1973).
[7] V. E. Hoggat, Fibonacci and Lucas numbers, Houghton-Mifflin, Palo Alto,
(1969).

Serpil Halici
Department of Mathematics
Faculty of Arts and Sciences
University of Sakarya
Turkey.
email: shalici@sakarya.edu.tr

216

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52