Paper-18-22-2010. 112KB Jun 04 2011 12:03:11 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 22/2010
pp. 207-213

INTEGRAL OPERATORS ON A CERTAIN CLASS OF UNIVALENT
FUNCTIONS

Virgil Pescar

Abstract. In
work is considered the class T2 of univalent functions defined
2this
z f ′ (z)

by the condition f 2 (z) − 1 < 1 for |z| < 1, where f (z) = z +a3 z 3 +... is analytic in
the open unit disk U = {z ∈ C : |z| < 1}. The integral operators Gγ , Jγ , Jγ1 ,γ2 ,...,γn ,
Dα,β , Lα,β , Kγ1 ,γ2 ,...,γn and Hγ1 ,γ2 ,...,γn ,β,δ , for the functions f ∈ T2 are considered.
In the present paper we obtain univalence conditions of these integral operators.
2000 Mathematics Subject Classification: 30C45.

Key words and phrases: Integral operator, univalence.
1. Introduction
Let A be the class of the functions f which are analitic in the open unit disk
U = {z ∈ C : |z| < 1} and f (0) = f ′ (0) − 1 = 0.
We denote by S the class of the functions f ∈ A which are univalent in U.
We consider the integral operators
Gγ (z) =

Zz 

f (u)
u

1
γ

(1.1)

du,


0



Jγ (z) = 

1
γ

Zz
0

1
γ

γ

u−1 (f (u)) du ,



 n1
P 1
Zz
n
n
1
X
Y
γ
1
j=1 j
−1
γj


Jγ1 ,γ2 ,...,γn (z) =
,
u
(fj (u)) du
γj

j=1

j=1

0

207

(1.2)

(1.3)

V. Pescar - Integral operators on a certain class of univalent functions



Dα,β (z) = β


Lα,β (z) = β


Zz

u

β−1



f (u)
u

1

β

1

α


0

Zz

u


n 
Y
fj (u) α
u

j=1

0

Kγ1 ,γ2 ,...,γn (z) =

(1.5)


du ,

1
Zz Y
n 
fj (u) γj
u

0 j=1

1

β

1

β−1

(1.4)


du ,

(1.6)

du,

for f ∈ A, α, β, γ complex numbers, α 6= 0, β 6= 0, γ 6= 0 and fj ∈ A, γj complex
numbers, γj 6= 0, j = 1, n.
In [1], [2], [4], [7], [8], [9], [10], [11] we have certain the univalence conditions of
these integral operators.
We define a general integral operator


Hγ1 ,γ2 ,...,γn ,β,δ (z) = βδ

Zz

1

uβδ−1



n 
Y
fj (u) γj

j=1

0

u



du

1
βδ

,


(1.7)

for fj ∈ A, β, δ, γj complex numbers, βδ 6= 0, γj 6= 0, j = 1, n, n ∈ N − {0}.
For β, δ, γj , n ∈ N − {0}, j = 1, n, in the particular cases, from (1.7) we obtain
the integral operators Gγ , Jγ , Jγ1 ,γ2 ,...,γn , Dα,β , Lα,β , Kγ1 ,γ2 ,...,γn .
2. Preliminary results
We need the following theorems.
Theorem 2.1. [6].Let α be a complex number, Reα > 0 and f ∈ A. If


1 − |z|2Reα zf ′′ (z)
f ′ (z) ≤ 1,
Reα

(2.1)

for all z ∈ U, then for any complex number β, Reβ ≥ Reα, the function



Fβ (z) = β

Zz

1

β

u

β−1 ′

0

208

f (u) du

(2.2)

V. Pescar - Integral operators on a certain class of univalent functions

is in the class S.
Theorem 2.2. (Schwarz [3]). Let f be the function regular in the disk UR =
{z ∈ C : |z| < R} with |f (z)| < M , M fixed. If f (z) has in z = 0 one zero with
multiply ≥ m, then
M
|z|m , (z ∈ UR ) ,
Rm
the equality (in the inequality (2.3) for z 6= 0) can hold only if
|f (z)| ≤

f (z) = eiθ

(2.3)

M m
z ,
Rm

where θ is constant.
Theorem 2.3. [5]. Assume that the function f ∈ A satisfies the condition

2 ′

z f (z)
< 1, (z ∈ U),

(2.4)

1

f 2 (z)

then the function f is univalent in U.

3. Main results
Theorem 3.1. Let γj , α complex numbers, γj 6= 0, j = 1, n, Reα > 0, Mj

P
akj z k , j = 1, n, n ∈ N − {0}.
positive real numbers and fj ∈ T2 , fj (z) = z +
k=3

If

|fj (z)| ≤ Mj , (j = 1, n; z ∈ U)

(3.1)

n
X
2Mj + 1
≤ Reα,
|γj |

(3.2)

and

j=1

then for any complex numbers β and δ, Reβδ ≥ Reα, the function


1

1
1

 Zz
 βδ
γ
γ
n
1
fn (u)
βδ−1 f1 (u)
Hγ1 ,γ2 ,...,γn ,β,δ (z) = βδ u
...
du


u
u
0

209

(3.3)

V. Pescar - Integral operators on a certain class of univalent functions

is in the class S.
Proof. We consider the function
h(z) =

Zz 

f1 (u)
u



1
γ1

...



fn (u)
u



1
γn

du.

(3.4)

0

The function h is regular in U.
We have



′′
n

zh (z) X
1 zfj′ (z)
=

− 1 , (z ∈ U).

h′ (z)
|γj | fj (z)

(3.5)

j=1

We obtain



2 ′
z fj (z) fj (z)
zfj (z)




fj (z) − 1 ≤ f 2 (z) z + 1 ≤
j


z 2 f ′ (z)
|f (z)| |f (z)|

j
j
j
+
+ 1, (j = 1, n; z ∈ U).
− 1
≤ 2
fj (z)
|z|
|z|
Since fj ∈ T2 and by Theorem 2.2, from (3.6) we get


zfj (z)




fj (z) − 1 ≤ 2Mj + 1 j = 1, n; z ∈ U .

(3.6)

(3.7)

From (3.5) and (3.7) we obtain



n
1 − |z|2Reα zh′′ (z) 1 − |z|2Reα X 2Mj + 1
, (z ∈ U)

h′ (z)
Reα
Reα
|γj |

(3.8)

j=1

and hence, by (3.2) we have



1 − |z|Reα zh′′ (z)
≤ 1,
Reα h′ (z)

for all z ∈ U.
So, by Theorem 2.1, the integral operator Hγ1 ,γ2 ,...,γn ,β,δ is in the class S.

210

(3.9)

V. Pescar - Integral operators on a certain class of univalent functions

Corollary 3.2. Let γj , α complex numbers, Reγj 6= 0, j = 1, n,

n
P

j=1

Re γ1j ≥

Reα > 0, Mj positive real numbers and fj ∈ T2 , fj (z) = z + a3j z 3 + ..., j = 1, n,
n ∈ N − {0}.
If
|fj (z)| ≤ Mj , (j = 1, n; z ∈ U)

(3.10)

n
X
2Mj + 1
≤ Reα,
|γj |

(3.11)

and

j=1

then the integral operator Jγ1 ,γ2 ,...,γn given by (1.3) is in the class S.
Proof. For βδ =

n
P

j=1

1
γj

from Theorem 3.1 we obtain Corollary 3.2.

Remark 3.3. From Corollary 3.2, for n = 1, γ1 = γ, f1 = f , we obtain the
integral operator Jγ defined by (1.2) is in the class S.
Corollary 3.4. Let γj , α complex numbers, γj 6= 0, j = 1, n, 0 < Reα ≤ 1, Mj
positive real numbers and fj ∈ T2 , fj (z) = z + a3j z 3 + ..., j = 1, n, n ∈ N − {0}.
If
|fj (z)| ≤ Mj , j = 1, n, (z ∈ U)
(3.12)
and
n
X
2Mj + 1
≤ Reα,
|γj |

(3.13)

j=1

then the function

Kγ1 ,γ2 ,...,γn (z) =

Zz 

f1 (u)
u



1
γ1

...



fn (u)
u



1
γn

du

(3.14)

0

is in the class S.
Proof. For βδ = 1, from Theorem 3.1, we obtain Corollary 3.4.
Remark 3.5. If we take n = 1, γ1 = γ, f1 = f , from Corollary 3.4 we have the
integral operator Gγ given by (1.1) is in the class S.
211

V. Pescar - Integral operators on a certain class of univalent functions

Corollary 3.6. Let α, γ complex numbers, α 6= 0, Reγ > 0, Mj positive real
numbers and fj ∈ T2 , fj (z) = z + a3j z 3 + ..., j = 1, n, n ∈ N − {0}.
If
|fj (z)| ≤ Mj , (j = 1, n, z ∈ U),

(3.15)

n
X
2Mj + 1
≤ Reγ,
|α|

(3.16)

and

j=1

then for any complex number β, Reβ ≥ Reγ, the function
1
 z

1 
 1 β
 Z
f1 (u) α
fn (u) α
...
du
Lα,β (z) = β uβ−1


u
u

(3.17)

0

is in the class S.

Proof. For δ = 1, from Theorem 3.1, we have Corollary 3.6.
Remark 3.7. If take n = 1, f1 = f in Corollary 3.6, we obtain that the integral
operator Dα,β defined by (1.4) is in the class S.
References
[1] D. Breaz, N. Breaz, Two integral operators, Studia Universitatis ”Babe¸sBolyai”, Mathematica, Cluj-Napoca, No.3, 2002, 13-21.
[2] Y.J. Kim, E.P. Merkes, On an integral of powers of a spirallike function,
Kyungpook Math., J., 12 (1972), 2, 249-253.
[3] O. Mayer, The Functions Theory of One Variable Complex, Bucure¸sti, 1981.
[4] S.S. Miller, P.T. Mocanu, Differential Subordonations, Theory and Aplications, Monographs and Text Books in Pure and Applied Mathematics, 225, Marcel
Dekker, New York, 2000.
[5] S. Ozaki, M. Nunokawa, The Schwartzian derivative and univalent functions,
Proc., Amer. Math. Soc., 33 (2), (1972), 392-394.
[6] N.N. Pascu, An improvement of Becker’s Univalence Criterion, Proceedings
of the Commemorative Session Simion Stoilow, University of Bra¸sov, 1987, 43-48.
[7] N.N. Pascu, V.Pescar, On the integral operators of Kim-Mekes and Pfaltzgraff,
Mathematica, Univ. ”Babe¸s-Bolyai”, Cluj-Napoca, 32 (55), 2(1990), 185-192.
[8] V. Pescar, Univalence conditions for certain integral operators, Journal of
Inequalities in Pure and Applied Mathematics, Volume 7, Issue 4, Article 147, 2006.
212

V. Pescar - Integral operators on a certain class of univalent functions

[9] V. Pescar, Integral operators on a certain class of analytic functions, Libertas
Mathematica, Vol.XXXVII (2007), 95-98.
[10] V. Pescar, On the univalence of some integral operators, Acta Universitatis
Apulensis, Mathematics - Informatics, No. 16/2008, 157-164.
[11] V. Pescar, S. Owa, Univalence problems for integral operators by Kim-Merkes
and Pfaltzgraff, Journal of Approximation Theory and Applications, Vol.3, No.1-2,
2007, 17-21.
Virgil Pescar
Department of Mathematics
”Transilvania” University of Bra¸sov
Faculty of Mathematics and Computer Science
500091 Bra¸sov, Romania
email: [email protected]

213

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52