getdocc793. 148KB Jun 04 2011 12:04:57 AM

Elect. Comm. in Probab. 4 (1999) 91–101

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

LINEAR EXPANSION OF
ISOTROPIC BROWNIAN FLOWS
Michael CRANSTON
Department of Mathematics, University of Rochester
Rochester, New York 14627, USA
cran@math.rochester.edu
Michael SCHEUTZOW
Technische Universit¨at, Berlin, MA 7-5, Str. des 17. Juni 135, 10623 Berlin, Germany
ms@math.tu-berlin.de
David STEINSALTZ
Department of Statistics, University of California, Berkeley, CA 94720, USA
dstein@stat.berkeley.edu

AMS subject classification: Primary 60H20
Keywords and phrases: Stochastic flows, Brownian flows, stochastic differential equations,

martingale fields, Lyapunov exponents
Abstract:
We consider an isotropic Brownian flow on Rd for d ≥ 2 with a positive Lyapunov exponent,
and show that any nontrivial connected set almost surely contains points whose distance from
the origin under the flow grows linearly with time. The speed is bounded below by a fixed
constant, which may be computed from the covariance tensor of the flow. This complements
earlier work, which showed that stochastic flows with bounded local characteristics and zero
drift cannot grow at a rate faster than linear.
1. Introduction
A stochastic flow on a manifold M with respect to the probability space (Ω, F, P ) is a family
of measurable maps φst : Ω × M → M indexed by s and t in R or R+ , which satisfy the
following properties for every ω in Ω: φst (ω, x) is jointly continuous in s, t and x; for every s
and t φst (ω, ·) is a homeomorphism; and for every x in M ,
φss (ω) = idM , and
φst (ω, φrs (ω, x)) = φrt (ω, x).
One may think of φst as the map that carries a point at time s to its new position at time
t, according to a random rule given by ω. A field of semimartingales F (t, x) on x ∈ Rd for
91

92


Electronic Communications in Probability
d ≥ 2 with bounded and Lipschitz local characteristics defines a stochastic flow on
equations
Z t
F (du, φsu (x)), and
φst (x) = x +

Rd , by the

s

φts (x) = φ−1
st (x)

for s ≤ t. (We will sometimes write φt for φ0t , where there seems no danger of confusion.) The
filtration is denoted by Ft, the σ-algebra generated by the set of random variables {F (s, x) :
s ≤ t, x ∈ Rd }. Similar flows have been proposed as models for the spread of a passive tracer
in complex fluid flows, such as the ocean [Dav91] and groundwater filtering through pores
[Dag90]. The physical basis is the Kolmogorov model of turbulence (see, for instance, [GK95]

and [Mol96]).
Isotropic Brownian flows (IBFs) were first described by K. Itˆ
o [Itˆ
o56] and A. Yaglom [Yag57].
This is a class of flows for which the image of any single point is a Brownian motion, and for
which the covariance tensor between two different Brownian motions is an isotropic function of
their positions. The local structure of these flows was studied in the 1980s by T. Harris [Har81]
for the case of R2 , and more generally by P. Baxendale and T. Harris [BH86] and by Y. Le
Jan [Le 85], among others. Le Jan computed the Lyapunov exponents in [Le 85]; Baxendale
performed a similar computation in [Bax83], and, as S. Molchanov has pointed out (personal
communciation and [MR94]), the result in fact originated with E. Dynkin in the early 1960s,
though this remained long unrecognized in the West. Le Jan and M. Cranston have gone a
long way toward analyzing the growth of the local curvature, in [CL98] and [CL99].
In contrast to this fairly tractable local behavior, the global behavior of stochastic flows has
largely eluded understanding. For the more “realistic” models for fluid flow, which admit a
wider range of temporal correlations, even the two-point motion is as yet poorly understood.
As a consequence, computer simulations have entrained considerable attention. R. Carmona,
who has led the simulation efforts, was inspired by the data several years ago to a seemingly
odd conjecture: the image of a compact set, he suggested, could expand linearly in time — the
diameter is meant here — but no faster. (Carmona, personal communcation. The conjecture

appears in section 5.2 of [CC99], where it is variously attributed as well to Ya. Sinai, and to
M. Isichenko [Isi92].) What may be surprising here is presumably not the upper limit, but
that such rapid growth should be attained at all. Without drift, the path of any point is a
diffusion — or, in the more general models studied by Carmona, approximates a diffusion over
long times — and so grows on average like the square-root of the time. A linear bound seems
almost absurdly conservative. With a bounded drift the growth still can be no more than
linear. But this glib answer ignores the fact that the maximum of a random function can be
much larger than the image of a generic point. The square-root growth rate applies patently
to the images of any finite set of starting points, but not to an infinite set. In their paper,
Carmona and Cerou point out that such a discrepancy between the behavior of finite sets of
points and that of continuous sets might be an obstacle to understanding the global behavior
of stochastic flows through simulation.
For stochastic flows, this conjecture was largely proved by the present authors in 1998. In our
earlier paper [CSS98] we showed that, when F is a martingale, the fastest point in the flow
almost surely travels at most a bounded linear distance in time. That is, there is a constant
K, a simple function of the bounds on the local characteristics, such that
(1)

lim sup sup


sup

T →∞ kxk≤1 0≤t≤T

kφt (x)k
≤K
T

Isotropic Brownian flows

93

almost surely. Also, for any α > 1 and γ > 0,
(2)

sup E ψγ,2α T −1 sup


sup kφt (x)k < ∞,


kxk≤1 0≤t≤T

T >1
2

α

where ψγ,α (z) = exp{γz /(1 ∨ log z) }. If F is not a martingale, but is allowed to have a drift
component, the rate may go up to T logα T , where α > 1. We also gave an example of a flow
which actually does exhibit linear growth of the fastest point. This example does have a drift
in the Stratonovich sense built in, though, and it seems in many respects somewhat contrived.
Here we repair this deficiency, by showing that linear growth may also be found in isotropic
Brownian flows (IBFs). The main result of this paper is that a positive Lyapunov exponent
alone is enough to guarantee the peculiar phenomenon of almost-sure linear growth. Theorem
1 states that if X is any nontrivial connected subset of Rd — that is, a set with more than one
point — and φt an IBF with a positive Lyapunov exponent, then for any given vector there
almost surely exist points which move with linear speed in that direction. That is, there is a
minimum linear speed a > 0 such that with probability 1
inf


sup lim inf

v∈S d−1 x∈

X

t→∞

hφt (x), vi
≥ a.
t

In particular, volume preserving flows, which are of especial interest for applications to fluid
dynamics, always have a positive Lyapunov exponent. Here we are faced with the surprising
fact that while the image of a compact set has constant volume, individual points run out very
far from the main body of the image. It is also known — see Baxendale and Harris [BH86] —
that the lengths of curves grow exponentially quickly.
2. Definitions, and an outline of the method
We begin with the trivial observation that the “reason” why a single Brownian motion moves
with square-root speed is the mutual cancellation of successive steps: to first order, there are

about as many steps forward as backward. The maximum over a connected set, though, under
an expanding (positive Lyapunov exponent) Brownian flow, is in a sense “sticky”, somewhat
like the passive transport mechanism of a cell membrane: not forcing the pace of motion, but
inhibiting the randomly driven gains from being lost. The image of a connected set leaves
pieces behind in its wake every time it backs up on itself, because of the homeomorphism
property.
We repeat here the basic definitions and properties of IBFs from Baxendale and Harris [BH86]
and Le Jan [Le 85]. An IBF is a stochastic flow such that for every s1 ≤ t1 ≤ s2 ≤ t2 ≤ · · · the
random maps φs1 t1 , φs2 t2 , . . . are independent, and such that the covariance tensor is isotropic.
That is,
p
q
bpq (x) = lim t−1 E φt (y + x) − y − x φt (y) − y
t→0

(here the superscripts p and q represent choices of p-th and q-th coordinates) satisfies the
identity b(x) = U ∗ b(U x)U for every real orthogonal matrix U . This means (see, for instance,
[BH86]) that there are scalar functions BL and BN from R+ to R such that

bpq (x) = BL (kxk) − BN (kxk) xp xq /kxk2 + BN (kxk)δ pq , x 6= 0,

(3)
bpq (0) = δ pq BL (0) = δ pq BN (0).

Here bpq is assumed to be not identically constant and to have continuous partial derivatives of orders up to 4. It is also true (remark (2.18) of [BH86]) that |BL (r)| < BL (0) and
|BN (r)| < BN (0) for r > 0, and that these inequalities hold uniformly on the complement of
any neighborhood of the origin.

94

Electronic Communications in Probability
If x, y ∈ Rd then the difference process zt = φt (x) − φt (y) is a diffusion, with generator

Lf (z) =

(4)

d X
d
X
p=1 q=1


 ∂2f
bpq (0) − bpq (z)
∂z p ∂z q

R
Because of the isotropy, the distance function ρt = kzt k is itself a onefor f ∈
dimensional diffusion. Its generator is


 ′′
BN (0) − BN (ρ)
(5)
Ag(ρ) = BL (0) − BL(ρ) g (ρ) + (d − 1)
g ′ (ρ)
ρ
Cb2 ( d ).

for g ∈ Cb2 (R). The local behavior of the flow is determined by two nonnegative numbers,
′′

′′
(0) and βN := −BN
(0). The i-th Lyapunov exponent of the flow is then
βL := −BL
λi :=


1
(d − i)βN − iβL
2

for i = 1, . . . , d.
We assume now that the IBF φt has a positive Lyapunov exponent. We begin with a connected
set X ⊂ Rd , containing at least two points. Let v be a fixed unit vector, and assume without
loss of generality that the diameter of X is at least 1. (If not, we simply wait until the diameter
does reach 1, and begin the argument from there. By Corollary 3.16 of [BH86] this must occur
within a finite time.)
The first aim is to show that supx∈X hφt (x), vi grows linearly in time. After that, we need to
see that some linear growth is actually achieved by a single (random) point for all times t.
Let xt = φt (x) and yt = φt (y), until such a time as xt and yt have separated by a distance of
2 in the v direction. Suppose that xt is in front; that is, hxt , vi = hyt , vi + 2. By continuity,
there must be another point in the image of φt whose absolute separation from xt is only 1.
We drop the old point y, and henceforth let yt be the image of this new point. The process
continues until again the separation has grown to 2, and then we again pull up the straggler
to a distance 1, and so on forever. Since the separation in the v direction is no greater than
the absolute separation, every time the separation becomes 2, the sum xt + yt gets a kick of
size at least 1 in the positive v direction. Essentially, the only thing that needs to be proved
is that these kicks come often enough; that is, that the number of kicks up to time T divided
by T has a positive limes inferior. It follows that there are times at which this linear average
speed from the origin is attained, and a supplemental argument shows that the points will
not fall back too far in the intervening epoch, which means that the linear speed is indeed
maintained forever. With a bit of additional care we may also guarantee that the point there
actually exists a single point which has moved with this speed the entire time.
3. Hitting times for diffusions
We need to show that the time between kicks, in the procedure defined above, has finite
expectation. Intuitively this seems straightforward: The positive Lyapunov exponent implies
that points close enough together repel one another. Thus for any positive ǫ, excursions of
the separation process zt = xt − yt into the sphere of radius ǫ around the origin have finite
expected duration. Each time zt returns to the unit sphere, it has a chance of reaching the
target set hzt , vi = ±2, so it is reasonable to expect that this too will occur in finite expected
time. That is, the only alternative to the diffusion zt leaving the slab −2 ≤ hzt , vi ≤ 2 in finite
expected time, as would a Brownian motion, is that it plummets into the origin; this latter
behavior is excluded by the positive Lyapunov exponent.

Isotropic Brownian flows

95

If we were concerned with the total distance kzt k, the problem would be straightforward.
This is a one-dimensional diffusion, so can be described by a speed function and a scale
measure. These may be readily computed — see [BH86] — and tell us directly what points
communicate with one another, and how long it takes. The separation in one fixed direction,
however, hxt − yt , vi, is not a Markov process, and so the question of how long it takes to reach
a given level cannot be resolved quite so simply.
Let φt be an IBF in Rd , let x, y be any two distinct points in Rd , xt := φt (x) and yt := φt (y).
Also let zt = xt − yt . For a fixed unit vector v, we define



τv (x, y) = inf t : hzt , vi ≥ 2 .
Lemma 3.1. If the IBF (φt ) has a positive Lyapunov exponent, then for µ sufficiently small
sup

2

E eµ

τv (x,y)

kx−yk=1

is finite. In particular, aγ given by (8) is positive for γ sufficiently large, and



: aγ > 0 , γ > 0.1 .
sup E τv (x, y) ≤ inf

kx−yk=1
Also,
inf

kx−yk=1

E τv (x, y) ≥

3
.
4BN (0)

Proof. Let x and y be chosen, with kx − yk = kz0 k = 1. By isotropy, we may assume that v is
the direction of the first coordinate axis. Define f1 : Rd → R+ by f1 (z) = hz, vi2 , and define
f2 : R+ → R by


if 0 < r ≤ 1;
log r
1
3
f2 (r) = 2 (r − 1)(r − 2) (−5r + 3) if 1 < r ≤ 2;


0
if r > 2.
It is easy to check that f2 is in the class C 2 . Let γ be a positive parameter, and
f (z) := γf1 (z) + f2 (kzk).
A simple calculation shows that τ := τv (x, y) is the first time that f (zt ) ≥ 4γ, as long as
γ > 0.1. To prove that this happens in finite expected time, we will show that for γ sufficiently
large Lf is positive and bounded away from zero.
Using the formula (4) we see that

Lf1 (z) = 2 b11 (0) − b11 (z)


= 2 BN (0) − αBL (kzk) + (1 − α)BN (kzk) ,

where α = hz, vi2 /kzk2. The important thing to observe is that Lf1 is continuous, nonnegative,
and bounded away from zero on the complement of any neighborhood of the origin. It is also
bounded above by 4BN (0).
For the other piece of f , (5) yields
(


ρ−2 −(BL (0) − BL (ρ)) + (d − 1)(BN (0) − BN (ρ))
if 0 < ρ < 1;
Af2(ρ) =
0
if ρ ≥ 2.

For ρ ∈ [1, 2],

Af2 is bounded.

96

Electronic Communications in Probability
Following [BH86], we may write
1
BL (ρ) = BL (0) − βL ρ2 + O(ρ4 ),
2
1
(7)
BN (ρ) = BN (0) − βN ρ2 + O(ρ4 )
2
as ρ → 0, which means that for small ρ,

Af2(ρ) = 12 (d − 1)βN − βL + O(ρ2 )
= λ1 + O(ρ2 ).
(6)

We have assumed that λ1 (the largest Lyapunov exponent) is positive. This means that the
lower bound on Lf (z)




(8)
aγ := inf 2γ BN (0) − max BL (ρ), BN (ρ) + Af2 (ρ) : ρ > 0

is positive for γ sufficiently large.
Now, it is in the nature of a generator (see chapter 6 of Stroock and Varadhan [SV79]) that
the stochastic process
Z t
(9)
Lf (zs)ds
Mt = f (zt ) −
0

is a local martingale. This means that Mt∧τ is a submartingale, since it is bounded above (cf.
problem 5.19 of Karatzas and Shreve [KS88]). For any positive T ,
Z τ ∧T
Lf (zs )ds
f (z0 ) ≤ E f (zτ ∧T ) − E
0


≤ 4γ − aγ E τ ∧ T .

In the last line we use the fact that for s ≤ τ , f (zs ) ≤ 4γ (since τ is the first time that this
level is crossed), and Lf (zs ) ≥ aγ . By the monotone convergence theorem, this yields the
bound

4γ − f (z0 )
(10)

.
Eτ ≤



Now fix γ > 0.1, so that aγ is positive. To bound the exponential moment of τ , we need
to consider the behavior of e−µf (z) for µ a positive parameter, to be determined later. The
generator L applied to this function yields
e

µf (z)

Le

−µf (z)

= −µLf (z) + µ

2

d
X

i,j=1

 ∂f (z) ∂f (z)
.
bij (0) − bij (z)
∂zi ∂zj

We want to show that the extra term on the right-hand side is bounded on the set of z such
that |hz, vi| ≤ 2. The crucial components are those arising from f2 (kzk) for kzk close to 0.
There we have
zi zj
∂f2 (kzk) ∂f2 (kzk)
=
.
∂zi
∂zj
kzk4
The asymptotic behavior of bij (z) then implies that the product



ij

b (0) − bij (z) · ∂f2 (z) ∂f2 (z)
∂zi
∂zj

Isotropic Brownian flows

97

is bounded. The partials of f1 are themselves bounded, so raise no further difficulties. The
µf (z)
Le−µf (z) ≤ −µ2 for all z with
upshot
is that for µ sufficiently small (but positive), e

hz, vi ≤ 2. Defining


Vt := exp −µf (zt ) + µ2 t ,
by the Stroock-Varadhan theory mentioned earlier,
Z t
 µ2 s −µf (zs )
∂ 2
+ e−µf (zs ) eµ s ds
V˜t : = Vt −
e Le
∂s
0

= Vt −

Z

0

t


Vs eµf (zs ) Le−µf (zs ) + µ2 ds

is a local martingale. For s ≤ τ the integrand is negative, which means that Vt∧τ is a supermartingale. Thus for all positive t, since f (z) is bounded above by 1+4γ whenever |hz, vi| ≤ 2,
and kz0 k = 1,
1 ≥ e−µf (z0 )
≥ E Vt∧τ

2

≥ e−µ(4γ+1) E eµ

t∧τ

.

By monotone convergence, it follows that
2

E eµ

τ

≤ eµ(4γ+1) .

To obtain the lower bound, we simply apply the same procedure to f1 alone. Since f1 and Lf1
are bounded up to time τ ,
Z t∧τ
Lf1 (zs )ds
Mt = f1 (zt∧τ ) −
0

is a martingale. This means that




E τ · 4BN (0) ≥ E τ sup Lf1 (z) : |hz, vi| ≤ 2
Z τ
Lf1 (zs )ds
≥E
0

= E f1 (zτ ) − E M0
≥ 3,

since M0 ≤ 1 and f1 (zτ ) = 4.
4. The main result
Theorem 1. Let φt be an IBF on Rd with a positive Lyapunov exponent, and
subset of Rd containing at least two points. Then



hφt (x), vi
≥ sup
: γ > 0.1 > 0.
inf sup lim inf
t

v∈S d−1 x∈X t→∞

X a connected

almost surely.
Proof. We assume without loss of generality that the diameter of X is at least 1, and choose
x0 and y0 in X with kx0 − y0 k = 1. We may also assume, perhaps taking a subset, that X is
compact.
Choose a unit vector v. We define a random sequence of points x1 , x2 , . . . and y1 , y2 , . . . in
X, and an increasing sequence of stopping times 0 = T0 < T1 < T2 < · · · , which will represent

98

Electronic Communications in Probability
the times at which the points have spread “sufficiently” in the v direction. Leaving these for
the moment undefined, we fix the definitions
xt = φt (xi )

for t ∈ [Ti , Ti+1 ),

yt = φt (yi ) for t ∈ [Ti , Ti+1 ),

Zt = lim xs − ys .
s↑t

We also define a sequence of compact connected subsets X = X0 ⊃ X1 ⊃ X2 ⊃ · · · . The idea
is that we wait until one of the points has fallen behind by 2 units in the v direction, and then
use the connectedness to pull it up again to a distance 1. At the times Ti the pair that we are
following gets a “kick” of at least one unit in the positive v direction. If the number of kicks
up to time T is linear in T , then there will be some point that has travelled a long way in that
direction. This still falls short of the goal, though, since this is a random point, and could be
changing at every time Ti . This is why we use Xi to keep track of points that have kept up
this pace the whole time.
Suppose that Ti−1 , xi−1 , yi−1 , and Xi−1 are defined, with
kφTi−1 (xi−1 ) − φTi−1 (yi−1 )k = 1,
and now define Ti to be inf{t > Ti−1 : |hZt , vi| = 2}. By Lemma 3.1 this is finite almost surely.
Assume first that hZTi , vi = +2, and consider that the map

ψ : z 7→
φTi (xi−1 ) − φTi (z)k

is continuous from Xi−1 to R. (Here we make use of the fact that φt (z) is — almost surely —
a continuous function of z.) Also, ψ(xi−1 ) = 0 while ψ(yi−1 ) ≥ 2. Let Xi be the connected
component of ψ −1 ([0, 1]) which contains xi−1 . Since Xi−1 is connected, we may find a point
yi ∈ Xi such that ψ(yi ) = 1. We then define xi to be equal to xi−1 .
If hZTi , vi = −2, we make the same construction, reversing the roles of x and y. Observe that,
in either case,


(11)
hφTi (z), vi ≥ max hxTi , vi, hyTi , vi − 2

for all z ∈ Xi . Then kxTi − yTi k = 1, providing the correct starting condition for the next
round.
Now define σt to be the sum of those kicks that have occurred up to time t; that is,
X

lim xTi + yTi − xs − ys .
σt =
Ti ≤t

s↑Ti

Since each kick has size at least one in the v direction, hσt , vi ≥ #{i ≥ 1 : Ti ≤ t}. The
homogeneity of the process implies that xt + yt − σt is the sum of two Brownian motions,
which in turn implies that
(12)

lim inf Tn−1 hxTn + yTn , vi = lim inf
n→∞

n→∞

hσTn , vi
n
≥ lim inf
n→∞ Tn
Tn

almost surely.
Trivially, the discrete-time process
n
X



E Ti − Ti−1 FTi−1 ,
Tn −
i=1

FT

n

!∞

n=1

Isotropic Brownian flows

99

is a martingale. By the results of Lemma 3.1 and the strong Markov property for the diffusion
zt , the differences have bounded second moments, which allows us to apply the strong law of
large numbers for martingales — for instance, Theorem 2.19 of [HH80]. Thus
n
X



E Ti − Ti−1 FTi−1 = 0.
lim n−1 Tn − n−1
n→∞

i=1

almost surely. This implies in turn that for any γ > .1 with aγ > 0,
lim sup n−1 Tn = lim sup n−1

(13)

n→∞

n→∞

and

n
X


 4γ
E Ti − Ti−1 FTi−1 ≤

i=1

lim inf n−1 Tn ≥

(14)

n→∞

3
4BN (0)

almost surely. By equation (12),
lim inf Tn−1 hxTn + yTn , vi ≥
n→∞

By (11), if z ∈ Xi then


.


hφTi (z), vi ≥ hxTi , vi − 2.
sequence
of nonempty compact sets, their intersection is nonempty.
Since (Xi ) is a decreasing
T∞
If z is a point in i=1 Xi , then we certainly have
 aγ
.
lim sup t−1 hφt (z), vi ≥ lim inf Tn−1 hφTn (z), vi ≥ lim inf Tn−1 hxTn , vi − 2 ≥
n→∞
n→∞

t→∞
We would like to turn this into a statement about the limes inferior as t → ∞. To do this, we
use the obvious bound


sup
φt (z) − xTn
.
lim inf t−1 hφt (z), vi ≥ lim inf T −1 hxTn , vi − lim sup T −1
t→∞

n

n→∞

n→∞

n

Tn

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52