getdocb64d. 125KB Jun 04 2011 12:04:52 AM

Elect. Comm. in Probab. 12 (2007), 259–266

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

A NOTE ON ERGODIC TRANSFORMATIONS OF
SELF-SIMILAR VOLTERRA GAUSSIAN PROCESSES
CÉLINE JOST
Department of Mathematics and Statistics, P.O. Box 68 (Gustaf Hällströmin katu 2b), 00014
University of Helsinki, Finland
email: celine.jost@iki.fi
Submitted February 14, 2007, accepted in final form July 30, 2007
AMS 2000 Subject classification: 60G15; 60G18; 37A25
Keywords: Volterra Gaussian process; Self-similar process; Ergodic transformation; Fractional
Brownian motion
Abstract
We derive a class ofRergodic transformations of self-similar Gaussian processes that are Volterra,
t
i.e. of type Xt = 0 zX (t, s)dWs , t ∈ [0, ∞), where zX is a deterministic kernel and W is a
standard Brownian motion.


1

Introduction

Let (Xt )t∈[0,∞) be a continuous Volterra Gaussian process on a complete probability space
(Ω, F, P). This means that
Xt =

Z

t
0

zX (t, s)dWs , a.s., t ∈ [0, ∞),

(1.1)


where the kernel zX ∈ L2loc [0, ∞)2 is Volterra, i.e. zX (t, s) = 0, s ≥ t, and (Wt )t∈[0,∞) is a

standard Brownian motion. Clearly, X is centered and
Z s
X
R (s, t) := CovP (Xs , Xt ) =
zX (s, u)zX (t, u)du, 0 ≤ s ≤ t < ∞.
0

We assume that X is β-self-similar for some β > 0, i.e.
d

(Xat )t∈[0,∞) =
d

aβ X t



t∈[0,∞)

, a > 0,


(1.2)

where = denotes equality of finite-dimensional distributions. Furthermore, we assume that zX
is non-degenerate in the sense that the family {zX (t, ·) | t ∈ (0, ∞)} is linearly independent
and generates a dense subspace of L2 ([0, ∞)). Then
Γt (X) := span{Xs | s ∈ [0, t]} = Γt (W ), t ∈ (0, ∞),
259

(1.3)

260

Electronic Communications in Probability

where the closure is in L2 (P), or equivalently,
FX = FW ,
where FX := FtX




t∈[0,∞)

denotes the completed natural filtration of X.

We assume implicitly that (Ω, F, P) is the coordinate space of X, which means that Ω =
X
{ω : [0, ∞) → R | ω is continuous}, F = F∞
:= σ(Xt | t ∈ [0, ∞)) and P is the probability
measure with respect to which the coordinate process Xt (ω) = ω(t), ω ∈ Ω, t ∈ [0, ∞), is a
centered Gaussian process with covariance function RX . Recall that a measurable map
Z : (Ω, F, P) → (Ω, F, P)
X(ω)
7→ Z(X(ω))
is a measure-preserving transformation, or endomorphism, on (Ω, F, P) if PZ = P, or equid

valently, if Z(X) = X. If Z is also bijective and Z −1 is measurable, then it is an automorphism.

Processes of the above type are a natural generalization of the nowadays in connection with
finance and telecommunications extensively studied fractional

Brownian motion with Hurst

index H ∈ (0, 1), or H-fBm. The H-fBm, denoted by BtH t∈[0,∞) , is the continuous, centered
Gaussian process with covariance function
H

RB (s, t) =


1 2H
s
+ t2H − |s − t|2H , s, t ∈ [0, ∞).
2

For H = 21 , fBm is standard Brownian motion. H-fBm is H-self-similar and has stationary
increments. The non-degenerate Volterra kernel is given by


1
1

1
1
t
, 0 < s < t < ∞,
zB H (t, s) = c(H)(t − s)H− 2 · 2 F1
− H, H − , H + , 1 −
2
2
2
s
where c(H) :=



2HΓ( 23 −H )
Γ(H+ 12 )Γ(2−2H)

 21

with Γ denoting the Gamma function, and 2 F1 is the


Gauss hypergeometric function. In 2003, Molchan (see [8]) showed that the transformation
Z t H

Bs
ds, t ∈ [0, ∞),
(1.4)
Zt B H := BtH − 2H
s
0

is measure-preserving and satisfies

ΓT Z B H
where




= ΓT Y H , T > 0,


YtH := MtH −

Here, MtH :=
RT
ξTH := 2H 0

t H
ξ , t ∈ [0, T ].
T T

(1.5)
(1.6)

Rt 1

2 − 2H 0 s 2 −H dWs , t ∈ [0, ∞), is the fundamental martingale of B H and

s 2H−1
dMsH .

T

In this work, we present a class of measure-preserving transformations (on the coordinate
space) of X, which generalizes this result. Moreover, we show that these measure-preserving
transformations are ergodic.

A note on ergodic transformations of
self-similar Volterra Gaussian processes

2

261

Ergodic transformations

First, we introduce the class of measure-preserving transformations:
Theorem 2.1. Let α >

−1
2 .


Then the transformation
1

Ztα (X) := Xt − (2α + 1)tβ−α− 2

Z

0

t

1

sα−β− 2 Xs ds, t ∈ [0, ∞),

is an automorphism on the coordinate space of X. The inverse is given by
Z ∞
1
3

Ztα,−1 (X) = Xt − (2α + 1)tα+β+ 2
Xs s−β−α− 2 ds, a.s., t ∈ [0, ∞).

(2.1)

(2.2)

t

The integrals on the right-hand sides are L2 (P)-limits of Riemann sums.
Proof. First, note that RX is continuous. Furthermore, by combining Hölder’s inequality and
(1.2), we have that
X

R (s, t) ≤ EP (X1 )2 sβ tβ , s, t ∈ (0, ∞).
Hence, the double Riemann integrals
Z tZ t
0

and

Z

t



1

(us)α−β− 2 RX (u, s)duds

0

Z



3

(us)−β−α− 2 RX (u, s)duds
t

are finite. Thus, the integrals in (2.1) and (2.2) are well-defined (see [5], section 1).
Second, we show that Z α is a measure-preserving transformation. Let Yt := exp(−βt)Xexp(t)
α
and Ytα := exp(−βt)Zexp(t)
(X), t ∈ R, denote the Lamperti transforms of X and Z α (X),
respectively. Hence, the process (Yt )t∈R is stationary. By substituting v := ln(s), we obtain
that
!

  Z exp(t)
1
1
Ytα = exp(−βt) Xexp(t) − (2α + 1) exp
β−α−
t
sα−β− 2 Xs ds
2
0

 Z t

 
1
1
= Yt − (2α + 1) exp
−α −
t
Xexp(v) dv
exp v α − β +
2
2
−∞
 Z t

 

1
1
t
Yv dv
exp v α +
= Yt − (2α + 1) exp
−α −
2
2
−∞
Z ∞
=
hα (t − v)Yv dv, a.s., t ∈ R,
−∞

where

 
 
1
x , x ∈ R.
hα (x) := δ0 (x) − (2α + 1)1(0,∞) (x) exp − α +
2

Thus, Y α is a linear, non-anticipative, time-invariant transformation of Y . The spectral distribution function of Y α is given by (see [13], p. 151)

2
dF α (λ) = H α (λ) dF (λ), λ ∈ R,

262

Electronic Communications in Probability

R
where H α (λ) := R exp(−iλx)hα (x)dx denotes the Fourier transform of hα and F is the
spectral distribution function of Y . We have that (see [3], p. 14 and p. 72)

!
1



1
− 2 − α + iλ
α


α
+


2

= 1, λ ∈ R,
H (λ) = 1 − (2α + 1)
= 1
2
1


2
+ α + iλ
+
α
+
λ
2
2
d

d

i.e. F α ≡ F . It follows from this that (Ytα )t∈R = (Yt )t∈R , or equivalently, (Ztα (X))t∈[0,∞) =
(Xt )t∈[0,∞) .
Third, by splitting integrals and using Fubini’s theorem, we obtain that

Ztα,−1 (Z α (X)) = Xt = Ztα Z α,−1 (X) , a.s., t ∈ [0, ∞).


1
Remark 2.2. Theorem 2.1 generalizes (1.4). In fact, Z H− 2 B H = Z B H , H ∈ (0, 1).

Remark 2.3. Theorem 2.1 holds true for general continuous centered β-self-similar Gaussian
processes.
Next, we present two auxiliary lemmas concerning the structure of zX :

Lemma 2.4. Let (Xt )t∈[0,∞) be a Volterra Gaussian process with a non-degenerate Volterra
kernel zX . Then the following are equivalent:
1. X is β-self-similar, i.e.
Z s
Z s
2β−1
zX (at, au)zX (as, au)du = a
zX (t, u)zX (s, u)du, 0 < s ≤ t < ∞, a > 0.
0

0

2. It holds that

1

3. There exists FX

zX (at, as) = aβ− 2 zX (t, s), 0 < s < t < ∞, a > 0.

∈ L2 (0, 1), (1 − x)2β−1 dx such that
s
1
, 0 < s < t < ∞.
zX (t, s) = (t − s)β− 2 FX
t
1

Proof. 1 ⇒ 2: For a > 0, let zY (a) (t, s) := a 2 −β zX (at, as), 0 < s < t < ∞, and let Yt (a) :=
Rt
0 zY (a) (t, s)dWs , t ∈ [0, ∞). Clearly, zY (a) is non-degenerate. From (1.3), we obtain that
d

Γ (Y (a)) = Γt (W ), t ∈ (0, ∞). From part 1, it follows that X = Y (a). Thus, the process Wt′ :=
R tt ∗

0 zX (t, s)dYs (a), t ∈ [0, ∞), where zX is the reciprocal of zX and the integral is an abstract
Wiener integral, is a standard Brownian motion with Γt (W ′ ) = Γt (Y (a)), t ∈ (0, ∞). Hence,
Rt
Γt (W ) = Γt (W ′ ), i.e. W and W ′ are indistinguishable. Therefore, Yt (a) = 0 zX (t, s)dWs ,
a.s., t ∈ (0, ∞), i.e. Yt (a) = Xt , a.s., t ∈ [0, ∞). In particular, 0 = EP (Yt (a) − Xt )2 =
2
Rt
zY (a) (t, s) − zX (t, s) ds, t ∈ (0, ∞). Thus, zX (t, ·) ≡ zY (a) (t, ·), t ∈ (0, ∞).
0
1
2 ⇒ 3: Let GX (t, s) := (t − s) 2 −β zX (t, s), 0 < s < t < ∞. From part 2, it follows that
GX (at, as) = GX (t, s), 0 < s < t < ∞, a > 0. Hence, for every (t, s), s < t, the function
s
GX is constant on
depends only on the
 the line {(at, as) | a ∈ (0, ∞)}, which
 slope t . Thus,
s
2
2β−1
dx .
GX (t, s) = FX t , 0 < s < t < ∞, for some FX ∈ L (0, 1), (1 − x)
3 ⇒ 1: This is trivial.
Lemma 2.5. Let α > −1
2 . Then we have that
Z t
Z t
1
1
tβ−α− 2
uα−β− 2 zX (u, s)du = sα
zX (t, u)u−α−1 du, 0 < s < t < ∞.
s

s

A note on ergodic transformations of
self-similar Volterra Gaussian processes

263

Proof. From Lemma 2.4, it follows that the Volterra kernel of X can be written as
s
1
, 0 < s < t < ∞,
zX (t, s) = (t − s)β− 2 FX
t

for some function FX . By substituting first x := us and then v := tx, we obtain that
Z t
Z t
s
1
1
1
1
1
uα−β− 2 zX (u, s)du = tβ−α− 2
uα−β− 2 (u − s)β− 2 FX
du
tβ−α− 2
u
s
s
Z 1
1
1
x−α−1 (1 − x)β− 2 FX (x)dx
= tβ−α− 2 sα
s
t



=

Z

t

s



=

Z

1

(t − v)β− 2 FX
t

v 
t

v −α−1 dv

zX (t, v)v −α−1 dv.

s

The next lemma is the key result for deriving the ergodicity of the measure-preserving transformations:
Lemma 2.6. Let α >

−1
2 .

Then

Ztα (X)

Z

=

t

0

zX (t, s)dZsα (W ), a.s., t ∈ [0, ∞).

Proof. By combining (1.1) and the stochastic Fubini theorem, using Lemma 2.5, again the
stochastic Fubini theorem, and finally using partial integration, we obtain that

Z t
Z t
β−α− 21
α
α−β− 12
t
Zt (X) = Xt − (2α + 1)
zX (s, u)ds dWu
s
0
u

Z t Z t
α
−α−1
u
zX (t, s)s
ds dWu
= Xt − (2α + 1)
0

u

t

Z s
zX (t, s)s−α−1
uα dWu ds
0
0


Z t
Z s
= Xt − (2α + 1)
zX (t, s) (−α)s−α−1
uα−1 Wu duds + s−1 Ws ds
= Xt − (2α + 1)

Z

0

=

Z

0

t

0

zX (t, s)dZsα (W ), a.s., t ∈ (0, ∞).
n

In the following, let Z α,n := (Z α ) denote the n-th iterate of Z α , n ∈ Z. Also, let
Γ∞ (X) := span{Xt | t ∈ [0, ∞)}.
For α > − 12 , let
Ntα

:=

Z

0

Clearly, N α is an α +

1
2

t

sα dWs , t ∈ [0, ∞).


-self-similar FX -martingale. From Lemma 2.6, it follows that
Z t
α
Zt (X) =
zX (t, s)s−α dZsα (N α ) , a.s., t ∈ (0, ∞).
(2.3)
0

264

Electronic Communications in Probability

The next lemma is an auxiliary result, which was obtained in [7], section 3.2 and Theorem
5.2. (The automorphism Z α on the coordinate space of N α here corresponds to the (ergodic)
automorphism T (1) on the coordinate space of the martingale M with M := N α in [7].)
Lemma 2.7. Let α >
1. It holds that

−1
2

and T > 0.

ΓT (Z α (N α )) = ΓT N α,T ,

2α+1 α
NT , t ∈ [0, T ], is a bridge of N α , i.e. a process satisfying
where Ntα,T := Ntα − Tt




LawP N α,T = LawP (N α | NTα = 0), and ΓT N α,T := span Ntα,T | t ∈ [0, T ] .
2. We have that


(2.4)
ΓT (N α ) = ⊥n∈N0 span ZTα,n N α
and



Γ∞ (N α ) = ⊥n∈Z span ZTα,n N α .

(2.5)

Here, ⊥ denotes the orthogonal direct sum.

By combining (2.3) and part 1 of Lemma 2.7, we obtain the following:
Lemma 2.8. Let α >

−1
2

and T > 0. Then

ΓT (Z α (X)) = ΓT N α,T .

Remark 2.9. Lemma 2.8 is a generalization of identity (1.5). Indeed, we have that YtH =

Rt
H− 1 ,T
2 − 2H 0 s1−2H dNs 2 , a.s., t ∈ [0, T ], where Y H is the process defined in (1.6). Y H is a
bridge (of some process) if and only if H = 21 .
The following generalizes part 2 of Lemma 2.7:
Lemma 2.10. Let α >

−1
2

and T > 0. Then we have that
ΓT (X) = ⊕n∈N0 span {ZTα,n (X)}

and

Γ∞ (X) = ⊕n∈Z span {ZTα,n (X)}.

Proof. We assume that X 6= N α . By iterating (2.3) and (2.4), we obtain that
n

o
= ⊥i≥n span ZTα,i N α , n ∈ Z.
ZTα,n (X) ∈ ΓT (Z α,n (X)) = ΓT Z α,n N α
Moreover, XT 6⊥ NTα , hence ZTα,n (X) 6⊥ ZTα,n (N α ), n ∈ Z, and therefore,
n
o
ZTα,n (X) 6∈ ⊥i≥n+1 span ZTα,i (N α ) , n ∈ Z.

From (2.4) and (2.5), it follows that the systems {ZTα,n (X)}n∈N0 and {ZTα,n (X)}n∈Z are free
and complete in ΓT (X) and Γ∞ (X), respectively.
Remark 2.11. The process X is an FX -Markov process if and only if there exists α > −1
2
and a constant c(X), such that
Z t
1
sα dWs , a.s., t ∈ (0, ∞).
(2.6)
Xt = c(X) · tβ− 2 −α
0

The free complete system

{ZTα,n (X)}n∈Z

is orthogonal if and only if (2.6) is satisfied.

A note on ergodic transformations of
self-similar Volterra Gaussian processes

265

From Lemma 2.10, we obtain the following:
Corollary 2.12. Let α >

−1
2

and T > 0. Then
FTX =

_

n∈N0


σ ZTα,n (X) .

Furthermore,
X
F = F∞
=

_

n∈Z


σ ZTα,n (X) .

Recall that an automorphism Z is a Kolmogorov automorphism, if there exists a σ-algebra
A ⊆ F , such that Z −1 A ⊆ A, ∨m∈Z Z m A = F and ∩m∈N0 Z −m A = {Ω, ∅}. A Kolmogorov
automorphism is strongly mixing and hence ergodic (see [11], Propositions 5.11 and 5.9 on p.
63 and p. 62). The ergodicity of Z α is hence a consequence of the following:
Theorem 2.13. Let α > −1
Z α and Z α,−1 are Kolmogorov
2 and T > 0. The
 automorphisms
α,n
X
automorphisms with A = ∨n∈−N σ ZT (X) and A = FT , respectively.

Proof. Z α is a Kolmogorov automorphism with A = ∨n∈−N σ ZTα,n (X) :

First, Z α,−1 A = ∨n∈−N σ ZTα,n−1 (X) ⊆ A.

Second, ∨m∈Z Z α,m A = ∨m∈Z ∨n∈−N σ ZTα,m+n (X) = F.
Third, let {Yn }n∈−N denote the Hilbert basis of ⊕n∈−N span {ZTα,n (X)} which is obtained
from {ZTα,n (X)}n∈−N via Gram-Schmidt orthonormalization. By using Kolmogorov’s zero
α,−m
A = ∩m∈N0 ∨n≤−m−1 σ ZTα,n (X) =
one law (see [12], p. 381),
 we obtain that ∩m∈N0 Z
∩m∈N0 ∨n≤−m−1 σ Yn = {Ω, ∅}.
Similarly, one shows that Z α,−1 is a Kolmogorov automorphism with A = FTX .
Acknowledgements. Thanks are due to my supervisor Esko Valkeila and to Ilkka Norros
for helpful comments. I am indebted to the Finnish Graduate School in Stochastics (FGSS)
and the Finnish Academy of Science and Letters, Vilho, Yrjö and Kalle Väisäla Foundation
for financial support.

References
[1] Deheuvels, P., Invariance of Wiener processes and of Brownian bridges by integral transforms and applications. Stochastic Processes and their Applications 13, 311-318, 1982.
MR0671040
[2] Embrechts, P., Maejima, M., Selfsimilar Processes. Princeton University Press, 2002.
MR1920153
[3] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G., Tables of integral transforms,
Volume 1. McGraw-Hill Book Company, Inc., 1954.
[4] Hida, T., Hitsuda, M., Gaussian Processes. Translations of Mathematical Monographs
120, American Mathematical Society, 1993. MR1216518
[5] Huang, S.T., Cambanis, S., Stochastic and Multiple Wiener Integrals for Gaussian Processes. Annals of Probability 6(4), 585-614, 1978. MR0496408

266

Electronic Communications in Probability

[6] Jeulin, T., Yor, M., Filtration des ponts browniens et équations différentielles stochastiques linéaires. Séminaire de probabilités de Strasbourg 24, 227-265, 1990. MR1071543
[7] Jost, C., Measure-preserving transformations of Volterra Gaussian processes and related
bridges. Available from http://www.arxiv.org/pdf/math.PR/0701888.
[8] Molchan, G.M., Linear problems for a fractional Brownian motion: group approach.
Theory of Probability and its Applications, 47(1), 69-78, 2003. MR1978695
[9] Norros, I., Valkeila, E., Virtamo, J., An elementary approach to a Girsanov formula and
other analytical results on fractional Brownian motions. Bernoulli 5(4), 571-587, 1999.
MR1704556
[10] Peccati, G., Explicit formulae for time-space Brownian chaos. Bernoulli 9(1), 25-48, 2003.
MR1963671
[11] Petersen, K., Ergodic theory. Cambridge University Press, 1983. MR0833286
[12] Shiryaev, A.N., Probability, Second Edition. Springer, 1989. MR1024077
[13] Yaglom, A.M., Correlation Theory of Stationary and Related Random Functions, Volume 1: Basic Results. Springer, 1987. MR0893393

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52