sigma11-017. 291KB Jun 04 2011 12:10:48 AM

Symmetry, Integrability and Geometry: Methods and Applications

SIGMA 7 (2011), 017, 5 pages

Orthogonality Relations
for Multivariate Krawtchouk Polynomials
Hiroshi MIZUKAWA
Department of Mathematics, National Defense Academy of Japan, Yokosuka 239-8686, Japan
E-mail: mzh@nda.ac.jp
Received September 08, 2010, in final form February 18, 2011; Published online February 22, 2011
doi:10.3842/SIGMA.2011.017
Abstract. The orthogonality relations of multivariate Krawtchouk polynomials are discussed. In case of two variables, the necessary and sufficient conditions of orthogonality is
given by Gr¨
unbaum and Rahman in [SIGMA 6 (2010), 090, 12 pages]. In this study, a simple
proof of the necessary and sufficient condition of orthogonality is given for a general case.
Key words: multivariate orthogonal polynomial; hypergeometric function
2010 Mathematics Subject Classification: 33C45

1

Introduction


Consider
X(n, N ) = {x = (x0 , x1 , . . . , xn−1 ) ∈ Nn0 | |x| = N },
where N0 is the set of nonnegative integers and |x| = x0 + x1 + · · · + xn−1 . We recall the
multinomial coefficient
  

(−N )x1 +···+xn−1
N
N
= (−1)x1 +···+xn−1
=
x1 ! · · · xn−1 !
x
x0 , . . . , xn−1
for x ∈ X(n, N ). Let Mn (R) be the set of all n × n matrices over a set R. We fix x ∈ X(n, N )
and A = (aij )1≤i,j≤n−1 ∈ Mn−1 (C). We define the functions φA (x; m) of m = (m0 , . . . , mn−1 ) ∈
X(n, N ) by the following generating function

ΦN (A; x) =


n−1
Y
i=0




n−1
X
j=0

m

xi

aij tj 

=


X

m∈X(n,N )




N
φA (x; m)tm ,
m

(1)

n−1
0 m1
where tm = tm
0 t1 · · · tn−1 and a0j = ai0 = 1 for 0 ≤ i, j ≤ n − 1. We know a hypergeometric
expression of φA (x; m)

n−1

Q
i=1

φA (x; m) =

P

X

i,j cij ≤N
(cij )∈Mn−1 (N0 )

(−xi )n−1
P
j=1

n−1
Q

cij j=1


(−mj )n−1
P

(−N )Pi,j cij

i=1

cij

Q

(1 − aij )cij
Q
,
cij !

(2)

where Mn−1 (N0 ) is the set of square matrices of degree n − 1 with nonnegative integer elements.

We prove the formula (2) in the last section of this paper.

2

H. Mizukawa

This type of hypergeometric functions was originally defined by Aomoto and Gel’fand for
general parameters. We are interested in the aspects of discrete orthogonal polynomials of these
functions with weights
  n−1
N Y xj
bn (x; N ; η (i) ) =
ηji
x
j=0

for η (i) = (η0i , . . . , ηn−1i ) ∈ C∗ n (i = 1, 2), where C∗ = C\{0}. For a special case, when
n = 2, they are well known and called the Krawtchouk polynomials. For general values of n,
the author shows that such orthogonal polynomials appear as the zonal spherical functions of
Gel’fand pairs of complex reflection groups [3]. In general, the author and H. Tanaka give the

orthogonality relation of φA (x; m)s by using the character algebras [4]. R.C. Griffiths shows
that the polynomials defined by the generating function (1) are mutually orthogonal [1]. In their
paper [2], Gr¨
unbaum and Rahman discuss and determine the necessary and sufficient conditions
of the orthogonality of φA (x; m)s for A ∈ M2 (C), which are proved by analytic methods. In
these four literature, the authors consider the case that weights bn (x; N ; η (i) ) are positive.
In this study, we give a linear algebraic proof of the Gr¨
unbaum and Rahman’s condition
for general values of n and for arbitrary weights including the complex case. Our proof of the
sufficient condition is close to [1] and [4].
For A ∈ Mn−1 (C), we define a matrix A0 = (aij )0≤i,j≤n−1 ∈ Mn (C) by substituting a0j =
ai0 = 1 (0 ≤ ∀ i, j ≤ n − 1). Our main result is as follows:
Theorem 1. The following are equivalent.
(a) The orthogonality relation
X

bn (x; N ; η (1) )φA (x; m)φA (x; m′ ) = δm,m′

x∈X(n,N )


holds for ∀ m, m′ ∈ X(n, N ).

ηm
(2)

N
m

(b) A relation
A∗0 D1 A0 = ζD2

(3)

holds for some N th root of unity ζ. Here A∗0 is the conjugate transpose of A0 and Di =
diag(η0i , η1i , . . . , ηn−1i ) ∈ GLn (C) is a diagonal matrix (i = 1, 2).
Remark 1. We assume that the diagonal elements of D1 and D2 appearing in the abovementioned theorem are real. Thus, one can recover
the formula (1.18)
of Gr¨
unbaum and Rah


1 − u1 1 − u2
∈ M2 (C). In this case, since
man’s paper [2] by substituting n = 3 and A =
1 − v1 1 − v2
the diagonal elements of A∗0 D1 A0 and D2 are positive, ζ = 1.
Remark 2 ([4]). We assume that a pair of finite groups (G, H) is a Gel’fand pair and A0 is
the table of the zonal spherical functions of (G, H). Let D0 , . . . , Dn−1 be the double cosets
of H in G, and d0 , . . . , dn be the dimensions of the irreducible components of 1G
H . Put D1 =
diag(|D0 |, . . . , |Dn−1 |) and D2 = diag(|G|/d0 , . . . , |G|/dn−1 ). Then (3) holds from the orthogonality relation of the zonal spherical functions. Furthermore φA (x; m)’s are realized as the zonal
spherical functions of a Gel’fand pair (G ≀ SN , H ≀ SN ). Therefore they satisfy the orthogonality
relation (a) in the theorem. In general, A0 is an eigenmatrix of a character algebra is considered
in [4].
This paper organized as follows. First, we prove the main theorem in the next section.
Second, we prove (2) in the last section. It seems to be the first explicit proof of this fact.

Orthogonality Relations for Multivariate Krawtchouk Polynomials

2


3

Proof of Theorem 1

Let ei = (δ0i , δ1i , . . . , δni ) be an ith unit vector (0 ≤ i ≤ n − 1). We put s = (s0 , s1 , . . . , sn−1 )
and t = (t0 , t1 , . . . , tn−1 ). We compute

xi
n−1
n−1
n−1
n−1
n−1
Y x
Y
X
Y
Y x

x


s i e i A0 t t i =
si i = ΦN (A, x)
aij tj 
(4)
si i .
i=0

i=0

j=0

i=0

i=0

By multiplying (4) with multinomial coefficient, we have
X

x∈X(n,N )

  n−1
x
N Y
s i e i A0 t t i =
x
i=0

n−1
X

t

s i e i A0 t

i=0

!N

= sA0 t t

N

.

(5)

First, we assume (3), and then change the variables, say
s = uA∗0 D1 ,
where u = (u0 , u1 , . . . , un−1 ). This change of variables is same as si = ηi1 ei A0 t u. We substitute s for (5). Then, the right side of (5) gives
sA t t

N

= uζD2 t t

N

= uD2 t t

N



X

=

m∈X(n,N )

 n
N Y
(ηi2 ui ti )mi .
m

(6)

i=0

Under this substitution, we consider the left side of (5) and have
X

x∈X(n,N )

  n−1
x
N Y
si ei A0 t t i =
x
i=0

=

X

x∈X(n,N )

X

x∈X(n,N )

=

X

x∈X(n,N )

  n−1
n−1
x
N Y xi Y
si
e i A0 t t i
x
i=0

i=0

  n−1
Y
x n−1
x
N Y
ei A0 t t i
ηi1 ei A0 t u i
x
i=0

i=0

  n−1
n−1
Y
x n−1
x
N Y xi Y
ei A0 t t i .
ηi1
e i A0 t u i
x
i=0

i=0

i=0



We expand the last two products of the above-mentioned formula in terms of um tm ’s;
n−1
Y

t

e i A0 u

i=0

Y
xi n−1

t

ei A0 t

i=0

 xi

=

X

m,m′ ∈X(n,N )



N
m




N

φA (x; m)φA (x; m′ )um tm .

m

Now, the left side of (5) gives
X

m,m′ ∈X(n,N )



N
m







N 
m′

X

n−1
Y

x∈X(n,N ) i=0



 

xi N
ηi1
φA (x; m)φA (x; m′ ) um tm .
x

(7)

By comparing coefficients of uk tk of (6) with (7), we conclude that

X

n−1
Y

x∈X(n,N ) i=0

 
xi N
φA (x; m)φA (x; m′ ) =
ηi1
x

n−1
Q

mi
ηi2
i=0
 δmm′ .
N
m

(8)

4

H. Mizukawa

Conversely, we assume (8) and substitute it for (7). Then, we reverse the above-mentioned
computations and observe that (5) gives
uD2 t t

N

= uA∗0 D1 A0 t t

N

.

This means that uζ(u, t)D2 t t = uA∗0 D1 A0 t t holds for some N th root of unity ζ(u, t). We have
A∗0 D1 A0 = diag(ζ(e0 , e0 )η02 , . . . , ζ(en−1 , en−1 )ηn−12 ). We put eij (θ, ε) = cos θei + ε sin θej for
|ε| > 0. We define
ζε (θ) =

eij (θ, ε)A∗0 D1 A0 t eij (θ, ε)
ζ(ei , ei ) cos2 θηi2 + ζ(ej , ej )ε2 sin2 θηj2
=
.
eij (θ, ε)D2 t eij (θ, ε)
cos2 θηi2 + ε2 sin2 θηj2

Since ζε ( π2 ) = ζ(εej , εej ) does not depend on ε, we have ζ(εej , εej ) = ζ(ej , ej ). By taking ε as
−ε2 η

Arg( ηi2 j2 ) 6= 0, we have that ζε (θ) is a continuous function from [0, π2 ] to the set of the N th
root of unities. Therefore ζε (θ) is a constant function, especially ζε (0) = ζ(ei , ei ) = ζε ( π2 ) =
ζ(εej , εej ) (0 ≤ i < j ≤ n − 1). Consequently we have
ζD2 = A∗0 D1 A0
for some N th root of unity ζ.

3

Proof of (2)

Here we give a proof of the formula (2) through direct computations. We need the following
lemma.
Lemma 1. Put p = (p0 , . . . , pn−1 ) ∈ Nn0 with |p| ≤ N . For m = (m0 , . . . , mn−1 ) ∈ X(n, N )
and z = (z0 , . . . , zn−1 ) ∈ X(n, N − |p|) with m − z ∈ Nn0 , we have


N − |p|
z



=



N
m



n−1
Q

(−mi )mi −zi

i=0

.

(−N )|p|

Proof . We compute



N −|p|
z



=



=



N (N − |p|)!
N!
m



N
m

 (−1)|p|

n−1
Y
i=0

n−1
Q



mi
(mi − zi )! =
mi −zi , zi

(−1)mi −zi (−mi )mi −zi

i=0

=

(−N )|p|





N
m

N
m





n−1
Q

n−1
Q

(−1)mi −zi (−mi )mi −zi

N
|p| |p|!

i=0

(−mi )mi −zi

i=0

(−N )|p|

.



Now, we can prove the formula (2). We put bij = 1 − aij and ci = (ci0 , . . . , cin−1 ). We compute

 xi
xi

n−1
n−1
n−1

Y n−1
Y n−1
X
X
X

ΦN (A; x) =
tj −
aij tj  =
bij tj


i=0
i=0
j=0
j=0
j=0

pi 
xi −pi 

 n−1

xi
n−1
n−1

X
X
Y X
x
i


bij tj 
tj 
(−1)pi
=


xi − pi , pi
i=0

pi =0

j=0

j=0

Orthogonality Relations for Multivariate Krawtchouk Polynomials

=

n−1
X

(−1)|p| 

X

(−1)|p|

0≤pi ≤xi
(0≤i≤n−1)

=



X

0≤pi ≤xi
(0≤i≤n−1)

=

X

=

(−1)

m∈X(n,N )

tj 

X

|ci |=pi ,
|z|=N −|p|

|p|

X

|ci |=pi ,
|z|=N −|p|

0≤|p|≤N

X

j=0

N −|p|



N
m







In the last equation, we use |p| =

P

i=0

j=0

i=0



n−1
Q
i=0

i=0

(−1)|ci | (−xi )|ci |
n−1
Q

t
cij !

n−1
Q
j=0

(−mj )n−1
P

cij

i=0

(−N )Pij cij

n−1
Q

n−1
Y

(−xi )|ci | n−1
Y

i=1
n−1
Q

i,j=0

n−1
P

z

i,j=0

c

c

bijij tjij

i,j=0

i,j=0

ij cij , mi −zi =

for any i and j, we have the formula.

pi

 n−1
X
xi

bij tj 
xi − pi , pi

 n−1 
 n−1
Y pi  n−1
Y cij cij
N − |p| z Y
xi
t
bij tj
z
xi − pi , pi
ci

N − |p|
z

 X


P

cij ≤N
ij

n−1
Y

5

cij !

i,j=0




c  m
bijij 
t .



cij ≥ 0 and Lemma 1. Since b0j = bi0 = 0

i=0

Acknowledgements
The author expresses his thanks to two referees for their careful reading. Without their many
constructive comments and suggestions, this paper would not have been completed.
This work was supported by KAKENHI 21740032.

References
[1] Griffiths R.C., Orthogonal polynomials on the multinomial distribution, Austral. J. Statist. 13 (1971),
27–35.
[2] Gr¨
unbaum F.A., Rahman M., On a family of 2-variable orthogonal Krawtchouk polynomials, SIGMA 6
(2010), 090, 12 pages, arXiv:1007.4327.
[3] Mizukawa H., Zonal spherical functions on the complex reflection groups and (m + 1, n + 1)-hypergeometric
functions, Adv. Math. 184 (2004), 1–17.
[4] Mizukawa H., Tanaka H., (n + 1, m + 1)-hypergeometric functions associated to character algebras, Proc.
Amer. Math. Soc. 132 (2004), 2613–2618.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52