09-21.2010. 98KB Jun 04 2011 12:07:16 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 21/2010
pp. 89-95

SOME PROPERTIES OF CERTAIN INTEGRAL OPERATORS

Khalida Inayat Noor, Muhammad Arif and Wasim Ul Haq
Abstract. In this paper, we consider certain subclasses of analytic functions with
bounded radius and bounded boundary rotation and study the mapping properties of these
classes under certain integral operators introduced by Breaz et. al recently.

Key Words: Bounded boundary and bounded radius rotations, Integral operators.
2000 Mathematics Subject Classification: 30C45, 30C50.
1. Introduction
Let A be the class of all functions f (z) of the form
f (z) = z +


X


an z n ,

n=2

which are analytic in the open unit disc E = {z : |z| < 1}. Let Cb (ρ) and Sb∗ (ρ)
be the classes of convex and starlike functions of complex order b (b ∈ C − {0}) and
type ρ (0 ≤ ρ < 1) respectively studied by Frasin [3].
Let Pk (ρ) be the class of functions p(z) analytic in E with p(0) = 1 and

Z2π
Re p(z) − ρ

dθ ≤ kπ, z = reiθ ,


1−ρ
0

where k ≥ 2 and 0 ≤ ρ < 1. We note that, for ρ = 0, we obtain the class Pk

defined and studied in [10], and for ρ = 0, k = 2, we have the well known class P of
functions with positive real part. The case k = 2 gives the class P (ρ) of functions
with positive real part greater than ρ.
A function f (z) ∈ A is said to belong to the class Vk (ρ, b) if and only if
1+

1 zf ′′ (z)
∈ Pk (ρ),
b f ′ (z)
89

(1.1)

K.I. Noor, M. Arif, W. Ul Haq - Some properties of certain integral operators

where k ≥ 2, 0 ≤ ρ < 1 and b ∈ C − {0}. When ρ = 0 and b = 1, we obtain the class
Vk of functions with bounded boundary rotation, first discussed by Paatero [2].
Similarly, an analytic function f (z) ∈ Rk (ρ, b) if and only if



1 zf ′ (z)
1+
− 1 ∈ Pk (ρ)
(1.2)
b
f (z)
where k ≥ 2, 0 ≤ ρ < 1 and b ∈ C − {0}. When ρ = 0 and b = 1, we obtain the class
Rk of functions with bounded radius rotation [2]. For more details see [6, 7, 8]. Let
us consider the integral operators
Fn (z) =

Zz 

f1 (t)
t

α 1

···




fn (t)
t

α n

dt

(1.3)

0

and
Fα1 ...αn (z) =

Zz
0

 ′ α1



f1 (t)
. . . fn′ (t) n dt,

(1.4)

where fi (z) ∈ A and αi > 0 for all i ∈ {1, 2, . . . , n}. These operators, given by (1.3)
and (1.4), are introduced and studied by Breaz and Breaz [2] and Breaz et.al [4],
respectively. Recently, Breaz and G¨
uney [3] considered the above integral operators
and they obtained their properties on the classes Cb (ρ), Sb∗ (ρ) of convex and starlike
functions of complex order b and type ρ introduced and studied by Frasin [5].
In this paper, we investigate some propeties of the above integral operators Fn (z)
and Fα1 ...αn (z) for the classes Vk (ρ, b) and Rk (ρ, b) respectively. In order to derive
our main result, we need the following lemma.
Lemma 1.1 . [9] Let f (z) ∈ Vk (α), 0 ≤ α < 1. Then f (z) ∈ Rk (β), where
β=

i

p
1h
(2α − 1) + 4α2 − 4α + 9 .
4

(1.5)

2. Main Results
Theorem 2.1. Let fi (z) ∈ Rk (ρ, b) for 1 ≤ i ≤ n with 0 ≤ ρ < 1, b ∈ C − {0}.
Also let αi > 0, 1 ≤ i ≤ n. If
0 ≤ (ρ − 1)

n
X
i=1

90

αi + 1 < 1,


(2.1)

K.I. Noor, M. Arif, W. Ul Haq - Some properties of certain integral operators

then Fn (z) ∈ Vk (λ, b) with
λ = (ρ − 1)

n
X

αi + 1.

(2.2)

i=1

Proof. From (1.3), we have
n

zFn′′ (z) X

=
αi
Fn′ (z)
i=1




zfi′ (z)
−1 .
fi (z)

(2.3)

1
, we have
b


n

1 zFn′′ (z) X 1 zfi′ (z)

1
=
α
i
b Fn′ (z)
b fi (z)

Then by multiplying (2.3) with

i=1

=

n
X
i=1



 X

n
1 zfi′ (z)
−1 −
αi 1 +
αi
b fi (z)
i=1

or, equivalently



n
n
X
X
1 zfi′ (z)
1 zFn′′ (z)

−1 .
=1−
αi +
αi 1 +
1+
b Fn′ (z)
b fi (z)
i=1

(2.4)

i=1

Subtracting and adding ρ on the right hand side of (2.4), we have




 X


n
1 zFn′′ (z)
1 zfi′ (z)
1+
−1
−ρ ,
−λ =
αi 1 +
b Fn′ (z)
b fi (z)

(2.5)

i=1

where λ is given by (2.2). Taking real part of (2.5) and then simple computation
gives





Z2π 
Z2π 
n
′′ (z)
X




zF
1
1 zfi′ (z)
n
dθ.
dθ ≤
Re 1 +


1

ρ

λ
α
Re
1
+
i





b Fn (z)
b fi (z)
i=1

0

0

(2.6)

Since fi (z) ∈ Rk (ρ, b) for 1 ≤ i ≤ n, we have


 ′
Z2π 


dθ ≤ (1 − ρ) kπ.
Re 1 + 1 zfi (z) − 1

ρ


b fi (z)
0

91

(2.7)

K.I. Noor, M. Arif, W. Ul Haq - Some properties of certain integral operators

Using (2.7) in (2.6), we obtain


Z2π 
′′


Re 1 + 1 zFn (z) − λ dθ ≤ (1 − λ) kπ.


b Fn′ (z)
0

Hence Fn (z) ∈ Vk (λ, b) with λ is given by (2.2).By setting k = 2 in Theorem 2.1,
we obtain the following result proved in [3].
Corollary 2.2. Let fi (z) ∈ Sb∗ (ρ) for 1 ≤ i ≤ n with 0 ≤ ρ < 1, b ∈ C − {0}.
Also let αi > 0, 1 ≤ i ≤ n. If
0 ≤ (ρ − 1)

n
X

αi + 1 < 1,

i=1

then Fn (z) ∈ Cb (λ) with λ = (ρ − 1)

n
X

αi + 1.

i=1

Theorem 2.3. Let fi (z) ∈ Vk (ρ, 1) for 1 ≤ i ≤ n with 0 ≤ ρ < 1. Also let
αi > 0, 1 ≤ i ≤ n. If
n
X
0 ≤ (β − 1)
αi + 1 < 1,
i=1

then Fn (z) ∈ Vk (λ, 1) with λ = (β − 1)

n
X

αi + 1 and β is given by (1.5).

i=1

Proof. From (2.6) with b = 1, we have



Z2π 
Z2π  ′
n
′′ (z)
X




zF
zfi (z)
Re 1 + n
dθ.



β

λ


α
Re
i




Fn′ (z)
fi (z)
i=1

0

(2.8)

0

Since fi (z) ∈ Vk (ρ, 1) for 1 ≤ i ≤ n, then by using Lemma 1.1, we have

Z2π  ′


Re zfi (z) − β dθ ≤ (1 − β) kπ,


fi (z)
0

where β is given by (1.5) with α = ρ. Using (2.9) in (2.8), we obtain


Z2π 
′′


Re 1 + zFn (z) − λ dθ ≤ (1 − λ) kπ.


Fn′ (z)
0

92

(2.9)

K.I. Noor, M. Arif, W. Ul Haq - Some properties of certain integral operators

Hence Fn (z) ∈ Vk (λ, b) with λ = (β − 1)

n
X

αi + 1.

i=1

Set n = 1, α1 = 1, α2 = · · · = αn = 0 in Theorem 2.3, we obtain.
Corollary 2.4. Let f (z) ∈ Vk (ρ). Then the Alexandar operator F0 (z), defined
in [1] , belongs to the class Vk (β), where β is given by (1.5).
For ρ = 0 and k = 2 in Corollary 2.4, we have the well known result, that is,
 
1
f (z) ∈ C (0) implies F0 (z) ∈ C
.
2
Theorem 2.5. Let fi (z) ∈ Vk (ρ, b) for 1 ≤ i ≤ n with 0 ≤ ρ < 1, b ∈ C − {0}.
Also let αi > 0, 1 ≤ i ≤ n. If
0 ≤ (ρ − 1)

n
X

αi + 1 < 1,

i=1

then Fα1 ...αn (z) ∈ Vk (µ, b) with µ = (ρ − 1)

n
X

αi + 1.

i=1

Proof. From (1.4), we have
n

Fα′′1 ...αn (z) X
=
αi
Fα′ 1 ...αn (z)
i=1



fi′′ (z)
fi′ (z)



.

z
, we have
b


n
1 zFα′′1 ...αn (z) X 1 zfi′′ (z)
=
αi
b Fα′ 1 ...αn (z)
b
fi′ (z)

Then by multiplying both sides with

i=1

This relation is equivalent to



 X


n
1 zfi′′ (z)
1 zFα′′1 ...αn (z)
−ρ ,
−µ =
αi 1 +
1+
b Fα′ 1 ...αn (z)
b fi′ (z)

(2.10)

i=1

where µ = (ρ − 1)

n
X

αi +1. Taking real part of (2.10) and then simple computation

i=1

gives us





Z2π 
Z2π 
n
′′
X




1 zfi′′ (z)
Re 1 + 1 zFα1 ...αn (z) − µ dθ ≤
dθ.


ρ
α
Re
1
+
i




b Fα′ 1 ...αn (z)
b fi′ (z)
0

i=1

0

(2.11)

93

K.I. Noor, M. Arif, W. Ul Haq - Some properties of certain integral operators

Since fi (z) ∈ Vk (ρ, b) for 1 ≤ i ≤ n, we have


Z2π 
′′


Re 1 + 1 zfi (z) − ρ dθ ≤ (1 − ρ) kπ.



b fi (z)

(2.12)

0

Using (2.12) in (2.11), we obtain



Z2π 
′′


Re 1 + 1 zFα1 ...αn (z) − µ dθ ≤ (1 − µ) kπ.



b Fα1 ...αn (z)
0

Hence Fα1 ...αn (z) ∈ Vk (µ, b) with µ = (ρ − 1)

n
X

αi + 1.

i=1

By setting k = 2 in Theorem 2.5, we obtain the following result proved in [3].
Corollary 2.6. Let fi (z) ∈ Cb (ρ) for 1 ≤ i ≤ n with 0 ≤ ρ < 1, b ∈ C − {0}.
Also let αi > 0, 1 ≤ i ≤ n. If
0 ≤ (ρ − 1)

n
X

αi + 1 < 1,

i=1

then Fα1 ...αn (z) ∈ Cb (µ) with µ = (ρ − 1)

n
X

αi + 1.

i=1

References
[1] I.W. Alexander, Functions which map the interior of the unit circle upon
simple regions, Ann. of Math., 17(1915), 12-22.
[2] D. Breaz, N. Breaz, Two integral operator, Studia Universitatis Babes-Bolyai,
Mathematica, Clunj-Napoca, 3(2002), 13-21.
¨ Guney, The integral operator on the classes S ∗ (b) and Cα (b),
[3] D. Breaz, H. O
α
J. Math. Ineq. vol. 2, 1(2008), 97-100.
[4] D. Breaz, S. Owa, N. Breaz, A new integral univalent operator, Acta Univ.
Apulensis Math. Inform., 16(2008), 11-16.
[5] B. A. Frasin, Family of analytic functions of complex order, Acta Math. Acad.
Paed. Ny. 22(2006), 179-191.
[6] K. I. Noor, Properties of certain analytic functions, J. Natural Geometry,
7(1995), 11-20.
94

K.I. Noor, M. Arif, W. Ul Haq - Some properties of certain integral operators

[7] K. I. Noor, On some subclassess of fuctions with bounded boundary and
bounded radius rotation, Pan. Amer. Math. J., 6(1996), 75-81.
[8] K. I. Noor, On analytic functions related to certain family of integral operators,
J. Ineq. Pure and Appl. Math. 7(2)(26)(2006).
[9] K.I.Noor, W. Ul-Haq, M.Arif, S. Mustafa, On Bounded Boundary and Bounded
Radius Rotations, J. Inequ. Appl., vol. (2009) articls ID 813687, pages 12.
[10] B. Pinchuk, Functions with bounded boundary rotation, Isr. J. Math., 10(1971),
7-16.
Prof. Dr. Khalida Inayat Noor
Department of Mathematics
COMSATS Institute of Information Technology,
Islamabad Pakistan
email: [email protected]
Dr. Muhammad Arif
Department of Mathematics
Abdul Wali Khan University Mardan
Pakistan
email: [email protected]

95

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52