Paper-14-Acta23.2010. 114KB Jun 04 2011 12:03:10 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 23/2010
pp. 139-145

CONVOLUTION PROPERTIES OF HARMONIC UNIVALENT
FUNCTIONS PRESERVED BY SOME INTEGRAL OPERATOR
F. M. Al-Oboudi
Abstract. A complex valued function f = u + iv defined in a domain D ⊂ C,
is harmonic in D, if u and v are real harmonic. Such functions can be represented
as f (z) = h(z) + g(z), where h an g are analytic in D. In this paper we study
n f, n ∈ N =
some convolution properties preserved by the integral operator IH,λ
0
N ∪ {0}, λ > 0, where the functions f are univalent harmonic and sense-preserving
n
in the open unit disc E = {z : |z| < 1}, IH,λ
f (z) = Iλn h(z) + Iλn g(z), and Ihn h(z) =



X
X
ak
bk
k n
z
,
I
g(z)
=
z k . Relevant connections of
z+
λ
n
[1 + λ(k − 1)]
[1 + λ(k − 1)]n
k=2
k=1
the results presented here with those obtained in earlier works are pointed out.
2000 Mathematics Subject Classification: 30C45.

1. Introduction
Let A denote the class of analytic functions in the open unit disc E = {z : |z| <
1}, with the normalization

X
f (z) = z +
ak z k .
k=2

Let K(α), Rα , and C(α) denote the classes of functions f ∈ A, which are, respectively, convex, prestarlike and close to convex of order α.
A continuous complex-valued function f = u + iv defined in a simply connected
domain D is said to be harmonic in D if both u and v are real harmonic in D.
There is a close inter-relation between analytic functions and harmonic functions.
For example, for real harmonic functions u and v there exist analytic functions U
and V so that u = Re U and v = Im V . Then
f (z) = h(z) + g(z),
where h and g are, respectively, the analytic functions (U + V )/2 and (U − V )/2.
In this case, the Jacobian of f = h + g is given by
Jf (z) = |h′ (z)|2 − |g ′ (z)|2 ,
139


F. Al-Oboudi - Convolution Properties of Harmonic Univalent Functions

The mapping z → f (z) is sense preserving and locally univalent in D if and
only if Jf > 0 in D. See also Clune and Sheil-Small [4]. The function f = h + g
is said to be harmonic univalent in D if the mapping z → f (z) is sense preserving
harmonic and univalent in D. We call h the analytic part and g the co-analytic part
of f = h + g.
Let SH denote the family of functions f = h + g which are harmonic univalent
and sense-preserving in E with the normalization
h(z) = z +


X

ak z k , g(z) =

k=2



X

bk z k .

(1.1)

k=1

Let KH and CH denote the subclasses of SH consisting of harmonic functions
which are, respectively. convex and close to convex in E.
Finally, we define convolution of two complex-valued harmonic functions f1 (z) =




X
X
X
X
k

k
k
z+
a1k z +
b1k z and f2 (z) = z +
b2k z k by
a2k z +
k=2

k=1

f1 (z) ∗ f2 (z) = z +

k=2


X

k=1


k

a1k a2k z +

k=2


X

b1k b2k z k .

k=1

The above convolution formula reduces to the Hadamard product if the coanalytic parts of f1 and f2 are zero.
n
In this paper we define and give some properties of the integral operator IH,λ
f, n ∈


N0 = N ∪ {0}, λ > 0, constructed as the convolution f ∗ ψn of harmonic univalent

and sense-preserving functions f in the unit disc E with the prestarlike function ψn .
We mainly study some convolution properties preserved by this operator.
2. Definitions and Preliminary Results
n f and derive some of its basic
In the following we define the integral operator IH,λ
properties. We need the following definition.

Definition 1. Let f ∈ SH , and assume ψ is analytic in E. Then (f ∗ ψ)(z) =

(ψ ∗ f )(z) = (h ∗ ψ)(z) + (g ∗ ψ)(z).
n f, n ∈ N , λ > 0, is
Definition 2. Let f ∈ SH . Then the integral operator IH,λ
0
defined by
n
(2.1)
IH,λ
f (z) = Iλn h(z) + Iλn g(z),

140


F. Al-Oboudi - Convolution Properties of Harmonic Univalent Functions

where Iλn f, λ > 0 is the multiplier integral operator defined [3] on f ∈ A as follows
Iλ0 f (z) =f (z)
Iλ1 f (z)

=

Iλ2 f (z) =

Iλn f (z) =

1
λz

1
−1
λ


1
λz

1
−1
λ

1
λz

Z

z

Z

z

1


t λ −2 f (t)dt

0

0

···
Z

1
−1
λ

z

0

1

t λ −2 Iλ1 f (t)dt


1

t λ −2 Iλn−1 f (t)dt, n ∈ N.

(2.2)

n f is zero, then I n f ≡ I n f , [3]. When
Remark 1. If the co-analytic part of IH,λ
H,λ
λ
1
1
n
λ=
, γ > −1, Iλ f is Bernardi integral operator. When λ = 1, I1 f is Salagean
1+γ
integral operator [8].
n f satisfies the following
Remark 2. The integral operator IH,λ
n
n
(i) IH,λ
(DH,λ
f (z)) = f (z),
n f is harmonic differential operator defined by Li Shuai and Liu Peide [9].
where DH,λ


n
f (z) = (f ∗ ψn )(z) where
(ii) IH,λ

ψn (z) = z +


X
k=2

and

1
zk ,
[1 + λ(k − 1)]n

= (ψ ∗ ψ · · · ∗ ψ)(z)
|
{z
}
n-times

X

1
zk ,
[1 + λ(k − 1)]
k=2


1
1
= z2 F1 1, ; 1 + ; z ,
λ
λ

ψ(z) = z +

(2.3)

(2.4)

a(a + 1) · b(b + 1) 2
a·b
z+
z +· · · , for any real
1·c
2! · c(c + 1)
or complex numbers a, b and c (c 6= 0, −1, −2, . . .), is the well-known hypergeometric
series which represents an analytic function E

where the function 2 F1 (a, b; c; z) = 1+

141

F. Al-Oboudi - Convolution Properties of Harmonic Univalent Functions

n
(iii) IH,λ
f (z) = z +


X
k=2



X
ak
bk
zk +
zk ,
n
[(1 + λ(k − 1)]
[1 + λ(k − 1)]n
k=1

n+1
n+1
n+1
n
f (z))z ].
(iv) IH,λ
f (z) = (1 − λ)IH,λ
f (z) + λ[z(IH,λ
f (z))z + z(IH,λ
n f (z), given by (2.1), is sense-preserving, but may not be
(v) The operator IH,λ
n
univalent in E.
I H,λ
f (z) = H(z) + G(z), then |G′ | = |(Iλn g)′ | =

Consider
1


1
|(g ∗ ψn )′ | = ψn ∗ g ′ < ψn ∗ h′ = |(h ∗ ψn )′ | = |(Iλn h)′ | = |H ′ |, which
z
z
n f (z) is sense-preserving. To show that I n f (z), may not
shows that IH,λ
H,λ
n f is
be univalent in E, consider the case where the co-analytic part of IH,λ
1
zero, and n = 1, λ = . The function f (z) = (1 + i)[(1 − z)−1+i − 1] =
2
(1 + i)(e(−1+i) ln(1−z) − 1), given by Campbell and V. Singh [5] is normalized
univalent in E, with this function f , equation (2.2) gives

2
I 1 f (z) =
2
z
1

Z

z

f (t)dt = 2i(1 + i)

0

(1 − z)i − 1
− 2(1 − i).
z

If we set zm = 1 − e−2πm , we find that I 01 f (zm ) = −2(1 + i) for m = 1, 2, . . .
2

Hence I 01 f (z) is infant-valent [5].
2

We will need the following lemmas.
Lemma 1. [6] Let ϕ and ψ be convex analytic in E. Then
(i) ϕ ∗ ψ is convex analytic in E.
(ii) ϕ ∗ f is close to convex analytic in E, if f is close to convex analytic in E.
Lemma 2. [7] (i) Let α ≤ 1 and f, g ∈ Rα . Then f ∗ g ∈ Rα .
(ii) For α < β ≤ 1, we have Rα ⊂ Rβ .
(iii) For α < 1, let f ∈ C(α) and g ∈ Rα . Then f ∗ g ∈ C(α).
Lemma 3. [4] Let h ∈ A and g ∈ A.
(i) if |g ′ (0)| < |h′ (0)| and h + ǫg is close to convex in E, for each ǫ(|ǫ| = 1), then
f = h + g ∈ CH .
(ii) If f = h + g is harmonic and locally univalent in E, and if h + ǫg is convex
analytic in E for some ǫ(|ǫ| = 1), then f = h + g ∈ CH .
142

F. Al-Oboudi - Convolution Properties of Harmonic Univalent Functions

Lemma 4. Let ψ be as in (2.4). Then
(i) ψ ∈ R(1− 1 ) .
λ

(ii)

ψ(z)
is convex univalent in E.
z

For (i) we refer to [7] and for (ii) see [2].
From Lemma 2 and Lemma 4(i) we obtain
Corollary 1. ψn ∈ R(1− 1 ) .
λ

3. Main Results
We now state and prove our main results.


Theorem 1. Let f =
 h + g, where h and g are given byn (1.1). If |g (0)| < |h (0)|
1
and (h + ǫg) ∈ C 1 − λ , λ ≥ 1 for each ǫ(ǫ| = 1), then IH,λ f ∈ CH .

Proof. Iλn (h + ǫg) = (h + ǫg) ∗ ψn
= Iλn h + ǫIλn g.
(3.1)


1
Since (h + ǫg) ∈ C 1 −
, and ψn ∈ R(1− 1 ) , applying Lemma 2(ii), we obtain
λ
λ


1
1
. Since 1 − ≥ 0, for λ ≥ 1 then Iλn h + ǫIλn g) ∈ C(0),
(Iλn h + ǫIλn g) ∈ C 1 −
λ
λ
the class of analytic close to convex functions in E. Applying Lemma 3(i), we get
the required result.
n
Theorem 2. If λ ≤ 1, IH,λ
f = Iλn h + Iλn g is harmonic and locally univalent in
n
E, and if h + ǫg is convex analytic in E for some ǫ(|ǫ| = 1), then IH,λ
f ∈ CH .

1
≤ 0, then applying Lemma
λ
2(ii), we get ψn ∈ R0 ≡ K(0). Since h + ǫg ∈ K(0), then from (3.1) and Lemma
1(i), we deduce that Iλn h + ǫIλn g, is convex analytic in E. Applying Lemma 3(ii), we
get the desired result.
Proof. Since ψn ∈ R(1− 1 ) , and λ ≤ 1, implies 1 −
λ

Remark 1. For n = 0, Theorems 1 and 2 reduce to Clune and Sheil-Small
results, given in Lemma 3.

143

F. Al-Oboudi - Convolution Properties of Harmonic Univalent Functions

Theorem 3. Let f = h + g, where h and g are given by (1.1), such that
|g ′ (0)| < |h′ (0)| and h + ǫg is close to convex analytic in E, for each ǫ(|ǫ| = 1). If ϕ
is convex analytic in E, then for λ ≥ 1,
n
(ϕ + σϕ) ∗ IH,λ
f ∈ CH , |σ| = 1.

Proof. Let (ϕ + σϕ) ∗ (Iλn h(z) + Iλn g(z)) = ϕ ∗ Iλn h + σϕ ∗ Iλn g = H + G. Now
H + γG = ϕ ∗ Iλn h + γσϕ ∗ Iλn g
= ϕ ∗ (Iλn h + ǫIλn g), ǫ = γσ.
From the proof of Theorem 1, we see that (Iλn h(z) + ǫIλn g(z)), is close to convex
analytic function for λ ≥ 1 and for each ǫ (|ǫ| = 1). Applying Lemma 3(i), we
deduce that H + γG is close to convex analytic function for each γ(|γ| = 1). Next
we show that |G′ (0)| < |H ′ (0)|,



1
n ′

n ′

|G (0)| = |(σϕ ∗ Iλ g) |z=0 = ϕ ∗ σ(Iλ g)
z
z=0



1
= |(ϕ ∗ Iλn h)′ |z=0 = |H ′ (0)|.
< σϕ ∗ (Iλn h)′
z
z=0
n f ∈C .
By Theorem 1, we obtain H + G = (ϕ + σϕ) ∗ IH,λ
H

Remark 2. For n = 0, Theorem 3 reduces to the results of Ahuja and Jahangiri
[1].
Theorem 4. Let f = h + g, where h and g are given by (1.1). Then
Z

0

1

n f (z)
IH,λ

z

=

n−1
t−λ IH,λ
f (ztλ )dt.



z dt
z
Proof. From (2.4), ψ can be written as ψ(z) =
. Since h∗
(z) =
λ
1−ztλ
0 1−zt


Z
1
z
h(tλ z)
g(tλ z)
n−1
(z)
=
and
g

,
then
(I
h∗ψ)(z)
=
zt−λ Iλn−1 h(tλ z)dt,
λ

1 − ztλ

0
Z 1
n−1
and (Iλ g ∗ ψ)(z) =
zt−λ Iλn−1 g(tλ z)dt. Therefore (2.1) gives
Z

z

0

n
IH,λ
f (z) =

Z

0

1

zt−λ (Iλn−1 h(tλ z) + Iλn−1 g(tλ z))dt.
144

F. Al-Oboudi - Convolution Properties of Harmonic Univalent Functions

Hence

n f (z)
IH,λ

z

=

Z

0

1

n−1
t−λ IH,λ
f (tλ z)dt.

References
[1] O.P. Ahuja and J.M. Janahgiri, Convolutions for special classes of harmonic
univalent functions, Applied Mathematics Letters 16 (2003), 905–909.
[2] F.M. Al-Oboudi and K.A. Al-Amoudi, Subordination results for classes of
analytic functions related to conic domains defined by a fractional operator, J. Math.
Anal. Appl., 55 (2009), 412–420.
[3] F. M. Al-Oboudi and Z.M. Al-Qahtani, On a subclass of analytic functions
defined by a new multiplier integral operator, Far East J. Math Sci. (FGMS), 25,
no. 1 (2007), 59–72.
[4] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci.
Fenn. Ser. A.I. Math., 9 (1984), 3–25.
[5] D.M. Campbell and V. Singh, Valence properties of the solution of a differential equation, Pacific J. Math., 84 (1979), 29–33.
[6] St. Ruscheweyh, and T. Sheil-Small, Hadamard products of schlicht functions
and the Polya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119–135.
[7] St. Ruscheweyh, Convolutions in Geometric Function Theory, Sem. Math.
Sup. 83, Presses Univ. de Montreal, 1982.
[8] G. S
¸ . Sˇalˇ
agean, Subclasses of univalent functions, Complex analysis - Proc.
5th Rom.-Finn. Semin., Bucharest 1981, Part 1, Lect. Notes Math. 1013, (1983),
362–372.
[9] LI Shuai and LIU Peide, A new class of harmonic univalent functions by the
generalized Salagean operaor, WUJNS. 12, no. 6(2007), 965–970.
[10] Z. Zongzhu and S. Owa, Convolution properties of a class of bounded analytic
functions, Bull. Austral. Math. Soc., 45, no. 1 (1992), 9–23.
F. Al-Oboudi
Department of Mathematical Sciences
College of Science, Princess Nora Bint Abdul Rahman University
Riyadh, Saudi Arabia
email:[email protected]

145

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52