Paper6-Acta25-2011. 105KB Jun 04 2011 12:03:18 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 25/2011
pp. 99-104

ON SOME DOUBLE λ (∆, F ) −STATISTICAL CONVERGENCE OF
FUZZY NUMBERS

Ayhan esi

Abstract. In this paper, we introduce the new concepts of double ∆−statistical
convergence, strongly double λ (∆, F ) − summable sequences and double λ (∆, F ) −
statistical convergence of sequences of fuzzy numbers. We give some inclusion relations related to these concepts..
2000 Mathematics Subject Classification: 40A05, 40C05.
1.Introduction
Throughout the paper, a double sequence is denoted by X = (Xk,l ) of fuzzy
numbers and denote w2 (F ) denote all sequences of fuzzy numbers. Nanda [4] studied
single sequence of fuzzy numbers and showed that the set of all convergent sequences
of fuzzy numbers form a complete metric space.In [2] , Sava¸s studied the concept double convergent sequences of fuzzy numbers. Sava¸s [1] studied the classes of difference
sequences of fuzzy numbersc (∆, F ) and l∞ (∆, F ). Later in [3] Sava¸s studied the

concepts of strongly double V, λ −summable and double Sλ −convergent sequences
for double sequences of fuzzy numbers.
In this paper, we continue to study the concepts of strongly double λ (∆, F )
−summable and Sλ2 (∆) −convergence for double sequences of fuzzy numbers.
2.preliminaries
Before continuing with the discussion, we pause toestablish
some notations.

Let D denote the set of all closed bounded intervals A = A, A on the real line R,
where A and A denote the end points of A. For A, B ∈ D, we define
A ≤ B iff A ≤ B and A ≤ B,


ρ(A, B) = max |A − B | , A − B .
99

A. Esi - On Some Double λ (∆, F ) −Statistical Convergence of Fuzzy Numbers

It is not hard to see that ρ defines a metric on D and ρ(A, B) is called the
distance between the intervals A and B. Also, it is easy to see that ≤ defined above

is a partial relation in D.
A fuzzy number is a fuzzy subset of real line R which is bounded, convex
and normal. Let L (R) denote the set of all fuzzy numbers which are upper semicontinuous and have compact support. In other words if X ∈ L (R) then for any
α ∈ [0, 1] , X α is compact set in R, where
Xα =

t : X (t) ≥ α if α ∈ (0, 1]
t : X (t) > 0 if
α=0.

Define a map d : L (R) xL (R) → R by the rule d(X, Y ) = supα∈[0,1] ρ (X α , Y α ) .
It is straighforward to see that d is a metric in L (R) . For X, Y ∈ L (R) , define
X ≤ Y iff X α ≤ Y α for any α ∈ [0, 1] .
A metric d on L (R) is said to be translation invariant metric if
d (X + Z, Y + Z) = d(X, Y ) for X, Y, Z ∈ L (R) .
Now we give some new definitions.
Definition 2.1. A double sequence X = (Xk,l ) of fuzzy numbers is said to be
double ∆ − convergent in the Pringsheim’s sense or P∆ − convergent to a fuzzy
number Xo if for every ε > 0, there exists N ∈ N such that
d (∆Xk,l , Xo ) < ε for k, l > N

where ∆Xk,l = Xk,l+1 − Xk,l − Xk+1,l + Xk+1,l+1 and we denote P − lim ∆X = Xo .
The number Xo is called the Pringsheim limit of ∆X. More exactly, we say that a
double sequence (∆Xk,l ) converges to a finite fuzzy number Xo if ∆X tend to Xo as
both k and l tends to infinity independently of one another. Let c2 (∆, F ) denote the
set of all double convergent sequences of fuzzy numbers.
Definition 2.2. A double sequence X = (Xk,l ) of fuzzy numbers is said to be
double ∆ − bounded if there exists a positive number K such that if the set
{∆Xk,l : k, l ∈ N}
2 (∆, F ) .
We denote the set of all double ∆−bounded sequences of fuzzy numbers by l∞
Definition 2.3. A double sequence X = (Xk,l ) of fuzzy numbers is said to be
double ∆ − statistically convergent to Xo provided that for each ε > 0,

P − lim
m,n

1
|{(k, l) : k ≤ m, l ≤ n; d (∆Xk,l , Xo ) ≥ ε}| = 0.
mn
100


A. Esi - On Some Double λ (∆, F ) −Statistical Convergence of Fuzzy Numbers

In this case we write S 2 − lim ∆X = Xo or ∆Xk,l → Xo S 2 (∆, F ) and we denote
the set of all double ∆ − statistically convergent sequences of fuzzy numbers by
S 2 (∆, F ) .
Definition 2.4. Let β = (βm ) and µ = (µn ) be two nondecreasing sequences of
positive real numbers such that each tend to infinity and βm+1 ≤ βm + 1, β1 = 1 and
µn+1 ≤ µn + 1, µ1 = 1. A double sequence X = (Xk,l ) of fuzzy numbers is said to be
strongly double λ (∆, F ) − summable if there is a fuzzy number Xo such that
P − lim
m,n

1
λm,n

X

d (∆Xk,l , Xo ) = 0


(k,l)∈Im,n

where λm,n = βm .µn and Im,n = {(k, l) : m − βm + 1 ≤ k ≤ m, n − µn +
 1 ≤ l ≤ n} .
We denote the set of strongly double λ (∆, F ) − summable sequences by Vλ (∆, F ).
If λm,n = mn for all m, n ∈ N, then the class of strongly double λ (∆, F )−summable
sequences reduce to [C, 1, 1] (∆, F ) , the class of strongly double Cesaro summable sequences of fuzzy numbers defined as follows:
m,n
1 X
d (∆Xk,l , Xo ) = 0.
m,n mn

P − lim

k,l=1,1

Definition 2.5. A double sequence X = (Xk,l ) of fuzzy numbers is said to
be double λ (∆, F ) − statistically convergent or Sλ2 (∆, F ) − convergent to a fuzzy
number Xo if for every ε > 0,
P − lim

m,n

1
λm,n

|{(k, l) ∈ Im,n : d (∆Xk,l , Xo ) ≥ ε}| = 0.



In this case we write Sλ2 − lim ∆X = Xo or ∆Xk,l → Xo Sλ2 (∆, F ) and we
denote the set of all double λ (∆, F ) − statistically convergent sequences of fuzzy
numbers by Sλ2 (∆, F ) .If λm,n = mn for all m, n ∈ N, we write S 2 − lim ∆X = Xo

or ∆Xk,l → Xo S 2 (∆, F ) and the set Sλ2 (∆, F ) reduces to S 2 (∆, F ) .
We need the following proposition in future.
Proposition 2.1. If d is a translation invariant metric on L (R) ,then



d ∆X + ∆Y, 0 ≤ d ∆X, 0 + d ∆Y, 0 .

Proof. The proof is clear so we omitted it.

101

A. Esi - On Some Double λ (∆, F ) −Statistical Convergence of Fuzzy Numbers

3.main results
Theorem 3.1. A double sequence X = (Xk,l ) of fuzzy numbers is strongly double
λ (∆, F )−summable to the fuzzy number Xo , then it is double λ (∆, F )−statistically
convergent to Xo .
Proof. Given ε > 0.Then
1
λm,n

X

d (∆Xk,l , Xo ) ≥

(k,l)∈Im,n


1

X

λm,n

d (∆Xk,l , Xo )

(k,l)∈Im,n

(

)

d ∆Xk,l ,Xo ≥ε



ε
λm,n


|{(k, l) ∈ Im,n : d (∆Xk,l , Xo ) ≥ ε}| .

The result follows from this inequality.
Theorem 3.2. If a double ∆ − bounded double sequence of fuzzy numbers X =
(Xk,l ) is double λ (∆, F ) − statistically convergent to the fuzzy number Xo , then it
is strongly double λ (∆, F ) − summable to Xo .
Proof. Suppose that X = (Xk,l ) is double ∆ − bounded and double λ (∆, F ) −
statistically convergent to Xo .Since X = (Xk,l ) is double ∆ − bounded, we may
write d (∆Xk,l , Xo ) ≤ K for all k, l ∈ N.Also for given ε > 0, we obtain
1
λm,n

X

d (∆Xk,l , Xo ) =

(k,l)∈Im,n

1


X

λm,n

d (∆Xk,l , Xo )

(k,l)∈Im,n

(

)

d ∆Xk,l ,Xo ≥ε

+

1
λm,n


X

d (∆Xk,l , Xo )

(k,l)∈Im,n

(

)

d ∆Xk,l ,Xo 0.

A. Esi - On Some Double λ (∆, F ) −Statistical Convergence of Fuzzy Numbers

Proof. For given ε > 0, we have
{(k, l) : k ≤ m, l ≤ n; d (∆Xk,l , Xo ) ≥ ε} ⊃ {(k, l) ∈ Im,n : d (∆Xk,l , Xo ) ≥ ε} .
Therefore
1
1
|{(k, l) : k ≤ m, l ≤ n; d (∆Xk,l , Xo ) ≥ ε}| ≥
|{(k, l) ∈ Im,n : d (∆Xk,l , Xo ) ≥ ε}|
mn
mn
=

λm,n 1
|{(k, l) ∈ Im,n : d (∆Xk,l , Xo ) ≥ ε}| .
mn λm,n

Taking the limit as m, n → ∞ in the Pringsheim’s sense and using hypothesis, we
get X = (Xk,l ) is double ∆ − statistically convergent to Xo .
2
2 (∆, F ) , where
Theorem 3.4. wλ,∞
(∆, F ) = l∞


1
2
(∆, F ) = X = (Xk,l ) ∈ w2 (F ) : sup
wλ,∞

m,n λm,n

X




d (∆Xk,l , Xo ) < ∞

.



(k,l)∈Im,n

2
Proof. Let X = (Xk,l ) ∈ wλ,∞
(∆, F ) . Then there exists a constant K > 0 such
that
X
1
1
d (∆Xk,l , Xo ) ≤ sup
d (∆Xk,l , Xo ) ≤ K
λ1,1
m,n λm,n
(k,l)∈Im,n

2 (∆, F ) .
l∞

2 (∆, F ) .Then
and so we have X = (Xk,l ) ∈
Conversely, let X = (Xk,l ) ∈ l∞
there exists a constant H > 0 such that d (∆Xk,l , Xo ) ≤ H for all k, l ∈ N and so

1
λm,n

X

d (∆Xk,l , Xo ) ≤

(k,l)∈Im,n

H
λm,n

X

1 = H.

(k,l)∈Im,n

2
Thus X = (Xk,l ) ∈ wλ,∞
(∆, F ) .This completes the proof.

References
[1] E.Sava¸s, A note on sequences of fuzzy numbers, Information Sciences, 124,(2000),
297-300.
[2] E.Sava¸s, A note on double sequences of fuzzy numbers, Turkish Journal of
Mathematics, 20(2),(1996), 175-178.
[3] E.Sava¸s, On λ−statistically convergent double sequences of fuzzy numbers,
Journal of Inequalities and Applications, Volume 2008, Article ID 147827, 6 pages,
doi: 10.1155/2008/147827.
103

A. Esi - On Some Double λ (∆, F ) −Statistical Convergence of Fuzzy Numbers

[4] S.Nanda, On sequences of fuzzy numbers, Fuzzy Sets and Systems, 33(1),(1989),
123-126.
Ayhan Esi
Department of Mathematics
University of Adiyaman
Altin¸sehir,02040, Adiyaman, Turkey
email:[email protected]

104

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52