Paper-19-20-2009. 117KB Jun 04 2011 12:03:11 AM

ACTA UNIVERSITATIS APULENSIS

No 20/2009

CONVERGENCE THEOREMS FOR UNIFORMLY L-LIPSCHITZIAN
ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

Arif Rafiq
Abstract. Let K be a nonempty closed convex subset of a real Banach space E,
T : K → K a uniformly L-Lipschitzian asymptotically pseudocontractive mapping
with sequence {kn }n≥0 ⊂ [1, ∞), lim kn = 1 such that p ∈ F (T ) = {x ∈ K : T x =
n→∞

x}. Let {an }n≥0 , {bn }n≥0 , {cn }n≥0 beP
real sequences in [0, 1] satisfying the following
conditions: (i) an + bn + cn = 1; (ii) n≥0 bn = ∞; (iii) cn = o(bn ); (iv) lim bn = 0.
n→∞

For arbitrary x0 ∈ K let {xn }n≥0 be iteratively defined by

xn+1 = an xn + bn T n xn + cn un , n ≥ 0,

where {un }n≥0 is a bounded sequence of error terms in K. Suppose there exists a
strictly increasing function ψ : [0, ∞) → [0, ∞), ψ(0) = 0 such that
hT n x − p, j(x − p)i ≤ kn ||x − p||2 − ψ(||x − p||), ∀x ∈ K.
Then {xn }n≥0 converges strongly to p ∈ F (T ).
The results proved in this paper significantly improve the results of Ofoedu [11].
The remark 3 is important.
2000 Mathematics Subject Classification: Primary 47H10, 47H17: Secondary
54H25.
1.Introduction
Let E be a real normed space and K be a nonempty convex subset of E. Let J

denote the normalized duality mapping from E to 2E defined by
J(x) = {f ∗ ∈ E ∗ : hx, f ∗ i = ||x||2 and ||f ∗ || = ||x||},
where E ∗ denotes the dual space of E and h·, ·i denotes the generalized duality
pairing. We shall denote the single-valued duality map by j.
Let T : D(T ) ⊂ E → E be a mapping with domain D(T ) in E.
183

A. Rafiq - Convergence theorems for uniformly L-Lipschitzian asymptotically...


Definition 1 The mapping T is said to be uniformly L-Lipschitzian if there exists
L > 0 such that for all x, y ∈ D(T )
kT n x − T n yk ≤ L kx − yk .
Definition 2 T is said to be nonexpansive if for all x, y ∈ D(T ), the following
inequality holds:
kT x − T yk ≤ kx − y k for all x, y ∈ D(T ).
Definition 3 T is said to be asymptotically nonexpansive [6], if there exists a sequence {kn }n≥0 ⊂ [1, ∞) with lim kn = 1 such that
n→∞

kT n x − T n yk ≤ kn kx − y k for all x, y ∈ D(T ), n ≥ 1.
Definition 4 T is said to be asymptotically pseudocontractive if there exists a sequence {kn }n≥0 ⊂ [1, ∞) with lim kn = 1 and there exists j(x − y) ∈ J(x − y) such
n→∞
that
hT n x − T n y, j(x − y)i ≤ kn kx − y k2 for all x, y ∈ D(T ), n ≥ 1.
Remark 1 1. It is easy to see that every asymptotically nonexpansive mapping is
uniformly L-Lipschitzian.
2. If T is asymptotically nonexpansive mapping then for all x, y ∈ D(T ) there
exists j(x − y) ∈ J(x − y) such that
hT n x − T n y, j(x − y)i ≤ kT n x − T n yk kx − y k
≤ kn kx − y k2 , n ≥ 1.

Hence every asymptotically nonexpansive mapping is asymptotically pseudocontractive.
3. Rhoades in [12] showed that the class of asymptotically pseudocontractive
mappings properly contains the class of asymptotically nonexpansive mappings.
The asymptotically pseudocontractive mappings were introduced by Schu [13]
who proved the following theorem:
Theorem 1 Let K be a nonempty bounded closed convex subset of a Hilbert space H,
T : K → K a completely continuous, uniformly L-Lipschitzian and asymptotically
P
pseudocontractive with sequence {kn } ⊂ [1, ∞); qn = 2kn − 1, ∀n ∈ N ; (qn2 − 1) <
∞; {αn }, {β n } ⊂ [0, 1]; ǫ < αn < β n ≤ b, ∀n ∈ N, and some ǫ > 0 and some
1
b ∈ (0, L−2 [(1 + L2 ) 2 − 1]); x1 ∈ K for all n ∈ N, define
xn+1 = (1 − αn ) xn + αn T n xn .
Then {xn } converges to some fixed point of T .
184

A. Rafiq - Convergence theorems for uniformly L-Lipschitzian asymptotically...

The recursion formula of theorem 1 is a modification of the well-known Mann
iteration process (see [9]).

Recently, Chang [1] extended Theorem 1 to real uniformly smooth Banach space;
in fact, he proved the following theorem:
Theorem 2 Let K be a nonempty bounded closed convex subset of a real uniformly
smooth Banach space E, T : K → K an asymptotically pseudocontractive mapping
with sequence {kn }n≥0 ⊂ [1, ∞), lim kn = 1, and x∗ ∈ F (T ) = {x ∈ K : T x = x}.
n→∞
P
Let {αn } ⊂ [0, 1] satisfying the following conditions: lim αn = 0,
αn = ∞. For
n→∞

arbitrary x0 ∈ K let {xn } be iteratively defined by

xn+1 = (1 − αn ) xn + αn T n xn , n ≥ 0.
If there exists a strictly increasing function ψ : [0, ∞) → [0, ∞), ψ(0) = 0 such that
hT n x − x∗ , j(x − x∗ )i ≤ kn ||x − x∗ ||2 − ψ(||x − x∗ ||), ∀n ∈ N,
then xn → x∗ ∈ F (T ).
Remark 2 Theorem 2, as stated is a modification of Theorem 2.4 of Chang [1] who
actually included error terms in his algorithm.
In [11], E. U. Ofoedu proved the following results.

Theorem 3 Let K be a nonempty closed convex subset of a real Banach space E,
T : K → K a uniformly L-Lipschitzian asymptotically pseudocontractive mapping
with sequence {kn }n≥0 ⊂ [1, ∞), lim kn = 1 such that x∗ ∈ F (T ) = {x ∈ K :
n→∞
P
P
2
α
=
∞,
T
x
=
x}.
Let

}

[0,
1]

be
such
that
n
n
n≥0
n≥0 αn < ∞ and
n≥0
P
n≥0 αn (kn − 1) < ∞. For arbitrary x0 ∈ K let {xn }n≥0 be iteratively defined by
xn+1 = (1 − αn ) xn + αn T n xn , n ≥ 0.

Suppose there exists a strictly increasing function ψ : [0, ∞) → [0, ∞), ψ(0) = 0 such
that
hT n x − x∗ , j(x − x∗ )i ≤ kn ||x − x∗ ||2 − ψ(||x − x∗ ||), ∀x ∈ K.
Then {xn }n≥0 is bounded.
Theorem 4 Let K be a nonempty closed convex subset of a real Banach space E,
T : K → K a uniformly L-Lipschitzian asymptotically pseudocontractive mapping
with sequence {kn }n≥0 ⊂ [1, ∞), lim kn = 1 such that x∗ ∈ F (T ) = {x ∈ K :
n→∞


185

A. Rafiq - Convergence theorems for uniformly L-Lipschitzian asymptotically...

P
P
2
T
n≥0 αn = ∞,
n≥0 αn < ∞ and
Px = x}. Let {αn }n≥0 ⊂ [0, 1] be such that
n≥0 αn (kn − 1) < ∞. For arbitrary x0 ∈ K let {xn }n≥0 be iteratively defined by
xn+1 = (1 − αn ) xn + αn T n xn , n ≥ 0.

Suppose there exists a strictly increasing function ψ : [0, ∞) → [0, ∞), ψ(0) = 0 such
that
hT n x − x∗ , j(x − x∗ )i ≤ kn ||x − x∗ ||2 − ψ(||x − x∗ ||), ∀x ∈ K.
Then {xn }n≥0 converges strongly to x∗ ∈ F (T ).
Theorem 5 Let K be a nonempty closed convex subset of a real Banach space E,

T : K → K a uniformly L-Lipschitzian asymptotically pseudocontractive mapping
with sequence {kn }n≥0 ⊂ [1, ∞), lim kn = 1 such that x∗ ∈ F (T ) = {x ∈ K : T x =
n→∞

x}. Let {an }n≥0 , {bn }n≥0 , {cn }n≥0 be real sequences in [0, 1] satisfying the following
conditions:
i) an + bn + cn = 1;
P
ii)
n≥0 (bn + cn ) = ∞;
P
2
iii)
n≥0 (bn + cn ) < ∞;
P
iv)
n≥0 (bn + cn )(kn − 1) < ∞; and
P
v)
n≥0 cn < ∞.


For arbitrary x0 ∈ K let {xn }n≥0 be iteratively defined by
xn+1 = an xn + bn T n xn + cn un , n ≥ 0,

where {un }n≥0 is a bounded sequence of error terms in K. Suppose there exists a
strictly increasing function ψ : [0, ∞) → [0, ∞), ψ(0) = 0 such that
hT n x − x∗ , j(x − x∗ )i ≤ kn ||x − x∗ ||2 − ψ(||x − x∗ ||), ∀x ∈ K.
Then {xn }n≥0 converges strongly to x∗ ∈ F (T ).
Remark 3 P
One can easily P
see that if we take in theorems 3 and 4, αn = n1σ ; 0 <
σ < 1, then
αn = ∞, but
α2n = ∞. Hence the conclusions of theorems 3, 4 and
5 can be improved. The same argument can be applied on the results of [5].

186

A. Rafiq - Convergence theorems for uniformly L-Lipschitzian asymptotically...


In this paper our purpose is to improve the results
a significantly
P of Ofoedu [11] inP
more general context by removing the conditions n≥0 α2n < ∞ and n≥0 αn (kn −
1) < ∞ from the theorems 3 − 4. We also significantly extend theorem 2 from
uniformly smooth Banach space to arbitrary real Banach space. The boundedness
assumption imposed on K in the theorem is also dispensed with.
2.Main Results
The following lemmas are now well known.
Lemma 6 [14] Let J : E → 2E be the normalized duality mapping. Then for any
x, y ∈ E, we have
||x + y||2 ≤ ||x||2 + 2hy, j(x + y)i, ∀j(x + y) ∈ J(x + y).
Suppose there exists a strictly increasing function ψ : [0, ∞) → [0, ∞) with ψ(0) = 0.
Lemma 7 [10] Let {θn } be a sequence of nonnegative real numbers, {λn } be a real
sequence satisfying

X
0 ≤ λn ≤ 1,
λn = ∞
n=0


and let ψ ∈ Ψ. If there exists a positive integer n0 such that
θ2n+1 ≤ θ2n − λn ψ(θn+1 ) + σ n ,

for all n ≥ n0 , with σ n ≥ 0, ∀n ∈ N, and σ n = 0(λn ), then limn→∞ θn = 0.
Theorem 8 Let K be a nonempty closed convex subset of a real Banach space E,
T : K → K a uniformly L-Lipschitzian asymptotically pseudocontractive mapping
with sequence {kn }n≥0 ⊂ [1, ∞), lim kn = 1 such that p ∈ F (T ) = {x ∈ K : T x =
n→∞

x}. Let {an }n≥0 , {bn }n≥0 , {cn }n≥0 be real sequences in [0, 1] satisfying the following
conditions:
i) an + bn + cn = 1;
P
ii)
n≥0 bn = ∞;

iii) cn = o(bn );

iv) lim bn = 0.
n→∞

187

A. Rafiq - Convergence theorems for uniformly L-Lipschitzian asymptotically...

For arbitrary x0 ∈ K let {xn }n≥0 be iteratively defined by
xn+1 = an xn + bn T n xn + cn un , n ≥ 0,

(2.1)

where {un }n≥0 is a bounded sequence of error terms in K. Suppose there exists a
strictly increasing function ψ : [0, ∞) → [0, ∞), ψ(0) = 0 such that
hT n x − p, j(x − p)i ≤ kn ||x − p||2 − ψ(||x − p||), ∀x ∈ K.

(2.2)

Then {xn }n≥0 converges strongly to p ∈ F (T ).
Proof. From the condition cn = o(bn ) implies cn = tn bn , where tn → 0 as n → ∞.
Since p is a fixed point of T , then the set of fixed points F (T ) of T is nonempty.
Since the sequence {un }n≥0 is bounded, we set
M = sup kun − pk .
n≥0

By lim bn = 0 = lim tn imply there exists n0 ∈ N such that ∀n ≥ n0 , bn ≤ δ;
n→∞

n→∞

1
φ−1 (a0 )
,
,
18[φ−1 (a0 )]2 2(2 + L)φ−1 (a0 ) + M
)
φ(2φ−1 (a0 ))

 ,
12(1 + L)φ−1 (a0 ) 2(2 + L)φ−1 (a0 ) + M

0 < δ = min

and



tn ≤

φ(2φ−1 (a0 ))
.
12φ−1 (a0 )(M + 2φ−1 (a0 ))

Define a0 := kxn0 − T n0 xn0 kkxn0 − pk + (kn0 − 1)kxn0 − pk2 . Then from (2.2), we
obtain that kxn0 − pk ≤ φ−1 (a0 ).
CLAIM. kxn − pk ≤ 2φ−1 (a0 ) ∀n ≥ n0 .
The proof is by induction. Clearly, the claim holds for n = n0 . Suppose it holds
for some n ≥ n0 , i.e., kxn − pk ≤ 2φ−1 (a0 ). We prove that kxn+1 − pk ≤ 2φ−1 (a0 ).
Suppose that this is not true. Then kxn+1 −pk > 2φ−1 (a0 )), so that φ(kxn+1 −pk) >
φ(2φ−1 (a0 )). Using the recursion formula (2.1), we have the following estimates
kxn − T n xn k ≤ kxn − pk + kp − T n xn k
≤ (1 + L)kxn − pk
≤ 2(1 + L)φ−1 (a0 ),

188

A. Rafiq - Convergence theorems for uniformly L-Lipschitzian asymptotically...

kxn+1 − pk = kan xn + bn T n xn + cn un − pk
= kxn − p − bn (xn − T n xn ) + cn (un − xn )k
≤ kxn − pk + bn kxn − T n xn k + cn kun − xn k
≤ 2φ−1 (a0 ) + 2(1 + L)φ−1 (a0 )bn + (M + 2φ−1 (a0 ))cn
≤ 2φ−1 (a0 ) + [2(2 + L)φ−1 (a0 ) + M ]bn
≤ 3φ−1 (a0 ).
With these estimates and again using the recursion formula (2.1), we obtain by
lemma 1 that
kxn+1 − pk2 = kan xn + bn T n xn + cn un − pk2
= kxn − p − bn (xn − T n xn ) + cn (un − xn )k
≤ kxn − pk2 − 2bn hxn − T n xn , j(xn+1 − p)i
+2cn hun − xn , j(xn+1 − p)i
= kxn − pk2 + 2bn hT n xn+1 − p, j(xn+1 − p)i
−2bn hxn+1 − p, j(xn+1 − p)i
+2bn hT n xn − T n xn+1 , j(xn+1 − p)i
+2bn hxn+1 − xn , j(xn+1 − p)i
+2cn hun − xn , j(xn+1 − p)i

≤ kxn − pk2 + 2bn kn ||xn+1 − p||2 − φ(||xn+1 − p||)

−2bn kxn+1 − pk2 + 2bn kT n xn − T n xn+1 k ||xn+1 − p||
+2bn kxn+1 − xn k ||xn+1 − p||
+2cn (M + kxn − pk) kxn+1 − pk

≤ kxn − pk2 + 2bn (kn − 1)||xn+1 − p||2 − 2bn φ(||xn+1 − p||)
+2bn (1 + L) kxn+1 − xn k ||xn+1 − p||
+2cn (M + kxn − pk) kxn+1 − pk ,

(2.3)

where
kxn+1 − xn k = kan xn + bn T n xn + cn un − xn k
= kbn (T n xn − xn ) + cn (un − xn )k
≤ bn kxn − T n xn k + cn kun − xn k
≤ 2(1 + L)φ−1 (a0 )bn + (M + 2φ−1 (a0 ))cn
≤ [2(2 + L)φ−1 (a0 ) + M ]bn .
189

(2.4)

A. Rafiq - Convergence theorems for uniformly L-Lipschitzian asymptotically...

Substituting (2.4) in (2.3), we get
kxn+1 − pk2 ≤ kxn − pk2 − 2bn φ(2φ−1 (a0 ))
+18[φ−1 (a0 )]2 (kn − 1)bn
+6(1 + L)φ−1 (a0 )[2(2 + L)φ−1 (a0 ) + M ]b2n
+6φ−1 (a0 )(M + 2φ−1 (a0 ))cn
≤ kxn − pk2 + (kn − 1) − φ(2φ−1 (a0 ))bn .
Thus
φ(2φ−1 (a0 ))bn ≤ kxn − pk2 − kxn+1 − pk2 + (kn − 1),
implies

φ(2φ−1 (a0 ))

j
X

bn ≤

n=n0

j
X

(kxn − pk2 − kxn+1 − pk2 ) +

n=n0

j
X

(kn − 1)

n=n0

= kxn0 − pk2 +

j
X

(kn − 1),

n=n0

so that as j → ∞ we have
φ(2φ−1 (a0 ))


X

bn ≤ kxn0 − pk2 +

n=n0

j
X

(kn − 1) < ∞,

n=n0

P
which implies that
bn < ∞, a contradiction. Hence, kxn+1 − x∗ k ≤ 2φ−1 (a0 );
thus {xn } is bounded.
Now with the help (2.4) and the condition cn = o(bn ), (2.3) takes the form
kxn+1 − pk2

≤ ||xn − p||2 − 2bn φ(kxn+1 − pk)
+2bn [4[φ−1 (a0 )]2 (kn − 1)
+2(1 + L)φ−1 (a0 )[2(2 + L)φ−1 (a0 ) + M ]bn
+2φ−1 (a0 )(M + 2φ−1 (a0 ))tn ].

Denote
θn = ||xn − p||,
λn = 2bn ,
σ n = 2bn [4[φ−1 (a0 )]2 (kn − 1)
+2(1 + L)φ−1 (a0 )[2(2 + L)φ−1 (a0 ) + M ]bn
+2φ−1 (a0 )(M + 2φ−1 (a0 ))tn ].
190

(2.5)

A. Rafiq - Convergence theorems for uniformly L-Lipschitzian asymptotically...

Condition lim bn = 0 assures the existence of a rank n0 ∈ N such that λn = 2bn ≤ 1,
n→∞
P
for all n ≥ n0 . Now with the help of n≥0 bn = ∞, cn = o(bn ), lim bn = 0 and
n→∞

Lemma 2, we obtain from (2.5) that

lim ||xn − p|| = 0,

n→∞

completing the proof.
Corollary 9 Let K be a nonempty closed convex subset of a real Banach space E,
T : K → K a uniformly L-Lipschitzian asymptotically pseudocontractive mapping
with sequence {kn }n≥0 ⊂ [1, ∞), lim kn = 1 such that p ∈ F (T ) = {x ∈ K : T x =
n→∞P
x}. Let {αn }n≥0 ⊂ [0, 1] be such that n≥0 αn = ∞ and lim αn = 0. For arbitrary
n→∞

x0 ∈ K let {xn }n≥0 be iteratively defined by

xn+1 = (1 − αn ) xn + αn T n xn , n ≥ 0.
Suppose there exists a strictly increasing function ψ : [0, ∞) → [0, ∞), ψ(0) = 0 such
that
hT n x − p, j(x − p)i ≤ kn ||x − p||2 − ψ(||x − p||), ∀x ∈ K.
Then {xn }n≥0 converges strongly to p ∈ F (T ).

References
[1] S. S. Chang, Some results for asymptotically pseudocontractive mappings and
asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 129 (2000) 845–
853.
[2] C. E. Chidume, Iterative algorithm for nonexpansive mappings and some of
their generalizations, Nonlinear Anal. (to V. Lakshmikantham on his 80th birthday)
1,2 (2003) 383–429.
[3] C. E. Chidume, Geometric properties of Banach spaces and nonlinear iterations, in press.
[4] C. E. Chidume, C. O. Chidume, Convergence theorem for zeros of generalized
Lipschitz generalized phi-quasiaccretive operators, Proc. Amer. Math. Soc., 134
(2006) 243-251.
[5] C. E. Chidume, C. O. Chidume, Convergence theorem for fixed points of uniformly continuous generalized phi-hemicontractive mappings, J. Math. Anal. Appl.
303 (2005) 545–554.

191

A. Rafiq - Convergence theorems for uniformly L-Lipschitzian asymptotically...

[6] K. Goebel,W. A. Kirk, A fixed point theorem for asymptotically nonexpansive
mappings, Proc. Amer. Math. Soc. 35 (1972) 171–174.
[7] S. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Math. Soc.
44 (1974) 147–150.
[8] L. S. Liu, Ishikawa and Mann iterative process with errors for nonlinear
strongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 1945 (1995)
114–125.
[9] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4
(1953) 506–510.
[10] C. Moore and B. V. C. Nnoli, Iterative solution of nonlinear equations involving set-valued uniformly accretive operators, Computers Math. Applic. 42 (2001),
131-140.
[11] E. U. Ofoedu, Strong convergence theorem for uniformly L-Lipschitzian
asymptotically pseudocontractive mapping in real Banach space, J. Math. Anal.
Appl. 321 (2) (2006) 722-728.
[12] B. E. Rhoades, A comparison of various definition of contractive mappings,
Trans. Amer. Math. Soc. 226 (1977) 257–290.
[13] J. Schu, Iterative construction of fixed point of asymptotically nonexpansive
mappings, J. Math. Anal. Appl. 158 (1991) 407–413.
[14] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal.
TMA 16 (12) (1991), 1127-1138.
[15] Y. Xu, Ishikawa and Mann iterative process with errors for nonlinear strongly
accretive operator equations, J. Math. Anal. Appl. 224 (1998) 98–101.
Arif Rafiq
Dept. of Mathematics,
COMSATS Institute of Information Technology,
Lahore, Pakistan
email: arafiq@comsats.edu.pk

192

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52