Paper27-Acta26-2011. 112KB Jun 04 2011 12:03:17 AM

Acta Universitatis Apulensis
ISSN: 1582-5329

No. 26/2011
pp. 251-256

ON THE UNIVALENCE OF A CERTAIN INTEGRAL OPERATOR

Daniel Breaz, Nicoleta Breaz, Virgil Pescar
Abstract. In view of an integral operator Hγ1 ,γ2 ,...,γ[Reη] ,β,η for analytic functions f in the open unit disk U, sufficient conditions for univalence of this integral
operator are discussed.
2000 Mathematics Subject Classification: 30C45.
Key Words and Phrases: Integral operator, univalence, starlike, integer part.

1. Introduction
Let A be the class of functions f of the form
f (z) = z +


X


an z n

n=2

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Let S denote the
subclass of A consisting of all univalent functions f in U.
For f ∈ A, the integral operator Gα is defined by
Gα (z) =

Z

z

0



f (u)
u


1

α

du

for some complex numbers α(α 6= 0).
In [1] Kim-Merkes prove that the integral operator Gα is in the class S for
and f ∈ S.
Also, the integral operator Jγ for f ∈ A is given by
 Z z

1
1
−1
γ
u (f (u)) du
Mγ (z) =
γ 0
γ be a complex number, γ 6= 0.

251

(1.1)

1
|α|



1
4

(1.2)

D. Breaz, N. Breaz, V. Pescar - On the univalence of a certain integral operator

Miller and Mocanu in [3] have studied that the integral operator Mγ is in the
class S for f ∈ S ∗ , γ > 0, S ∗ is the subclass of S consisting of all starlike functions
f in U.
We introduce the general integral operator


Hγ1 ,γ2 ,...,γ[Reη] ,β,η (z) =

(

ηβ

Z

0

z

uηβ−1



f1 (u)
u




1
γ1

...



f[Reη] (u)
u

1
[Reη]



du

1

) ηβ

(1.3)

for fj ∈ A, γj , η, β complex numbers, [Reη] ≥ 1, γj 6= 0, j = 1, [Reη], β 6= 0, and
[Reη] is the integer part of η.
If in (1.3) we take η = 1, γ1 = γ, β = γ1 and f1 = f we obtain the integral
operator Mγ .
From (1.3) we take η · β = 1, [Reη] = 1, γ1 = α, f1 = f , we obtain the integral
operator Gγ , given by (1.1).
2.Preliminary results
We need the following lemmas.
Lemma 2.1.[5]Let α be a complex number, Re α > 0 and f ∈ A. If


1 − |z|2Re α zf ′′ (z)
f ′ (z) ≤ 1
Re α

(2.1)


for all z ∈ U, then for any complex number β, Re β ≥ Re α the function
 Z
Fβ (z) = β

z

u

β−1 ′

f (u)du

0

1

β

(2.2)


is in the class S.
Lemma 2.2.(Schwarz [2])Let f the function regular in the disk
UR = {z ∈ C : |z| < R} with |f (z)| < M , M fixed. If f (z) has in z = 0 one zero
with multiply ≥ m, then
M
(2.3)
|f (z)| ≤ m |z|m , z ∈ UR
R
the equality (in the inequality (2.3) for z 6= 0) can hold only if
f (z) = eiθ

M m
z ,
Rm

where θ is constant.
252

D. Breaz, N. Breaz, V. Pescar - On the univalence of a certain integral operator


3.Main results
Theorem 3.1.Let γj , η complex numbers, Reη ≥ 1 j = 1, [Reη], a =

[Reη]
P

Re

j=1

0 and fj ∈ A, fj (z) = z + b2j z 2 + b3j z 3 + . . . ,
If

j = 1, [Reη].



2a+1
zfj (z)

(2a + 1) 2a


|γj |, j = 1, [Reη],
fj (z) − 1 ≤
2 [Reη]

1
γj

>

(3.1)

for all z ∈ U, then for any complex number β, Re ηβ ≥ a, the function

Hγ1 ,γ2 ,...,γ[Reη] ,β,η (z) =

(


ηβ

Z

z

uηβ−1

0



f1 (u)
u



1
γ1

...



f[Reη] (u)
u

1
[Reη]



du

1
) ηβ

(3.2)

is in the class S.
Proof. We consider the function
g(z) =

Z

0

z



f1 (u)
u



1
γ1

...



f[Reη] (u)
u



1
[Reη]

(3.3)

du

The function g is regular in U. We define the function p(z) =
z ∈ U and we obtain

[Reη] 
X 1  zfj′ (z)
zg ′′ (z)
=
−1 , z ∈U
p(z) = ′
g (z)
γj fj (z)

zg ′′ (z)
g ′ (z) ,

(3.4)

j=1

From (3.1) and (3.4) we have
(2a + 1)
|p(z)| ≤
2

2a+1
2a

(3.5)

for all z ∈ U and applying Lemma 2.2 we get
2a+1

(2a + 1) 2a
|z|, z ∈ U
|p(z)| ≤
2
From (3.4) and (3.6) we have


2a+1
1 − |z|2a zg ′′ (z) (1 − |z|2a )|z| (2a + 1) 2a
·
g ′ (z) ≤
a
a
2
253

(3.6)

(3.7)

D. Breaz, N. Breaz, V. Pescar - On the univalence of a certain integral operator

for all z ∈ U.
2a
Because max (1−|z|a )|z| =
|z|≤1

2
(2a+1)

2a+1
2a

1 − |z|2a
a

, from (3.7) we have
′′
zg (z)


g ′ (z) ≤ 1

(3.8)

for all z ∈ U. So, by the Lemma 2.1, the integral operator Hγ1 ,γ2 ,...,γ[Reη] ,β,η belongs
to class S.
Corollary 3.2.Let γ be a complex number, a = Re γ1 > 0 and f ∈ A, f (z) =
z + b21 z 2 + b31 z 3 + . . ..
If


2a+1
zf (z)
(2a + 1) 2a


|γ|
(3.9)
f (z) − 1 ≤
2
for all z ∈ U, then the integral operator Mγ define by (3.9) belongs to the class S.
Proof. We take η = 1, β = γ1 , γ1 = γ, f1 = f in Theorem 3.1.
Corollary 3.3.Let α, η complex numbers a = Re α1 ∈ (0, 1], Reη ≥ 1 and
fj ∈ A, fj (z) = z + b2j z 2 + . . . , j = 1, [Reη].
If


2a+1
zfj (z)
(2a + 1) 2a


(3.10)
|α|, j = 1, [Reη]
fj (z) − 1 ≤
2 [Reη]

for all z ∈ U, then the function
Lα,η (z) =

Z

z

0



f1 (u)
u

1

α

...



f[Reη] (u)
u

 α1

du

(3.11)

is in the class S.
Proof. For γ1 = γ2 = ... = γ[Reη] = α and ηβ = 1 in Theorem 3.1. we have the
Corollary 3.3.
Remark. For [Reη] = 1, f1 = f , f ∈ A, a = Re α1 ∈ (0, 1] from Corollary 3.3,
we obtain that the function Gα (z) is in the class S.
Theorem 3.5.Let γj , η complex numbers, [Reη] ≥ 1. j = 1, [Reη] , a =
[Reη]

P
P
Re γ1j ≥ 21 and fj ∈ S, fj (z) = z +
bkj z k , j = 1, [Reη].
j=1

k=2

If

[Reη]

X 1
1
1
≤ , for a ≥
|γj |
4
2
j=1

254

(3.12)

D. Breaz, N. Breaz, V. Pescar - On the univalence of a certain integral operator

then for any complex number β, Re ηβ ≥ a, the integral operator Hγ1 ,γ2 ,...,γ[Reη] ,β,η
given by (1.3) is in the class S.
Proof. We consider the function
g(z) =

Z

0

z



f1 (u)
u



1
γ1

...



f[Reη] (u)
u



1
[Reη]

du

(3.13)

The function g is regular in U. We have
1 − |z|2a
a


′′

X  1 zfj′ (z)

zg (z) 1 − |z|2a [Reη]



− 1 .
g ′ (z) ≤

a
|γj | fj (z)

(3.14)

j=1

Because fj ∈ S, j = 1, [Reη] we have


zfj (z) 1 + |z|


fj (z) ≤ 1 − |z| , z ∈ U, j = 1, [Reη]

(3.15)

From (3.14) and (3.15) we obtain



[Reη]
X 1
1 − |z|2a zg ′′ (z) 1 − |z|2a 2

g ′ (z)
a
a
1 − |z|
|γj |

(3.16)

j=1

for all z ∈ U.
1−|z| 2a
For a ≥ 21 we have max 1−|z|
= 2a and from (3.12), (3.16) we obtain
|z|≤1



1 − |z|2a zg ′′ (z)
g ′ (z) ≤ 1, z ∈ U
a

(3.17)

From (3.17) and Lemma 2.1 it results that the integral operator
Hγ1 ,γ2 ,...,γ[Reη] ,β,η belongs to class S.


Corollary 3.6.Let α, η complex numbers, [Reη] ≥ 1, a = Re α1 ∈ 12 , 1 and

P
bkj z k , j = 1, [Reη].
fj ∈ S, fj (z) = z +
If

k=2

1
1
≤ ,
|α|
4
then the integral operator Lα,η given by (3.11) is in the class S.
Proof. We take ηβ = 1, γ1 = γ2 = ... = γ[Reη] = α in Theorem 3.5.
255

(3.18)

D. Breaz, N. Breaz, V. Pescar - On the univalence of a certain integral operator
Corollary 3.7.Let γ be a complex number, a = Re γ1 ≥ 12 and f ∈ S f (z) =
z + b21 z 2 + b31 z 3 + ....
If
1
1
≤ ,
(3.19)
|γ|
4
then the integral operator Mγ define by (1.2) belongs to class S.
Proof. For η = 1, β = γ1 , γ1 = γ, f1 = f in Theorem 3.5 we have the Corollary
3.7.
References
[1] Y. J. Kim, E. P. Merkes, On an Integral of Powers of a Spirallike Function,
Kyungpook Math. J., 12 (1972), 249-253.
[2] O. Mayer, The Functions Theory of One Variable Complex, Bucureşti, 1981.
[3] S. S. Miller, P. T. Mocanu, Differential Subordinations, Theory and Applications, Monographs and Text Books in Pure and Applied Mathematics, 225, Marcel
Dekker, New York, 2000.
[4] Z. Nehari, Conformal Mapping, Mc Graw-Hill Book Comp., New York, 1952
(Dover. Publ. Inc., 1975).
[5] N. N. Pascu, An Improvement of Becker’s Univalence Criterion, Proceedings
of the Commemorative Session Simion Stoilow, University of Braşov, 1987, 43-48.
[6] V. Pescar, D. V. Breaz, The Univalence of Integral Operators, Academic
Publishing House, Sofia, 2008.
Daniel Breaz
Department of Mathematics and Computer Science
”1 Decembrie 1918” University of Alba Iulia
Str. N. Iorga, No. 11-13, Alba Iulia, 510009, Alba, Romania
email:dbreaz@uab.ro
Nicoleta Breaz
Department of Mathematics and Computer Science
”1 Decembrie 1918” University of Alba Iulia
Str. N. Iorga, No. 11-13, Alba Iulia, 510009, Alba, Romania
email:nbreaz@uab.ro
Virgil Pescar
Department of Mathematics
Transilvania University of Braşov
500091, Braşov, Romania
email:virgilpescar@unitbv.ro
256

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52